
P V - W A V E 7 . 5

SOLVEHELPING CUSTOMERS COMPLEX PROBLEMSSOLVE

R e f e r e n c e V 1 , V 2 , a n d V 3

Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.
2500 Wilcrest Drive Tour Europe Suite 1
Suite 200 33 place des Corolles Centennial Court
Houston, Texas 77042-2579 Cedex 07 East Hampstead Road
United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire
713-784-3131 FRANCE RG 12 1 YQ
800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM
(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700
http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748
e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.
7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor
Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho
Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102
+886-2-727-2255 +49-711-13287-0 JAPAN
(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760
e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769

e-mail: vda-sprt@vnij.co.jp
VIsual Numerics S.A. de C.V. Visual Numerics, Inc., Korea
Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.
Col. Juarez 136-1, Mapo-dong, Mapo-gu
Mexico, D.F. C.P. 06600 Seoul 121-050
Mexico Korea

© 1990-2001 by Visual Numerics, Inc. An unpublished work. All rights reserved. Printed in the USA.

Information contained in this documentation is subject to change without notice.

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademarks of Visual Numerics, Inc.
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems,
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compaq Computer Corporation; Tektronix 4510
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin
Enterprises; XWD — X Consortium. Other product names and companies mentioned herein may be the trademarks of their respective
owners.

IMPORTANT NOTICE: Use of this document is subject to the terms and conditions of a Visual Numerics Software License
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the
license agreement, you may not use this documentation and should promptly return the product for a full refund. Do not make illegal
copies of this documentation. No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law.

The Visualizaton Toolkit
Copyright (c) 1993-1995 Ken Martin, Will Schroeder, Bill Lorensen.

This software is copyrighted by Ken Martin, Will Schroeder and Bill Lorensen. The following terms apply to all files associated with the
software unless explicitly disclaimed in individual files. This copyright specifically does not apply to the related textbook "The Visualiza-
tion Toolkit" ISBN 013199837-4 published by Prentice Hall which is covered by its own copyright.

The authors hereby grant permission to use, copy, and distribute this software and its documentation for any purpose, provided that
existing copyright notices are retained in all copies and that this notice is included verbatim in any distributions. Additionally, the authors
grant permission to modify this software and its documentation for any purpose, provided that such modifications are not distributed
without the explicit consent of the authors and that existing copyright notices are retained in all copies. Some of the algorithms imple-
mented by this software are patented, observe all applicable patent law.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY
DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS
SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PRO-
VIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents i

Table of Contents

Preface i

What’s in this Manual i

Conventions Used in this Manual iii

Technical Support iv

Chapter 1: Functional Summary of Routines 1
3D Visualization Toolkit (VTK) Routines 4

Array Creation Routines 5

Array Manipulation Routines 6

Color Table Manipulation Routines 8

Concurrent Processing Routines 9

Coordinate Conversion Routines 9

Data Connection Routines 9

Data Conversion Routines 10

Data Extraction Routines 11

Date/Time Functions 11

File Manipulation Routines 12

General Graphics Routines 13

General Mathematical Functions 14

Gridding Routines 16

HDF Routines 17

Help and Information Routines 18

Hypertext Markup Language (HTML) Routines 18

Image Display Routines 19

Image IO Routines 20

Image Processing Routines 20

Input and Output Routines 22

Interpolation Routines 23

ii PV-WAVE Reference

Mapping Routines 24

Operating System Access Routines 24

Optimization and Regression Routines 25

Plotting Routines 26

Polygon Generation Routines 27

Polygon Manipulation Routines 28

Polygon Rendering Routines 28

Programming Routines 28

Ray Tracing Routines 30

Session Routines 30

Special Mathematical Functions 30

String Processing Routines 30

Table Manipulation Functions 31

Transcendental Mathematical Functions 32

VDA Tools Routines 32

VDA Tools Manager Routines 33

VDA Tools Manager Graphical Element Routines 35

VDA Utilities Routines 36

View Setup Routines 38

Virtual Reality Modeling Language (VRML) Routines 39

Volume Manipulation Routines 39

Volume Rendering Routines 40

WAVE Widgets Routines 40

WAVE Widget Utilities 42

Widget Toolbox Routines 42

Window Routines 44

Chapter 2: Procedure and Function Reference 45
ABS Function 46

ACOS Function 47

ADD_EXEC_ON_SELECT Procedure (UNIX) 48

ADDVAR Procedure 49

Table of Contents iii

AFFINE Function 50

ALOG Function 51

ALOG10 Function 52

ASARR Function 53

ASIN Function 55

ASKEYS Function 56

ASSOC Function 58

ATAN Function 60

AVG Function 61

AXIS Procedure 63

BAR2D Procedure 73

BAR3D Procedure 75

BESELI Function 77

BESELJ Function 78

BESELY Function 80

BILINEAR Function 82

BINDGEN Function 85

BLOB Function 86

BLOBCOUNT Function 87

BOUNDARY Function 88

BREAKPOINT Procedure 89

BUILDRESOURCEFILENAME Function 90

BUILD_TABLE Function 93

BYTARR Function 96

BYTE Function 97

BYTEORDER Procedure 100

BYTSCL Function 102

CD Procedure 107

C_EDIT Procedure 109

CENTER_VIEW Procedure 113

CHEBYSHEV Function 115

CHECKFILE Function 116

iv PV-WAVE Reference

CHECK_MATH Function 118

CINDGEN Function 121

CLOSE Procedure 122

COLOR_CONVERT Procedure 123

COLOR_EDIT Procedure 124

COLOR_PALETTE Procedure 129

COMPILE Procedure 131

COMPLEX Function 135

COMPLEXARR Function 138

CONE Function 139

CONGRID Function 140

CONJ Function 142

CONTOUR Procedure 144

CONTOUR2 Procedure 147

CONTOURFILL Procedure 151

CONVERT_COORD Function 156

CONV_FROM_RECT Function 158

CONVOL Function 160

CONV_TO_RECT Function 163

CORRELATE Function 166

COS Function 168

COSH Function 169

COSINES Function 170

CPROD Function 171

CREATE _ HOLIDAYS Procedure 171

CREATE_WEEKENDS Procedure 172

CROSSP Function 174

CURSOR Procedure 175

CURVEFIT Function 179

CYLINDER Function 181

DAY_OF_WEEK Function 184

DAY_OF_YEAR Function 185

Table of Contents v

DBLARR Function 186

DCINDGEN Function 187

DCOMPLEX Function 188

DCOMPLEXARR Function 190

DC_ERROR_MSG Function 191

DC_OPTIONS Function 193

DC_READ_8_BIT Function 194

DC_READ_24_BIT Function 196

DC_READ_CONTAINER Function 199

DC_READ_DIB Function (Windows) 201

DC_READ_FIXED Function 203

DC_READ_FREE Function 218

DC_READ_TIFF Function 231

DC_SCAN_CONTAINER Function 235

DC_WRITE_8_BIT Function 237

DC_WRITE_24_BIT Function 238

DC_WRITE_DIB Function (Windows) 240

DC_WRITE_FIXED Function 242

DC_WRITE_FREE Function 250

DC_WRITE_TIFF Function 256

DEFINE_KEY Procedure 259

DEFROI Function 266

DEFSYSV Procedure 269

DELETE_SYMBOL Procedure (OpenVMS) 271

DEL_FILE Procedure 272

DELFUNC Procedure 273

DELLOG Procedure (OpenVMS) 274

DELPROC Procedure 275

DELSTRUCT Procedure 276

DELVAR Procedure 277

DERIV Function 279

DERIVN Function 281

vi PV-WAVE Reference

DETERM Function 282

DEVICE Procedure 283

DIAG Function 284

DICM_TAG_INFO Function 285

DIGITAL_FILTER Function 286

DILATE Function 289

DINDGEN Function 293

DIST Function 294

DOC_LIBRARY Procedure (UNIX/OpenVMS) 297

DOUBLE Function 300

DROP_EXEC_ON_SELECT Procedure (UNIX) 302

DT_ADD Function 303

DT_COMPRESS Function 304

DT_DURATION Function 308

DTGEN Function 309

DT_PRINT Procedure 311

DT_SUBTRACT Function 312

DT_TO_SEC Function 314

DT_TO_STR Procedure 316

DT_TO_VAR Procedure 319

ENVIRONMENT Function (UNIX/Windows) 322

EOF Function 323

ERASE Procedure 324

ERODE Function 326

ERRORF Function 330

ERRPLOT Procedure 331

EUCLIDEAN Function 333

EXEC_ON_SELECT Procedure (UNIX) 334

EXECUTE Function 337

EXIT Procedure 340

EXP Function 341

EXPAND Function 342

Table of Contents vii

EXPON Function 343

EXTREMA Function 344

FAST_GRID2 Function 346

FAST_GRID3 Function 348

FAST_GRID4 Function 351

FFT Function 353

FILEPATH Function 356

FINDFILE Function 358

FINDGEN Function 359

FINITE Function 360

FIX Function 362

FLOAT Function 364

FLTARR Function 366

FLUSH Procedure 367

FREE_LUN Procedure 368

FSTAT Function 369

FUNCT Procedure 372

GAUSSFIT Function 375

GAUSSINT Function 376

GCD Function 377

GETENV Function 378

GET_KBRD Function 379

GET_LUN Procedure 380

GETNCERR Function 382

GETNCOPTS Function 383

GET_SYMBOL Function (OpenVMS) 385

GREAT_INT Function 386

GRID Function 387

GRIDN Function 388

GRID_2D Function 389

GRID_3D Function 391

GRID_4D Function 393

viii PV-WAVE Reference

GRID_SPHERE Function 396

GROUP_BY Function 399

HANNING Function 405

HDFGET24 Function 407

HDFGETANN Function 409

HDFGETFILEANN Function 410

HDFGETNT Function 412

HDFGETR8 Function 414

HDFGETRANGE Function 416

HDFGETSDS Function 417

HDFLCT Procedure 419

HDFPUT24 Function 420

HDFPUTFILEANN Function 422

HDFPUTR8 Function 423

HDFPUTSDS Function 425

HDFSCAN Procedure 427

HDFSETNT Function 428

HDF_TEST Procedure 429

HELP Procedure 430

HILBERT Function 432

HIST_EQUAL Function 434

HIST_EQUAL_CT Procedure 437

HISTN Function 438

HISTOGRAM Function 440

HLS Procedure 448

HSV Procedure 450

HSV_TO_RGB Procedure 451

HTML_BLOCK Procedure 453

HTML_CLOSE Procedure 454

HTML_HEADING Procedure 455

HTML_HIGHLIGHT Function 456

HTML_IMAGE Function 457

Table of Contents ix

HTML_LINK Function 459

HTML_LIST Procedure 460

HTML_OPEN Procedure 463

HTML_PARAGRAPH Procedure 464

HTML_RULE Procedure 466

HTML_SAFE Function 466

HTML_TABLE Procedure 468

HTML_TEXT Procedure 470

IMAGE_COLOR_QUANT Function 474

IMAGE_CONT Procedure 477

IMAGE_CREATE Function 479

IMAGE_DISPLAY Procedure 486

IMAGE_QUERY_FILE Function 488

IMAGE_READ Function 492

IMAGE_WRITE Function 495

IMAGINARY Function 499

IMG_TRUE8 Procedure 500

INDEX_AND Function 502

INDEX_CONV Function 503

INDEX_OR Function 504

INDGEN Function 505

INFO Procedure 506

INTARR Function 509

INTERPOL Function 510

INTERPOLATE Function 513

INTRP Function 513

INVERT Function 514

ISASKEY Function 515

ISHFT Function 516

JACOBIAN Function 518

JOURNAL Procedure 518

JUL_TO_DT Function 519

x PV-WAVE Reference

KEYWORD_SET Function 520

LCM Function 522

LEEFILT Function 523

LEGEND Procedure 524

LINDGEN Function 526

LINKNLOAD Function 527

LIST Function 533

LISTARR Function 534

LN03 Procedure (UNIX/OpenVMS) 535

LOADCT Procedure 535

LOADCT_CUSTOM Procedure 537

LOAD_HOLIDAYS Procedure 538

LOAD_OPTION Procedure 539

LOADRESOURCES Procedure 540

LOADSTRINGS Procedure 542

LOAD_WEEKENDS Procedure 545

LONARR Function 546

LONG Function 547

LUBKSB Procedure 549

LUDCMP Procedure 551

MAP Procedure 556

MAP_CONTOUR Procedure 565

MAP_PLOTS Procedure 567

MAP_POLYFILL Procedure 569

MAP_REVERSE Procedure 571

MAP_VELOVECT Procedure 572

MAP_XYOUTS Procedure 574

MAX Function 575

MEDIAN Function 577

MESH Function 580

MESSAGE Procedure 582

MIN Function 584

Table of Contents xi

MINIMIZE Function 586

MODIFYCT Procedure 587

MOLEC Function 588

MOMENT Function 589

MONTH_NAME Function 590

MOVIE Procedure 591

MPROVE Procedure 593

MSWORD_CGM_SETUP Procedure 594

NAVIGATOR Procedure 595

NEIGHBORS Function 596

N_ELEMENTS Function 597

NINT Function 598

NORMALS Function 600

N_PARAMS Function 601

N_TAGS Function 602

ON_ERROR_GOTO Procedure 613

ON_IOERROR Procedure 614

OPEN Procedures (UNIX/OpenVMS) 615

OPEN Procedures (Windows) 621

OPENURL Procedure 624

OPLOT Procedure 626

OPLOTERR Procedure 628

OPTION_IS_LOADED Function 630

ORDER_BY Function 631

PALETTE Procedure 635

PARAM_PRESENT Function 638

PARSEFILENAME Procedure 640

PIE Procedure 641

PIE_CHART Procedure 646

PLOT Procedures 651

PLOTERR Procedure 657

PLOT_FIELD Procedure 659

xii PV-WAVE Reference

PLOT_HISTOGRAM Procedure 662

PLOTS Procedure 664

PM Procedure 667

PMF Procedure 669

POINT_LUN Procedure 670

POLY Function 672

POLY_2D Function 673

POLY_AREA Function 676

POLY_C_CONV Function 677

POLY_COUNT Function 679

POLY_DEV Function 680

POLYFILL Procedure 683

POLYFILLV Function 690

POLY_FIT Function 691

POLYFITW Function 694

POLY_MERGE Procedure 696

POLY_NORM Function 697

POLY_PLOT Procedure 699

POLYSHADE Function 702

POLY_SPHERE Procedure 705

POLY_SURF Procedure 708

POLY_TRANS Function 709

POLYWARP Procedure 710

POPD Procedure 713

PRIME Function 715

PRINT Procedures 716

PRINTD Procedure 717

PRODUCT Function 718

PROFILE Function 718

PROFILES Procedure 720

PROMPT Procedure 722

PSEUDO Procedure 723

Table of Contents xiii

PUSHD Procedure 724

QUIT Procedure 734

RANDOMU Function 737

RDPIX Procedure 738

READ Procedures 739

READ_XBM Procedure 742

REBIN Function 743

REFORM Function 745

REGRESS Function 747

RENAME Procedure 749

RENDER Function 752

RENDER24 Function 754

REPLICATE Function 756

REPLV Function 757

RESAMP Function 758

RESTORE Procedure 759

RETALL Procedure 760

RETURN Procedure 761

REVERSE Function 762

REWIND Procedure (OpenVMS) 764

RGB_TO_HSV Procedure 764

RM Procedure 765

RMF Procedure 768

ROBERTS Function 769

ROT Function 772

ROTATE Function 775

ROT_INT Function 777

SAVE Procedure 781

SCALE3D Procedure 782

SEC_TO_DT Function 783

SELECT_READ_LUN Procedure (UNIX) 785

SETDEMO Procedure 786

xiv PV-WAVE Reference

SETENV Procedure (UNIX/Windows) 788

SETLOG Procedure (OpenVMS) 789

SETNCOPTS Procedure 790

SET_PLOT Procedure 791

SET_SCREEN Procedure 793

SET_SHADING Procedure 795

SET_SYMBOL Procedure (OpenVMS) 798

SETUP_KEYS Procedure 798

SET_VIEW3D Procedure 800

SET_VIEWPORT Procedure 801

SET_XY Procedure 803

SGN Function 805

SHADE_SURF Procedure 806

SHADE_SURF_IRR Procedure 812

SHADE_VOLUME Procedure 815

SHIF Function 818

SHIFT Function 819

SHOW3 Procedure 823

SHOW_OPTIONS Procedure 825

SIGMA Function 827

SIN Function 829

SINDGEN Function 830

SINH Function 831

SIZE Function 832

SKIPF Procedure (OpenVMS) 834

SLICE Function 835

SLICE_VOL Function 835

SMALL_INT Function 837

SMOOTH Function 838

SOBEL Function 841

SOCKET_ACCEPT Function 844

SOCKET_CLOSE Procedure 846

Table of Contents xv

SOCKET_CONNECT Function 847

SOCKET_GETPORT Function 848

SOCKET_INIT Function 849

SOCKET_READ Function 851

SOCKET_WRITE Procedure 852

SORT Function 854

SPAWN Procedure (UNIX/OpenVMS) 855

SORTN Function 858

SPAWN Procedure (Windows) 859

SPHERE Function 860

SPLINE Function 862

SQRT Function 864

STDEV Function 865

STOP Procedure 867

STRARR Function 868

STRCOMPRESS Function 869

STRETCH Procedure 870

STRING Function 872

STRJOIN Function 875

STRLEN Function 876

STRLOOKUP Function 877

STRLOWCASE Function 879

STRMATCH Function 881

STRMESSAGE Function 884

STRMID Function 886

STRPOS Function 887

STRPUT Procedure 889

STRSPLIT Function 890

STRSUBST Function 892

STR_TO_DT Function 894

STRTRIM Function 896

STRUCTREF Function 898

xvi PV-WAVE Reference

STRUPCASE Function 899

SUM Function 901

SURFACE Procedure 902

SURFACE_FIT Function 905

SURFR Procedure 907

SVBKSB Procedure 910

SVD Procedure 911

SVDFIT Function 913

SYSTIME Function 915

TAG_NAMES Function 920

TAN Function 921

TANH Function 922

TAPRD Procedure (OpenVMS) 923

TAPWRT Procedure (OpenVMS) 924

TEK_COLOR Procedure 925

TENSOR Functions 927

THREED Procedure 929

TODAY Function 930

TOTAL Function 931

TQLI Procedure 934

TRANSPOSE Function 936

TRED2 Procedure 938

TRIDAG Procedure 939

TRNLOG Function (OpenVMS) 941

TV Procedure 943

TVCRS Procedure 947

TVLCT Procedure 949

TVRD Function 951

TVSCL Procedure 952

TVSIZE Procedure 956

UNIQUE Function 960

UNIX_LISTEN Function (UNIX Only) 962

Table of Contents xvii

UNIX_REPLY Function (UNIX Only) 963

UNLOAD_OPTION Procedure 964

UPVAR Procedure 965

USERSYM Procedure 967

USGS_NAMES Function 969

VAR_MATCH Function 971

VAR_TO_DT Function 973

VECTOR_FIELD3 Procedure 975

VEL Procedure 978

VELOVECT Procedure 982

VIEWER Procedure 985

VOL_MARKER Procedure 993

VOL_PAD Function 995

VOL_REND Function 996

VOL_TRANS Function 999

VOLUME Function 1000

VRML_AXIS Procedure 1002

VRML_CAMERA Procedure 1004

VRML_CLOSE Procedure 1005

VRML_CONE Procedure 1006

VRML_CUBE Procedure 1009

VRML_CYLINDER Procedure 1011

VRML_LIGHT Procedure 1014

VRML_LINE Procedure 1015

VRML_OPEN Procedure 1017

VRML_POLY Procedure 1018

VRML_SPHERE Procedure 1020

VRML_SPOTLIGHT Procedure 1022

VRML_SURFACE Procedure 1024

VRML_TEXT Procedure 1025

vtkADDATTRIBUTE Procedure 1028

vtkAXES Procedure 1029

xviii PV-WAVE Reference

vtkCAMERA Procedure 1031

vtkCLOSE Procedure 1032

vtkCOLORBAR Procedure 1033

vtkCOMMAND Procedure 1034

vtkERASE Procedure 1035

vtkGRID Procedure 1036

vtkHEDGEHOG Procedure 1037

vtkINIT Procedure 1039

vtkLIGHT Procedure 1040

vtkPLOTS Procedure 1041

vtkPOLYDATA Procedure 1043

vtkPOLYSHADE Procedure 1044

vtkPPMREAD Function 1046

vtkPPMWRITE Procedure 1047

vtkRECTILINEARGRID Procedure 1048

vtkRENDERWINDOW Procedure 1049

vtkSCATTER Procedure 1050

vtkSLICEVOL Procedure 1053

vtkSTRUCTUREDGRID Procedure 1055

vtkSTRUCTUREDPOINTS Procedure 1056

vtkSURFACE Procedure 1057

vtkSURFGEN Procedure 1060

vtkTEXT Procedure 1061

vtkTVRD Function 1062

vtkUNSTRUCTUREDGRID Procedure 1063

vtkWDELETE Procedure 1064

vtkWINDOW Procedure 1065

vtkWRITEVRML Procedure 1067

vtkWSET Procedure 1068

WCOPY Function (Windows) 1070

WDELETE Procedure 1072

WEOF Procedure 1073

Table of Contents xix

WgAnimateTool Procedure 1073

WgCbarTool Procedure 1079

WgCeditTool Procedure 1083

WgCtTool Procedure 1092

WgIsoSurfTool Procedure 1096

WgMovieTool Procedure 1102

WgOrbit Procedure 1108

WgSimageTool Procedure 1109

WgSliceTool Procedure 1113

WgStripTool Procedure 1119

WgSurfaceTool Procedure 1124

WgTextTool Procedure 1130

WHERE Function 1133

WHEREIN Function 1135

WIN32_PICK_FONT Function 1136

WIN32_PICK_PRINTER Function 1137

WINDOW Procedure 1138

WMENU Function (UNIX/OpenVMS) 1143

WPASTE Function (Windows) 1145

WPRINT Procedure (Windows) 1146

WREAD_DIB Function (Windows) 1148

WREAD_META Function (Windows) 1149

WRITEU Procedure 1151

WRITE_XBM Procedure 1152

WSET Procedure 1153

WSHOW Procedure 1155

WWRITE_DIB Function (Windows) 1156

WWRITE_META Function (Windows) 1157

WzAnimate Procedure 1159

WzBar Procedure 1160

WzBar3D Procedure 1162

WzColorEdit Procedure 1164

xx PV-WAVE Reference

WzContour Procedure 1167

WzExport Procedure 1168

WzHistogram Procedure 1170

WzImage Procedure 1172

WzImport Procedure 1174

WzMultiView Procedure 1176

WzPie Procedure 1177

WzPlot Procedure 1179

WzPreview Procedure 1180

WzSurface Procedure 1182

WzTable Procedure 1184

WzVariable Procedure 1186

ZOOM Procedure 1192

ZROOTS Procedure 1194

Chapter 3: Graphics and Plotting Keywords 1197

Chapter 4: System Variables 1233

Chapter 5: Software Character Sets 1255

Chapter 6: Special Characters 1265

Chapter 7: Executive Commands 1267
Using Executive Commands 1267

Appendix A: The PV-WAVE HDF Interface A-1
What is the PV-WAVE HDF Interface? A-1

Example Programs Are Available A-2

Using the PV-WAVE HDF Functions A-3

PV-WAVE HDF Base Function Interface A-6

Appendix B: Output Devices and Window Systems B-1

Table of Contents xxi

Window System Features B-2

CGM Output B-4

HPGL Output B-8

PCL Output B-14

Pixel Map Output B-17

PostScript Output B-19

Regis Output B-34

Tektronix Terminals B-36

WIN32 Driver B-39

WMF Driver B-53

X Window System B-58

Z-buffer Output B-86

Reference Index 1

xxii PV-WAVE Reference

i

PREFACE

Preface
The PV-WAVE Reference describes the PV-WAVE functions and procedures, key-
words, system variables, fonts, special characters, executive commands, and device
drivers.

What’s in this Manual
Chapter 1, Functional Summary of Routines — A listing of PV-WAVE functions
and procedures arranged into functional groups, such as image processing routines,
input/output routines, programming routines, and string processing routines. The
basic syntax for each routine is also shown.

Chapter 2, Procedure and Function Reference — An alphabetically arranged
reference for all PV-WAVE procedures and functions. Most descriptions include
one or more examples and cross references to related information.

Chapter 3, Graphics and Plotting Keywords — Describes the keywords that can
be used with the graphics and plotting system routines.

Chapter 4, System Variables — Describes each of the system variables.

Chapter 5, Software Character Sets — Shows the software character sets pro-
vided by PV-WAVE.

Chapter 6, Special Characters — Describes characters with special interpretation
and their function in PV-WAVE.

Chapter 7, Executive Commands — Describes each of the PV-WAVE executive
commands.

ii Preface PV-WAVE Reference Volume 1

Appendix A, The PV-WAVE HDF Interface — Discusses how to access HDF
base and convenience functions from within PV-WAVE.

Appendix B, Output Devices and Window Systems — Explains how to use the
standard graphic output devices and window systems.

Reference Index — A subject index with hypertext links to information contained
in the Reference.

Preface iii

Conventions Used in this Manual
You will find the following conventions used throughout this manual:

• Code examples appear in this typeface. For example:

PLOT, temp, s02, Title = ’Air Quality’

• Code comments are shown in this typeface, immediately below the commands
they describe. For example:

PLOT, temp, s02, Title = ’Air Quality’

; This command plots air temperature data vs. sulphur
; dioxide concentration.

• Variables are shown in lowercase italics (myvar), function and procedure
names are shown in uppercase (XYOUTS), keywords are shown in mixed case
italic (XTitle), and system variables are shown in regular mixed case type (!Ver-
sion). For better readability, all GUI development routines are shown in mixed
case (WwMainMenu).

• A $ at the end of a line of PV-WAVE code indicates that the current statement
is continued on the following line. By convention, use of the continuation char-
acter ($) in this document reflects its syntactically correct use in PV-WAVE.
This means, for instance, that strings are never split onto two lines without the
addition of the string concatenation operator (+). For example, the following
lines would produce an error if entered literally in PV-WAVE.

WAVE> PLOT, x, y, Title = ’Average $
Air Temperatures by Two-Hour Periods’

; Note that the string is split onto two lines; an error
; message is displayed if you enter a string this way.

The correct way to enter these lines is:

WAVE> PLOT, x, y, Title = ’Average ’ + $
’Air Temperatures by Two-Hour Periods’

; This is the correct way to split a string onto two
; command lines.

• Reserved words, such as FOR, IF, CASE, are always shown in uppercase.

iv Preface PV-WAVE Reference Volume 1

Technical Support
If you have problems installing, unlocking, or running your software, contact
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

• Your license number, a six-digit number that can be found on the packing slip
accompanying this order. (If you are evaluating the software, just mention that
you are from an evaluation site.)

• The name and version number of the product. For example, PV-WAVE 7.0.

• The type of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

• A detailed description of the problem.

Office Location Phone Number

Corporate Headquarters
Houston, Texas 713-784-3131

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700

Preface v

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

or by sending E-mail to:

Office Location FAX Number

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-4873

Taiwan +886-2-727-6798

United Kingdom +44-1-344-458-748

Office Location E-mail Address

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk

vi Preface PV-WAVE Reference Volume 1

Electronic Services

Service Address

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE
Mailing List: Majordomo@boulder.vni.com

To subscribe
 include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com

1

CHAPTER

1

Functional Summary of Routines
This chapter lists the following groups of related routines:

Arrays

Array Creation Routines on page 5

Array Manipulation Routines on page 6

Interpolation Routines on page 23

Graphics and Plotting

Coordinate Conversion Routines on page 9

General Graphics Routines on page 13

Gridding Routines on page 16

Mapping Routines on page 24

Plotting Routines on page 26

View Setup Routines on page 38

Window Routines on page 44

VDA Tools Routines on page 32

2 Chapter 1: Functional Summary of Routines PV-WAVE Reference Volume 1

GUI Development

BUILDRESOURCEFILENAME Function

Concurrent Processing Routines on page 9

LOADRESOURCES Procedure

LOADSTRINGS Procedure

WAVE Widget Utilities on page 42 (Wg)

NOTE For more detailed information on the following routines, please refer to the PV-WAVE
Application Developer’s Guide.

VDA Tools Manager Routines on page 33 (Tm)

VDA Tools Manager Graphical Element Routines on page 35 (Tm)

VDA Utilities Routines on page 36 (Wo)

WAVE Widgets Routines on page 40 (Ww)

Widget Toolbox Routines on page 42 (Wt)

Image Processing and Color

Color Table Manipulation Routines on page 8

Image Display Routines on page 19

Image IO Routines on page 20

Image Processing Routines on page 20

Input/Output

Data Connection Routines on page 9

HDF Routines on page 17

Input and Output Routines on page 22

Internet Enabling (Wave On Web)

Hypertext Markup Language (HTML) Routines on page 18

OPENURL Procedure on page 624

Virtual Reality Modeling Language (VRML) Routines on page 39

 3

Mathematics

General Mathematical Functions on page 14

Optimization and Regression Routines on page 25

Special Mathematical Functions on page 30

Transcendental Mathematical Functions on page 32

Programming

Data Conversion Routines on page 10

Data Extraction Routines on page 11

Date/Time Functions on page 11

File Manipulation Routines on page 12

Help and Information Routines on page 18

Operating System Access Routines on page 24

Programming Routines on page 28

Session Routines on page 30

String Processing Routines on page 30

Table Manipulation Functions on page 31

Rendering Techniques

3D Visualization Toolkit (VTK) Routines on page 4

Polygon Generation Routines on page 27

Polygon Manipulation Routines on page 28

Polygon Rendering Routines on page 28

Ray Tracing Routines on page 30

Volume Manipulation Routines on page 39

Volume Rendering Routines on page 40

4 Chapter 1: Functional Summary of Routines PV-WAVE Reference

3D Visualization Toolkit
(VTK) Routines
vtkADDATTRIBUTE, attributes

Collects point attributes for VTK datasets.

vtkAXES
Creates a set of axes.

vtkCAMERA
Changes the camera’s parameters.

vtkCOLORBAR
Adds a color bar legend to a VTK scene
using the current PV-WAVE color table.

vtkCLOSE
Closes the VTK process.

vtkCOMMAND, command
Sends Tcl and VTK commands to the Tcl
process.

vtkERASE [, background_color]
Erases the contents of the current VTK
window.

vtkGRID [, Number=n]
Adds 3D grid lines to a VTK scene.

vtkHEDGEHOG, points, vectors, scalars
Creates a HedgeHog (vector) plot.

vtkINIT
Initializes the VTK system.

vtkLIGHT
Adds a light to a VTK window.

vtkPLOTS, points
Adds a polyline.

vtkPOLYDATA, points
Passes vertex/polygon lists, lines, points,
and triangles to VTK.

vtkPOLYSHADE, vertices, polygons
Renders a polygon object.

vtkPPMREAD (filename)
Reads a PPM file.

vtkPPMWRITE [, window_index]
Writes the contents of a VTK window to a
PPM file.

vtkRECTILINEARGRID, Dimensions
Passes data describing a Rectiliniar Grid to
VTK.

vtkRENDERWINDOW [, window_index]
Renders a VTK window.

vtkSCATTER, points
Renders 3D points.

vtkSLICEVOL, v, [sx=sx, sy=sy, sz=sz,
xc=xc, yc=yc, zc=zc]

Creates a sliced 3D volume at specific x, y, z
locations.

vtkSTRUCTUREDGRID, Dimensions,
Points

Passes data describing a structured grid to
VTK.

vtkSTRUCTUREDPOINTS, Dimensions
Passes data describing structured points to
VTK.

vtkSURFACE, z [,x] [,y]
Renders a surface.

vtkSURFGEN, points
Generates a 3D surface from sampled points
assumed to lie on a surface.

vtkTEXT, string
Adds a text string.

vtkTVRD ([window_index])
Returns the contents of a VTK window as a
bitmapped image.

vtkUNSTRUCTUREDGRID, Points, Cells,
Cell_types

Passes data describing an unstructured grid
to VTK.

vtkWDELETE [, window_index]
Closes a VTK window, however it does not
shut down the Tcl process.

Array Creation Routines 5

vtkWINDOW [, window_index]
Creates a VTK window.

vtkWRITEVRML, filename [,
WindowID=id, Speed=s]

Creates a Virtual Reality Modeling Language
file (VRML .wrl file) from a scene in a VTK
window.

vtkWSET [, window_index]
Sets the active VTK window.

Array Creation Routines
ASARR(key1, value1, ... keyn , valuen)

ASARR(keys_arr, values_list)
Creates an associative array containing
specified variables and expressions.

BINDGEN (dim1 [, dim2, ... , dimn])
Returns a byte array with the specified
dimensions, setting the contents of the result
to increasing numbers starting at 0.

BYTARR (dim1 [, dim2, ... , dimn])
Returns a byte vector or array.

CINDGEN (dim1 [, dim2 , ... , dimn])
Returns a complex single-precision floating-
point array.

COMPLEXARR (dim1 [, dim2, ... , dimn])
Returns a complex single-precision floating-
point vector or array.

DBLARR (dim1, ... , dimn)
Returns a double-precision floating-point
vector or array.

DCINDGEN(dim1 [, dim2 , ... , dimn])
Returns a double-precision floating-point
complex array.

DCOMPLEXARR (dim1 [, dim2, ... , dimn])
Returns a double-precision floating-point
complex vector or array.

DIAG(a)
Makes a diagonal array or extracts the
diagonal of an array.

DINDGEN (dim1, ..., dimn)
Returns a double-precision floating-point
array with the specified dimensions.

FINDGEN (dim1, ..., dimn)
Returns a single-precision floating-point
array with the specified dimensions.

FLTARR (dim1, ..., dimn)
Returns a single-precision floating-point
vector or array.

INDGEN (dim1, ... , dimn)
Returns an integer array with the specified
dimensions.

INTARR (dim1, ... , dimn)
Returns an integer vector or array.

LINDGEN (dim1, ... , dimn)
Returns a longword integer array with the
specified dimensions.

LIST(expr1 , ... exprn)
Creates a list array.

LISTARR(number_elements,[value])
Returns a list.

LONARR (dim1, ... , dimn)
Returns a longword integer vector or array.

MAKE_ARRAY ([dim1,... , dimn])
Returns an array of specified type,
dimensions, and initialization. It provides the
ability to create an array dynamically whose
characteristics are not known until run time.

REPLICATE (value, dim1, ..., dimn)
Forms an array with the given dimensions,
filled with the specified scalar value.

SINDGEN (dim1, ... , dimn)
Returns a string array with the specified
dimensions.

STRARR (dim1, ... , dimn)
Returns a string array.

6 Chapter 1: Functional Summary of Routines PV-WAVE Reference

Array Manipulation
Routines
AFFINE(a, b, [c])

Applies an affine transformation to an array.

ASKEYS(asarr)
Obtains the key names for a given
associative array.

AVG (array [, dim])
Standard Library function that returns the
average value of an array. Optionally, it can
return the average value of one dimension of
an array.

BILINEAR (array, x, y)
Standard Library function that creates an
array containing values calculated using a
bilinear interpolation to solve for requested
points interior to an input grid specified by the
input array.

BLOB (a, i, b)
Isolates a homogeneous region in an array.

BLOBCOUNT (a, b)
Counts homogeneous regions in an array.

BOUNDARY (a,r)
Computes the boundary of a region in an
array.

CORRELATE (x, y)
Standard Library function that calculates a
simple correlation coefficient for two arrays.

CPROD(a)
Returns the Cartesian product of some
arrays.

CURVATURES (s)
Standard Library function that computes
curvatures on a parametrically defined
surface.

DICM_TAG_INFO (filename, image)
Extracts Digital Imaging and
Communications in Medicine (DICOM) tags
information from an image associative array.

DETERM (array)
Standard Library function that calculates the
determinant of a square, two-dimensional
input variable.

DERIVN(a, n)
Differentiates a function represented by an
array.

EUCLIDEAN (j)
Standard Library function that transforms the
Euclidean metric for a Jacobian j = Jacobian(
f)

EXPAND(a, d, i)
Expands an array into higher dimensions.

EXTREMA(array)
Finds the local extrema in an array.

HISTN(d [, axes])
Computes an n dimensional histogram.

HISTOGRAM (array)
Returns the density function of an array.

INDEX_AND(array1, array2)
Computes the logical AND for two vectors of
positive integers.

INDEX_CONV(a, i)
Converts one-dimensional indices to n-
dimensional indices, or n-dimensional
indices to 1D indices.

INDEX_OR(array1, array2)
Computes the logical OR for two vectors of
positive integers.

INTRP(a, n, x)
Interpolates an array along one of its
dimensions.

ISASKEY(asarr, key)
Matches a key name in a given associative
array.

JACOBIAN (f)
Standard Library function that computes the
Jacobian of a function represented by n m-
dimensional arrays

Array Manipulation Routines 7

MAX (array [, max_subscript])
Returns the value of the largest element in
an input array.

MEDIAN (array [, width])
Finds the median value of an array, or applies
a one- or two- dimensional median filter of a
specified width to an array.

MIN (array [, min_subscript])
Returns the value of the smallest element in
array.

MOMENT(a, i)
Computes moments of an array.

NEIGHBORS(a, i)
Finds the neighbors of specified array
elements.

NORMALS (j)
Standard Library function that computes unit
normals on a parametrically defined surface.

PADIT(a, [b])
Pads an array with variable thickness.

PRODUCT(array)
Returns the product of all elements in an
array.

REBIN (array, dim1, ..., dimn)
Returns a vector or array resized to the given
dimensions.

REFORM (array, dim1, ... , dimn)
Reformats an array without changing its
values numerically.

REPLV(vector, dim_vector, dim)
Replicates a vector into an array.

RESAMP(array, dim1, ..., dimn)
Resamples an array to new dimensions.

REVERSE (array, dimension)
Standard Library function that reverses a
vector or array for a given dimension.

ROTATE (array, direction)
Returns a rotated and/or transposed copy of
the input array.

SAME(x, y)
Tests if two variables are the same.

SHIF(array, dimension, shift_amount)
Shifts an array along one of its dimensions.

SHIFT (array, shift1, ... , shiftn)
Shifts the elements of a vector or array along
any dimension by any number of elements.

SIGMA (array [, npar, dim])
Standard Library function that calculates the
standard deviation value of an array.

SLICE(array, dimension, indices)
Subsets an array along one of its
dimensions.

SMOOTH (array, width)
Smooths an array with a boxcar average of a
specified width.

SORT (array)
Sorts the contents of an array.

SORTN(a)
Sorts an array of n-tuples.

STDEV (array [, mean])
Standard Library function that computes the
standard deviation and (optionally) the mean
of the input array.

TENSOR_* Functions
Compute the generalized tensor product of
two arrays.

TOTAL (array)
Sums the elements of an input array.

TRANSPOSE (array)
Transposes the input array.

UNIQN(a)
Finds the unique n-tuples from a set of n-
tuples.

WHERE (array_expr [, count])
Returns a longword vector containing the
one-dimensional subscripts of the nonzero
elements of the input array.

8 Chapter 1: Functional Summary of Routines PV-WAVE Reference

WHEREIN(a, b [,c])
Find the indices into an array where the
values occur in a second array; keywords
yield intersection, union, and complement.

Color Table Manipulation
Routines
C_EDIT [, colors_out]

Standard Library procedure that lets you
interactively create a new color table based
on the HLS or HSV color system.

COLOR_EDIT [, colors_out]
Standard Library procedure that lets you
interactively create color tables based on the
HLS or HSV color system.

COLOR_PALETTE
Standard Library procedure that displays the
current color table colors and their
associated color table indices.

HLS, ltlo, lthi, stlo, sthi, hue, lp [, rgb]
Standard Library procedure that generates
and loads color tables into an image display
device based on the HLS color system. The
resulting color table is loaded into the display
system.

HSV, vlo, vhi, stlo, sthi, hue, lp [, rgb]
Standard Library procedure that generates
and loads color tables into an image display
device based on the HSV color system. The
final color table is loaded into the display
device.

LOADCT [, table_number]
Standard Library procedure that loads a
predefined color table.

MODIFYCT, table, name, red, green, blue
Standard Library procedure that lets you
replace one of the PV-WAVE color tables
(defined in the colors.tbl file) with a new color
table.

PALETTE [, colors_out]
Standard Library procedure that lets you
interactively create a new color table based
on the RGB color system.

Concurrent Processing Routines 9

PSEUDO, ltlo, lthi, stlo, sthi, hue, lp [, rgb]
Standard Library procedure that creates a
pseudo color table based on the Hue,
Lightness, Saturation (HLS) color system.

STRETCH, low, high
Standard Library procedure that linearly
expands the range of the color table currently
loaded to cover an arbitrary range of pixel
values.

TVLCT, v1, v2, v3 [, start]
Loads the display color translation tables
from the specified variables.

WgCbarTool [, parent [, shell [, windowid
[, movedCallback], [, range]]]]

Creates a simple color bar that can be used
to view and interactively shift a color table.

WgCeditTool [, parent [, shell]]
Creates a full-featured set of menus and
widgets enclosed in a window; this window
allows you to edit the values in PV-WAVE
color tables in many different ways.

WgCtTool [, parent [, shell]]
Creates a simple widget that can be used
interactively to modify a PV-WAVE color
table.

Concurrent Processing
Routines
ADD_EXEC_ON_SELECT, lun, command

Adds a single new item to the
EXEC_ON_SELECT list.

DROP_EXEC_ON_SELECT, lun
Drops a single item from the
EXEC_ON_SELECT list.

EXEC_ON_SELECT, luns, commands
Registers callback procedures on input for a
vector of logical unit numbers (LUNs).

SELECT_READ_LUN, luns
Waits for input on any list of logical unit
numbers.

Coordinate Conversion
Routines
CONVERT_COORD (points) OR (x [, y, z])

Converts coordinates from one coordinate
system to another.

CONV_FROM_RECT (vec1, vec2, vec3)
Converts rectangular coordinates (points) to
polar, cylindrical, or spherical coordinates.

CONV_TO_RECT (vec1, vec2, vec3)
Converts polar, cylindrical, or spherical
coordinates to rectangular coordinates
(points).

POLY_DEV (points, winx, winy)
Returns a list of 3D points converted from
normal coordinates to device coordinates.

POLY_NORM (points)
Returns a list of 3D points converted from
data coordinates to normal coordinates.

POLY_TRANS (points, trans)
Returns a list of 3D points transformed by a
4-by-4 transformation matrix.

Data Connection Routines
DC_ERROR_MSG (status)

Returns the text string associated with the
negative status code generated by a “DC”
data import/export function that does not
complete successfully.

DC_OPTIONS (msg_level)
Sets the error message reporting level for all
“DC” import/export functions.

DC_READ_8_BIT (filename, imgarr)
Reads an 8-bit image file.

DC_READ_24_BIT (filename, imgarr)
Reads a 24-bit image file.

10 Chapter 1: Functional Summary of Routines PV-WAVE Reference

DC_READ_CONTAINER (filename,
var_name)

Reads a single variable from an HP VEE
Container file.

DC_READ_DIB(filename, imgarr)
Reads data from a Device Independent
Bitmap (DIB) format file into a variable.

DC_READ_FIXED (filename, var_list)
Reads fixed-formatted ASCII data using a
PV-WAVE format that you specify.

DC_READ_FREE (filename, var_list)
Reads freely-formatted ASCII files.

DC_READ_TIFF (filename, imgarr)
Reads a Tag Image File Format (TIFF) file.

DC_SCAN_CONTAINER (filename,
num_variables, start_records,
end_records)

Scans an HP VEE Container file to
determine the number and location of
defined variables.

DC_WRITE_8_BIT (filename, imgarr)
Writes 8-bit image data to a file.

DC_WRITE_24_BIT (filename, imgarr)
Writes 24-bit image data to a file.

DC_WRITE_DIB(filename, imgarr)
Writes image data from a variable to a
Device Independent Bitmap (DIB) format file.

DC_WRITE_FIXED (filename, var_list,
format)

Writes the contents of one or more
PV-WAVE variables (in ASCII fixed format)
to a file using a format that you specify.

DC_WRITE_FREE (filename, var_list)
Writes the contents of one or more
PV-WAVE variables to a file in ASCII free
format.

DC_WRITE_TIFF (filename, imgarr)
Writes image data to a file using the Tag
Image File Format (TIFF) format.

Data Conversion Routines
BYTE (expr)

Converts an expression to byte data type.

BYTSCL (array)
Scales and converts an array to byte data
type.

COMPLEX (real [, imaginary])
Converts an expression to complex data
type.

DCOMPLEX (expr, offset, dim1 [, dim2, ...
, dimn])

Converts an expression to double-precision
complex data type.

DOUBLE (expr)
Converts an expression to double-precision
floating-point data type.

FIX (expr)
Converts an expression to integer data type.

FLOAT (expr)
Converts an expression to single-precision
floating-point data type.

LONG (expr)
Converts an expression to longword integer
data type.

NINT (x)
Converts input to the nearest integer.

STRING (expr1, ... , exprn)
Converts the input parameters to characters
and returns a string expression.

Data Extraction Routines 11

Data Extraction Routines
BYTE (expr, offset [, dim1, ... , dimn])

Extracts data from an expression and places
it in a byte scalar or array.

COMPLEX (expr, offset, dim1
[, dim2, ... , dimn])

Extracts data from an expression and places
it in a complex scalar or array.

DCOMPLEX (expr, offset, dim1
[, dim2, ... , dimn])

Extracts data from an expression and places
it in a complex scalar or array.

DOUBLE (expr, offset, dim1 [, ..., dimn])
Extracts data from an expression and places
it in a double- precision floating-point scalar
or array.

FIX (expr, offset, dim1 [, ..., dimn])
Extracts data from an expression and places
it in a integer scalar or array.

FLOAT (expr, offset, dim1 [, ..., dimn])
Extracts data from an expression and places
it in a single- precision floating-point scalar or
array.

LONG (expr, offset, dim1 [, ... , dimn])
Extracts data from an expression and places
it in a longword integer scalar or array.

Date/Time Functions
CREATE_HOLIDAYS, dt_list

Creates the system variable !Holiday_List.

CREATE_WEEKENDS, day_names
Creates the system variable !Weekend_List.

DAY_NAME (dt_var)
Returns a string array containing the name of
the day of the week for each day in a Date/
Time variable.

DAY_OF_WEEK (dt_var)
Returns an array of integers containing the
day of the week for each date in a Date/Time
variable.

DAY_OF_YEAR (dt_var)
Returns an array of integers containing the
day of the year for each date in a Date/Time
variable.

DT_ADD (dt_value)
Increment the values in a Date/Time variable
by a specified amount.

DT_COMPRESS (dt_array)
Removes holidays and weekends from the
Julian day portion of Date/Time variables.

DT_DURATION (dt_value_1, dt_value_2)
Determines the elapsed time between two
Date/Time variables.

DT_PRINT, dt_var
Prints the values of PV-WAVE Date/Time
variables in a readable manner.

DT_SUBTRACT (dt_value)
Decrements the values in a Date/Time
variable by a specified amount.

DT_TO_SEC (dt_value)
Converts PV-WAVE Date/Time variables to
double-precision variables containing the
number of seconds elapsed from a base
date.

12 Chapter 1: Functional Summary of Routines PV-WAVE Reference

DT_TO_STR, dt_var, [, dates] [, times]
Converts PV-WAVE Date/Time variables
into string data.

DT_TO_VAR, dt_value
Converts a PV-WAVE Date/Time variable to
regular numerical data.

DTGEN (dt_start, dimension)
Returns an array of PV-WAVE Date/Time
variables beginning from a specified date
and incremented by a specified amount.

JUL_TO_DT (julian_day)
Converts a Julian day number to a
PV-WAVE Date/Time variable.

LOAD_HOLIDAYS
Passes the value of the !Holiday_List system
variable to the Date/Time routines.

LOAD_WEEKENDS
Passes the value of the !Weekend_List
system variable to the Date/Time routines.

MONTH_NAME (dt_var)
Returns a string or array of strings containing
the names of the months contained in a
Date/Time variable.

SEC_TO_DT (num_of_seconds)
Converts any number of seconds into
PV-WAVE Date/Time variables.

STR_TO_DT (date_strings [, time_strings])
Converts date and time string data to
PV-WAVE Date/Time variables.

TODAY ()
Returns a Date/Time variable containing the
current system date and time.

VAR_TO_DT (yyyy, mm, dd, hh, mn, ss)
Converts scalars or arrays of scalars
representing dates and times into PV-WAVE
Date/Time variables.

File Manipulation Routines
CLOSE [, unit1, ... , unitn]

Closes the specified file units.

EOF (unit)
Tests the specified file unit for the end-of-file
condition.

FINDFILE (file_specification)
Returns a string array containing the names
of all files matching a specified file
description.

FLUSH, unit1, ..., unitn

Causes all buffered output on the specified
file units to be written.

FREE_LUN, unit1, ..., unitn

Deallocates file units previously allocated
with GET_LUN.

FSTAT (unit)
Returns an expression containing status
information about a specified file unit.

GET_LUN, unit
Allocates a file unit from a pool of free units.

OPENR, unit, filename [, record_length]
OPENR (OPEN Read) opens an existing file
for input only.

OPENU, unit, filename [, record_length]
OPENU (OPEN Update) opens an existing
file for input and output.

OPENURL, url
Opens a file on the internet to be accessed
using PV-WAVE. 1

OPENW, unit, filename [, record_length]
OPENW (OPEN Write) opens a new file for
input and output.

POINT_LUN, unit, position
Allows the current position of the specified
file to be set to any arbitrary point in the file.

General Graphics Routines 13

General Graphics Routines
CPROD(a)

Returns the Cartesian product of some
arrays.

CURSOR, x, y [, wait]
Reads the position of the interactive graphics
cursor from the current graphics device.

DERIVN(a, n)
Differentiates a function represented by an
array.

DEVICE
Provides device-dependent control over the
current graphics device (as specified by the
SET_PLOT procedure).

EMPTY
Causes all buffered output for the current
graphics device to be written.

ERASE [, background_color]
Erases the display surface of the currently
active window.

EXPON(a, b)
Performs general exponentiation.

FACTOR(i)
Returns the prime factorization of an integer
greater than 1.

GCD(i)
Returns the greatest common divisor of
some integers greater than 0.

GREAT_INT(values)
Greatest Integer Function. Standard Library
function that returns the greatest integer less
than or equal to the passed value. Also
known as the Floor Function.

IMAGE_CONT, array
Standard Library procedure that overlays a
contour plot onto an image display of the
same array.

LCM(i)
Returns the least common multiple of some
integers greater than 1.

MOVIE, images [, rate]
Standard Library procedure that shows a
cyclic sequence of images stored in a three-
dimensional array.

PLOTS, x [, y [, z]]
Plots vectors or points on the current
graphics device in either two or three
dimensions.

PRIME(value)
Returns all positive primes less than or equal
to a scalar input.

PRODUCT(array)
Returns the product of all elements in an
array.

PROFILE (image)
Standard Library function that extracts a
profile from an image.

PROFILES, image
Standard Library procedure that lets you
interactively draw row or column profiles of
the image displayed in the current window.
The profiles are displayed in a new window,
which is deleted when you exit the
procedure.

RDPIX, image [, x0, y0]
Standard Library procedure that displays the
X, Y, and pixel values at the location of the
cursor in the image displayed in the currently
active window.

SCALE3D
Standard Library procedure that scales a
three-dimensional unit cube into the viewing
area.

SET_PLOT, device
Specifies the device type used by PV-WAVE
graphics procedures.

SGN(x)
Returns the sign of passed values.

14 Chapter 1: Functional Summary of Routines PV-WAVE Reference

SHOW3, array
Standard Library procedure that displays a
two-dimensional array as a combination
contour, surface, and image plot. The
resulting display shows a surface with an
image underneath and a contour overhead.

SMALL_INT(x)
Smallest Integer Function. Standard Library
function that returns the smallest integer
greater than or equal to the passed value.
Also known as Ceiling Function.

T3D
Standard Library procedure that
accumulates one or more sequences of
translation, scaling, rotation, perspective, or
oblique transformations and stores the result
in the system variable !P.T.

THREED, array [, space]
Standard Library procedure that plots a two-
dimensional array as a pseudo three-
dimensional plot on the currently selected
graphics device.

TVCRS [, on_off]
Manipulates the cursor within a displayed
image, allowing it to be enabled and
disabled, as well as positioned.

XYOUTS, x, y, string
Draws text on the currently selected graphics
device starting at the designated data
coordinate.

ZOOM
Expands and displays part of an image (or
graphic plot) from the current window in a
second window.

General Mathematical
Functions
ABS (x)

Returns the absolute value of x.

AVG (array [, dim])
Standard Library function that returns the
average value of an array. Optionally, it can
return the average value of one dimension of
an array.

BILINEAR (array, x, y)
Standard Library function that creates an
array containing values calculated using a
bilinear interpolation to solve for requested
points interior to an input grid specified by the
input array.

CHECK_MATH ([print_flag,
message_inhibit])

Returns and clears the accumulated math
error status.

CONJ (x)
Returns the complex conjugate of the input
variable.

CONVOL (array, kernel [, scale_factor])
Convolves an array with a kernel (or another
array).

CORRELATE (x, y)
Standard Library function that calculates a
simple correlation coefficient for two arrays.

CROSSP (v1, v2)
Standard Library function that returns the
cross product of two three-element vectors.

CURVATURES (s)
Standard Library function that computes
curvatures on a parametrically defined
surface.

CURVEFIT (x, y, wt, parms, [sigma])
Standard Library function that performs a
nonlinear least-squares fit to a function of an
arbitrary number of parameters.

General Mathematical Functions 15

DERIV ([x,] y)
Standard Library function that calculates the
first derivative of a function in x and y.

DERIVN (a, n)
Differentiates a function represented by an
array.

DETERM (array)
Standard Library function that calculates the
determinant of a square, two-dimensional
input variable.

EUCLIDEAN (j)
Standard Library function that transforms the
Euclidean metric for a Jacobian j = Jacobian(
f)

EXPON (a, b)
Performs general exponentiation.

FFT (array, direction)
Returns the Fast Fourier Transform for the
input variable.

FINITE (x)
Returns a value indicating if the input
variable is finite or not.

GAUSSFIT (x, y [, coefficients])
Standard Library function that fits a
Gaussian curve through a data set.

HILBERT (x [, d])
Standard Library function that constructs a
Hilbert transformation matrix.

IMAGINARY (complex_expr)
Returns the imaginary part of a complex
number.

INVERT (array [, status])
Returns an inverted copy of a square array.

ISHFT (p1, p2)
Performs the bit shift operation on bytes,
integers, and longwords.

JACOBIAN (f)
Standard Library function that computes the
Jacobian of a function represented by n m-
dimensional arrays

LUBKSB, a, index, b
Solves the set of n linear equations Ax =b.
(LUBKSB must be used with the procedure
LUDCMP to do this.)

LUDCMP, a, index, d
Replaces an n-by-n matrix, a, with the LU
decomposition of a row-wise permutation of
itself.

MPROVE, a, alud, index, b, x
Iteratively improves the solution vector, x, of
a linear set of equations, Ax =b. (You must
call the LUDCMP procedure before calling
MPROVE.)

NORMALS (j)
Standard Library function that computes unit
normals on a parametrically defined surface.

POLY (x, coefficients)
Standard Library function that evaluates a
polynomial function of a variable.

POLY_AREA (x, y)
Standard Library function that returns the
area of an n-sided polygon, given the
vertices of the polygon.

POLY_FIT (x, y, deg [, yft, ybd, sig, mat])
Standard Library function that fits an n-
degree polynomial curve through a set of
data points using the least-squares method.

POLYFITW (x, y, wt, deg [, yft, ybd, sig,
mat])

Standard Library function that fits an n-
degree polynomial curve through a set of
data points using the least-squares method.

RANDOMN (seed [, dim1, ... , dimn])
Returns one or more normally distributed
floating-point pseudo-random numbers with
a mean of zero and a standard deviation of 1.

RANDOMU (seed [, dim1, ... , dimn])
Returns one or more uniformly distributed
floating-point pseudo-random numbers over
the range 0 < Y < 1.0.

16 Chapter 1: Functional Summary of Routines PV-WAVE Reference

REGRESS (x, y, wt [, yf, a0, sig, ft, r,
rm, c])

Standard Library function that fits a curve to
data using the multiple linear regression
method.

SIGMA (array [, npar, dim])
Standard Library function that calculates the
standard deviation value of an array.
(Optionally, it can also calculate the standard
deviation over one dimension of an array as
a function of the other dimensions.)

SOBEL (image)
Performs a Sobel edge enhancement of an
image.

SPLINE (x, y, t [, tension])
Standard Library function that performs a
cubic spline interpolation.

STDEV (array [, mean])
Standard Library function that computes the
standard deviation and (optionally) the mean
of the input array.

SUM (array, dim)
Sums an array of n dimensions over one of
its dimensions.

SURFACE_FIT (array, degree)
Standard Library function that determines
the polynomial fit to a surface.

SVBKSB, u, w, v, b, x
Uses “back substitution” to solve the set of
simultaneous linear equations Ax = b, given
the u, w, and v arrays created by the SVD
procedure from the matrix a.

SVD, a, W [, u [, v]]
Performs a singular value decomposition on
a matrix.

SVDFIT (x, y, m)
Standard Library function that uses the
singular value decomposition method of
least-squares curve fitting to fit a polynomial
function to data.

TOTAL (array)
Sums the elements of an input array.

TQLI, d, e, z
Uses the QL algorithm with implicit shifts to
determine the eigenvalues and eigenvectors
of a real, symmetric, tridiagonal matrix.

TRED2, a [, d [, e]]
Reduces a real, symmetric matrix to
tridiagonal form, using Householder’s
method.

TRIDAG, a, b, c, r, u
Solves tridiagonal systems of linear
equations.

ZROOTS, a, roots [, polish]
Finds the roots of the m-degree complex
polynomial, using Laguerre’s method.

Gridding Routines
FAST_GRID2 (points, grid_x)

Returns a gridded, 1D array containing Y
values, given random X,Y coordinates (this
function works best with dense data points).

FAST_GRID3 (points, grid_x, grid_y)
Returns a gridded, 2D array containing Z
values, given random X, Y, Z coordinates
(this function works best with dense data
points).

FAST_GRID4 (points, grid_x, grid_y,
grid_z)

Returns a gridded, 3D array containing
intensity values, given random 4D
coordinates (this function works best with
dense data points).

GRID_2D (points, grid_x)
Returns a gridded, 1D array containing Y
values, given random X,Y coordinates (this
function works best with sparse data points).

HDF Routines 17

GRID_3D (points, grid_x, grid_y)
Returns a gridded, 2D array containing Z
values, given random X, Y, Z coordinates
(this function works best with sparse data
points).

GRID_4D (points, grid_x, grid_y, grid_z)
Returns a gridded, 3D array containing
intensity values, given random 4D
coordinates (this function works best with
sparse data points).

GRIDN(d, i)
Grids n dimensional data.

GRID_SPHERE (points, grid_x, grid_y)
Returns a gridded, 2D array containing radii,
given random longitude, latitude, and radius
values.

INTERPOLATE(d, x)
Interpolates scattered data at scattered
locations.

HDF Routines
GETNCERR ([errstr,])

Retrieves the current value of the “ncerr”
variable as discussed in the error section of
the NetCDF User’s Guide.

GETNCOPTS ()
Retrieves the current value of the ncopts
variable as discussed in the error section of
the NetCDF User’s Guide.

HDFGET24 (filename, image)
Obtains an HDF Raster 24 image.

HDFGETANN (filename, tag, ref)
Obtains HDF object (e.g., an SDS, Raster 8
image, etc.) annotations, either a label or a
description.

HDFGETFILEANN (filename)
Obtains an HDF file annotation, either label
or description.

HDFGETNT (type)
Obtains the HDF number type (i.e., data
type) and descriptive number type string for
the current HDF Scientific Data Set.

HDFGETR8 (filename, image, palette)
Obtains an HDF Raster 8 image and
associated palette.

HDFGETRANGE (maxvalue, minvalue)
Gets the maximum and minimum range for
the current HDF Scientific Data Set.

HDFGETSDS (filename, data)
Gets an HDF Scientific Data Set.

HDFLCT, palette
Loads an HDF palette as a PV-WAVE color
table.

HDFPUT24 (filename, image)
Puts an HDF Raster 24 image into an HDF
file.

HDFPUTFILEANN (filename)
Inserts HDF file labels and file descriptions
(annotations) into a file.

HDFPUTR8 (filename, image)
Writes an 8 bit image to an HDF file.

HDFPUTSDS (filename, data)
Writes a Scientific Data Set to an HDF file.

HDFSCAN, filename
Scans an HDF file and prints a simple list of
file contents by HDF object type.

HDFSETNT (data)
Computes and sets the HDF number type
(i.e., data type) and descriptive number type
string for the specified data array.

HDF_STARTUP
A batch file used to initialize the HDF
interface. See PV-WAVE Reference
Appendix A, “The PV-WAVE HDF Interface”
for more information.

HDF_TEST
Runs the PV-WAVE HDF test suite.

18 Chapter 1: Functional Summary of Routines PV-WAVE Reference

SETNCOPTS, new_ncopts
Sets the value of the ncopts variable and
defines the level of error reporting for the
netCDF functions as discussed in the error
section of the NetCDF User’s Guide.

Help and Information
Routines
DOC_LIBRARY [, name]

Standard Library procedure that extracts
header documentation for user-written
PV-WAVE procedures and functions.

HELP
Starts the online help system.

INFO, expr1, ... , exprn

Displays information on many aspects of the
current PV-WAVE session.

Hypertext Markup Lan-
guage (HTML) Routines
HTML_BLOCK, text

Writes out a specifically formatted “block” of
HTML text.

HTML_CLOSE
Closes an HTML file, after end-tagging major
elements.

HTML_HEADING, text
Creates a heading, with a level specification.

HTML_HIGHLIGHT([str1, str2, ... , strn],
[tag1, tag2, ... , tagn])

Allows for all the basic textual highlighting
elements in HTML.

HTML_IMAGE(url)
Returns a string or an array of strings
containing a reference or references to
image URL(s)

HTML_LINK(url, text)
Sets up links to Uniform Resource Locations
(URLs).

HTML_LIST, [list_item1, ..., list_itemn]
Generates HTML code for all types of lists.

HTML_OPEN
Opens the output HTML file, writes out the
basic HTML information and sets an HTML
output file information variable, hinfo.

HTML_PARAGRAPH, text
Defines an HTML paragraph.

HTML_RULE
Inserts a horizontal-line separator.

HTML_SAFE(str)
Escapes special characters so that the
HTML displays them as intended, rather than
using them for format tagging. The escapes
codes are for: <, >, &, and ".

HTML_TABLE, table_text
Writes out an HTML table.

Image Display Routines 19

Image Display Routines
C_EDIT [, colors_out]

Standard Library procedure that lets you
interactively create a new color table based
on the HLS or HSV color system.

COLOR_CONVERT, i0, i1, i2, o0, o1, o2,
keyword

Converts colors to and from the RGB color
system and either the HLS or HSV systems.

COLOR_EDIT [, colors_out]
Standard Library procedure that lets you
interactively create color tables based on the
HLS or HSV color system.

COLOR_PALETTE
Standard Library procedure that displays the
current color table colors and their
associated color table indices.

HIST_EQUAL_CT [, image]
Standard Library procedure that uses an
input image parameter, or the region of the
display you mark, to obtain a pixel
distribution histogram. The cumulative
integral is taken and scaled, and the result is
applied to the current color table.

HLS, ltlo, lthi, stlo, sthi, hue, lp [, rgb]
Standard Library procedure that generates
and loads color tables into an image display
device based on the HLS color system. The
resulting color table is loaded into the display
system.

HSV, vlo, vhi, stlo, sthi, hue, lp [, rgb]
Standard Library procedure that generates
and loads color tables into an image display
device based on the HSV color system. The
final color table is loaded into the display
device.

LOADCT [, table_number]
Standard Library procedure that loads a
predefined PV-WAVE color table.

LOADCT_CUSTOM [, table_number]
Loads a predefined custom color table.

MODIFYCT, table, name, red, green, blue
Standard Library procedure that lets you
replace one of the PV-WAVE color tables
(defined in the colors.tbl file) with a new color
table.

PALETTE [, colors_out]
Standard Library procedure that lets you
interactively create a new color table based
on the RGB color system.

PSEUDO, ltlo, lthi, stlo, sthi, hue, lp [, rgb]
Standard Library procedure that creates a
pseudo color table based on the Hue,
Lightness, Saturation (HLS) color system.

STRETCH, low, high
Standard Library procedure that linearly
expands the range of the color table currently
loaded to cover an arbitrary range of pixel
values.

TV, image [, position]
Displays images without scaling the intensity.

TVCRS [, on_off]
Manipulates the cursor within a displayed
image, allowing it to be enabled and
disabled, as well as positioned.

TVLCT, v1, v2, v3 [, start]
Loads the display color translation tables
from the specified variables.

TVRD (x0, y0, nx, ny [, channel])
Returns the contents of the specified
rectangular portion of a displayed image.

TVSCL, image [, x, y [, channel]]

TVSCL, image [, position]
Scales the intensity values of an input image
into the range of the image display, usually
from 0 to 255, and outputs the data to the
image display at the specified location.

TVSIZE, image [, x, y [, channel]]

TVSIZE, image [, position]
D isplays images at the current or specified
size and device resolution.

20 Chapter 1: Functional Summary of Routines PV-WAVE Reference

Image IO Routines
DICM_TAG_INFO (filename, image)

Extracts Digital Imaging and
Communications in Medicine (DICOM) tags
information from an image associative array.

IMAGE_CHECK(image)
Determines that the input variable is an
associative array in image format. The
function also checks to make sure that all
fields in the image associative array are
present.

IMAGE_COLOR_QUANT(image
[, n_colors])

Quantizes a 24-bit image to 8-bit pseudo
color.

IMAGE_CREATE(pixel_array)
Creates an associative array in image
format. See the Discussion section for
detailed information on the image format.

IMAGE_DISPLAY, image
Displays an image.

IMAGE_QUERY_FILE, filename
Return the type of a specified image file.

IMAGE_READ(filename)
Reads image files and returns an associative
array in image format.

IMAGE_WRITE(filename, image)
Writes PV-WAVE graphics to a specified file
type.

READ_XBM, file, image
Reads the contents of an X-bitmap (XBM) file
into a PV-WAVE variable.

WRITE_XBM, file, image
Writes an image to an X-bitmap (XBM) file.

Image Processing Routines
AFFINE(a, b, [c])

Applies an affine transformation to an array.

BLOB(a, i, b)
Isolates a homogeneous region in an array.

BLOBCOUNT(a, b)
Counts homogeneous regions in an array.

BOUNDARY(a,r)
Computes the boundary of a region in an
array.

CONGRID (image, col, row)
Standard Library function that shrinks or
expands an image or array.

CONVOL (array, kernel [, scale_factor])
Convolves an array with a kernel (or another
array).

DEFROI (sizex, sizey [, xverts, yverts])
Standard Library function that defines an
irregular region of interest within an image by
using the image display system and the
mouse.

DERIVN(a, n)
Differentiates a function represented by an
array.

DIGITAL_FILTER (flow, fhigh, gibbs,
nterm)

Standard Library function that constructs
finite impulse response digital filters for
signal processing.

DILATE (image, structure [, x0, y0])
Implements the morphologic dilation
operator for shape processing.

DIST (n)
Standard Library function that generates a
square array in which each element equals
the euclidean distance from the nearest
corner.

Image Processing Routines 21

ERODE (image, structure [, x0, y0])
Implements the morphologic erosion
operator for shape processing.

FFT (array, direction)
Returns the Fast Fourier Transform for the
input variable.

HANNING (col [, row])
Standard Library function that implements a
window function for Fast Fourier Transform
signal or image filtering.

HIST_EQUAL (image)
Standard Library function that returns a
histogram-equalized image or vector.

HISTOGRAM (array)
Returns the density function of an array.

IMAGE_CONT, array
Standard Library procedure that overlays a
contour plot onto an image display of the
same array.

LEEFILT (image [, n, sigma])
Standard Library function that performs
image smoothing by applying the Lee Filter
algorithm.

MEDIAN (array [, width])
Finds the median value of an array, or applies
a one- or two- dimensional median filter of a
specified width to an array.

MOMENT (a, i)
Computes moments of an array.

MOVIE, images [, rate]
Standard Library procedure that shows a
cyclic sequence of images stored in a three-
dimensional array.

NEIGHBORS(a, i)
Finds the neighbors of specified array
elements.

POLY_2D (array, coeffx, coeffy [, interp
[, dimx ,..., dimy]])

Performs polynomial warping of images.

POLYFILLV (x, y, sx, sy [, run_length])
Returns a vector containing the subscripts of
the array elements contained inside a
specified polygon.

POLYWARP, xd, yd, xin, yin, deg, xm, ym
Standard Library procedure that calculates
the coefficients needed for a polynomial
image warping transformation.

PROFILE (image)
Standard Library function that extracts a
profile from an image.

PROFILES, image
Standard Library procedure that lets you
interactively draw row or column profiles of
the image displayed in the current window.
The profiles are displayed in a new window,
which is deleted when you exit the
procedure.

RDPIX, image [, x0, y0]
Standard Library procedure that displays the
X, Y, and pixel values at the location of the
cursor in the image displayed in the currently
active window.

REBIN (array, dim1, ..., dimn)
Returns a vector or array resized to the given
dimensions.

REFORM (array, dim1, ... , dimn)
Reformats an array without changing its
values numerically.

RESAMP (array, dim1, ..., dimn)
Resamples an array to new dimensions.

ROBERTS (image)
Performs a Roberts edge enhancement of an
image.

ROT (image, ang [, mag, xctr, yctr])
Standard Library function that rotates and
magnifies (or demagnifies) a two-
dimensional array.

22 Chapter 1: Functional Summary of Routines PV-WAVE Reference

ROT_INT (image, ang [, mag, xctr, yctr])
Standard Library function that rotates and
magnifies (or demagnifies) an image on the
display screen.

ROTATE (array, direction)
Returns a rotated and/or transposed copy of
the input array.

SHIFT (array, shift1, ... , shiftn)
Shifts the elements of a vector or array along
any dimension by any number of elements.

SHOW3, array
Standard Library procedure that displays a
two-dimensional array as a combination
contour, surface, and image plot. The
resulting display shows a surface with an
image underneath and a contour overhead.

SMOOTH (array, width)
Smooths an array with a boxcar average of a
specified width.

SOBEL (image)
Performs a Sobel edge enhancement of an
image.

TRANSPOSE (array)
Transposes the input array.

ZOOM
Standard Library procedure that expands
and displays part of an image (or graphic
plot) from the current window in a second
window.

Input and Output Routines
ASSOC (unit, array_structure [, offset])

Associates an array structure with a file,
allowing random access input and output.

BYTEORDER, variable1, ... , variablen

Converts integers between host and network
byte ordering. Can also be used to swap the
order of bytes within both short and long
integers.

GET_KBRD (wait)
Returns the next character available from
standard input (PV-WAVE file unit 0).

LN03 [, filename]
Standard Library procedure that opens or
closes an output file for LN03 graphics
output. The file can then be printed on an
LN03 printer.

PRINT, expr1, ... , exprn

PRINT performs output to the standard
output stream (PV-WAVE file unit –1).

PRINTF, unit, expr1, ... , exprn

PRINTF requires the output file unit to be
specified.

READ, var1, ..., varn

Read input from the standard input stream
into PV-WAVE variables.

READF, unit, var1, ... , varn

Read input from a file into PV-WAVE
variables.

READU, unit, var1, ... , varn

READU reads binary (unformatted) input
from a specified file. (No processing of any
kind is done to the data.)

REWIND, unit
(OpenVMS Only) Rewinds the tape on the
designated PV-WAVE tape unit.

SKIPF, unit, files
 (OpenVMS Only) Skips files on the
designated magnetic tape unit.

Interpolation Routines 23

SKIPF, unit, records, r
 (OpenVMS Only) Skips records on the
designated magnetic tape unit.

TAPRD, array, unit [, byte_reverse]
(OpenVMS Only) Reads the next record on
the selected tape unit into the specified array.

TAPWRT, array, unit [, byte_reverse]
(OpenVMS Only) Writes data from the input
array to the selected tape unit.

WPRINT [, window_index]
(Microsoft Windows Only) Prints the
contents of a specified window.

WREAD_DIB ([window_index])
(Microsoft Windows Only) Loads a Device
Independent Bitmap (DIB) from a file into a
graphics window.

WREAD_META ([window_index])
(Microsoft Windows Only) Loads a Windows
metafile (WMF) into a graphics window.

WRITEU, unit, expr1, ... , exprn

Writes binary (unformatted) data from an
expression into a file.

WWRITE_DIB ([window_index])
(Microsoft Windows Only) Saves the
contents of a graphics window to a file as a
Device Independent Bitmap (DIB).

WWRITE_META ([window_index])
(Microsoft Windows Only) Saves the
contents of a graphics window to a file as a
Windows metafile (WMF).

Interpolation Routines
AFFINE(a, b, [c])

Applies an affine transformation to an array.

BILINEAR (array, x, y)
Standard Library function that creates an
array containing values calculated using a
bilinear interpolation to solve for requested
points interior to an input grid specified by the
input array.

GRIDN(d, i)
Grids n dimensional data.

INTERPOLATE(d, x)
Interpolates scattered data at scattered
locations.

INTERPOL(v, n)
Performs a linear interpolation of a vector
using a regular grid.

INTERPOL(v, x, u)
Performs a linear interpolation of a vector
using an irregular grid.

INTRP(a, n, x)
Interpolates an array along one of its
dimensions.

REBIN (array, dim1, ..., dimn)
Returns a vector or array resized to the given
dimensions.

RESAMP(array, dim1, ..., dimn)
Resamples an array to new dimensions.

SPLINE (x, y, t [, tension])
Standard Library function that performs a
cubic spline interpolation.

24 Chapter 1: Functional Summary of Routines PV-WAVE Reference

Mapping Routines
MAP

Plots a map.

MAP_CONTOUR, z [, x, y]
Draws a contour plot from longitude/latitude
data stored in a 2D array.

MAP_PLOTS, x, y
Plots vectors or points (specified as
longitude/latitude data) on the current map
projection.

MAP_POLYFILL, x, y
Fills the interior of a region of the display
enclosed by an arbitrary 2D polygon.

MAP_REVERSE, x, y, lon, lat
Converts output from routines like CURSOR
and WtPointer from device, normal, or data
coordinates to longitude and latitude
coordinates.

MAP_VELOVECT, u, v, [, x, y]
Draws a two-dimensional velocity field plot
on a map, with each directed arrow indicating
the magnitude and direction of the field.

MAP_XYOUTS, x, y, string
Draws text on the currently selected graphics
device starting at the designated map
coordinate.

USGS_NAMES ([name])
Queries a database containing names, FIPS
codes, and longitude/latitude values for cities
and towns in the United States.
Plots a map.

Operating System Access
Routines
CALL_UNIX (p1 [, p2, ... , p30])

 (UNIX Only) Lets a PV-WAVE procedure
communicate with an external routine written
in C.

CD [, directory]
Changes the current working directory.

DELETE_SYMBOL, name
 (OpenVMS Only) Deletes a DCL (Digital
Command Language) interpreter symbol
from the current process.

DEL_FILE, filename
Deletes a specified file on your system.

DELLOG, logname
 (OpenVMS Only) Deletes a logical name.

ENVIRONMENT ()
 (UNIX Only) Returns a string array
containing all the UNIX environment strings
for the PV-WAVE process.

GETENV (name)
Returns the specified equivalence string
from the environment of the PV-WAVE
process.

GET_SYMBOL (name)
 (OpenVMS Only) Returns the value of an
OpenVMS DCL interpreter symbol as a
scalar string.

LINKNLOAD (object, symbol [, param1, ...,
paramn])

Provides simplified access to external
routines in shareable images.

POPD
Standard Library procedure that pops a
directory from the top of a last-in, first-out
directory stack.

Optimization and Regression Routines 25

PRINTD
Standard Library procedure that lists the
directories located in the directory stack, and
the current working directory.

PUSHD [, directory]
Standard Library procedure that pushes a
directory onto the top of a last-in, first-out
directory stack.

SETENV, environment_expr
 (UNIX Only) Adds or changes an
environment string in the process
environment.

SETLOG, logname, value
 (OpenVMS Only) Defines a logical name.

SET_SYMBOL, name, value
(OpenVMS Only) Defines a DCL interpreter
symbol for the current process.

SPAWN [, command [, result]]
(UNIX/OpenVMS) Spawns a child process to
execute a given command.

SPAWN [, command [, result]]
(Windows) Spawns a child process to
execute a given command.

SYSTIME (param)
Returns the current system time as either a
string or as the number of seconds elapsed
since January 1, 1970.

TRNLOG (logname, value)
 (OpenVMS Only) Searches the OpenVMS
name tables for a specified logical name and
returns the equivalence string (s) in a
PV-WAVE variable.

WEOF, unit
(OpenVMS Only) Writes an end-of-file mark
on the designated unit at the current position.

printer_name = WIN32_PICK_PRINTER()
Displays a Windows printer dialog.

font_name = WIN32_PICK_FONT()
Displays a Wndows common font dialog.

Optimization and
Regression Routines
CURVEFIT (x, y, wt, parms, [sigma])

Standard Library function that performs a
nonlinear least-squares fit to a function of an
arbitrary number of parameters.

GAUSSFIT (x, y [, coefficients])
Standard Library function that fits a
Gaussian curve through a data set.

MINIMIZE(f, l, u, g, i, y)
Minimizes a real valued function of n real
variables.

POLY_FIT (x, y, deg [, yft, ybd, sig, mat])
Standard Library function that fits an n-
degree polynomial curve through a set of
data points using the least-squares method.

POLYFITW (x, y, wt, deg [, yft, ybd, sig,
mat])

Standard Library function that fits an n-
degree polynomial curve through a set of
data points using the least-squares method.

REGRESS (x, y, wt [, yf, a0, sig, ft, r,
rm, c])

Standard Library function that fits a curve to
data using the multiple linear regression
method.

SVDFIT (x, y, m)
Standard Library function that uses the
singular value decomposition method of
least-squares curve fitting to fit a polynomial
function to data.

26 Chapter 1: Functional Summary of Routines PV-WAVE Reference

Plotting Routines
AXIS [[[, x], y], z]

Draws an axis of the specified type and scale
at a given position.

BAR, x [,y]
Plots a 2D bar graph that can include stacked
and grouped bars, as well as various
color and fill pattern options.

BAR2D, x [,y]
Creates a two-dimensional bar plot.

BAR3D, z
Creates a three-dimensional bar plot.

CONTOUR, z [, x, y]
Draws a contour plot from data stored in a
rectangular array.

CONTOUR2, z [, x, y]
Draws a contour plot from data stored in a
rectangular array.

CONTOURFILL, filename, z [, x, y]
Standard Library procedure that fills both
open and closed contours with specified
colors or patterns.

CURSOR, x, y [, wait]
Reads the position of the interactive graphics
cursor from the current graphics device.

ERRPLOT [, points], low, high
Standard Library procedure that overplots
error bars over a previously-drawn plot.

GRID (xtmp, ytmp, ztmp)
Standard Library function that generates a
uniform grid from irregularly-spaced data.

IMAGE_CONT, array
Standard Library procedure that overlays a
contour plot onto an image display of the
same array.

OPLOT, x [, y]
Plots vector data over a previously drawn
plot.

OPLOTERR, x, y, error [, psym]
Standard Library procedure that overplots
symmetrical error bars on any plot already
output to the display device.

PIE, data [, labels]
Displays data as a pie chart.

PIE_CHART, data, [xcenter, ycenter, radius]
Creates a pie chart with colors, text labels,
exploded slices and/or shadows.

PLOT, x [, y]
PLOT produces a simple XY plot.

PLOT_HISTOGRAM, variable
Plots a histogram.

PLOT_IO, x [, y]
PLOT_IO produces an XY plot with
logarithmic scaling on the Y axis.

PLOT_OI, x [, y]
PLOT_OI produces an XY plot with
logarithmic scaling on the X axis.

PLOT_OO, x [, y]
PLOT_OO produces an XY plot with
logarithmic scaling on both the X and Y axes.

PLOTERR, [x,] y, error
Standard Library procedure that plots data
points with accompanying symmetrical error
bars.

PLOT_FIELD, u, v
Standard Library procedure that plots a two-
dimensional velocity field.

PLOTS, x [, y [, z]]
Plots vectors or points on the current
graphics device in either two or three
dimensions.

POLYFILL, x [, y [, z]]
Fills the interior of a region of the display
enclosed by an arbitrary two- or three-
dimensional polygon.

POLYSHADE (vertices, polygons)
Constructs a shaded surface representation
of one or more solids described by a set of
polygons.

Polygon Generation Routines 27

PROFILE (image)
Standard Library function that extracts a
profile from an image.

PROFILES, image
Standard Library procedure that lets you
interactively draw row or column profiles of
the image displayed in the current window.
The profiles are displayed in a new window,
which is deleted when you exit the
procedure.

SCALE3D
Standard Library procedure that scales a
three-dimensional unit cube into the viewing
area.

SET_SHADING
Modifies the light source shading parameters
affecting the output of SHADE_SURF and
POLYSHADE.

SHADE_SURF, z [, x, y]
Standard Library procedure that creates a
shaded surface representation of a regular or
nearly regular gridded surface, with shading
from either a light source model or from a
specified array of intensities.

SHADE_SURF_IRR, z, x, y
Creates a shaded-surface representation of
a semiregularly gridded surface, with
shading from either a light source model or
from a specified array of intensities.

SHOW3, array
Standard Library procedure that displays a
two-dimensional array as a combination
contour, surface, and image plot. The
resulting display shows a surface with an
image underneath and a contour overhead.

SURFACE, z [, x, y]
Draws the surface of a two-dimensional array
projected into two dimensions, with hidden
lines removed.

T3D
Standard Library procedure that
accumulates one or more sequences of
translation, scaling, rotation, perspective, or

oblique transformations and stores the result
in the system variable !P.T.

THREED, array [, space]
Standard Library procedure that plots a two-
dimensional array as a pseudo three-
dimensional plot on the currently selected
graphics device.

USERSYM, x [, y]
Lets you create a custom symbol for marking
plotted points.

VEL, u, v
Standard Library procedure that draws a
graph of a velocity field with arrows pointing
in the direction of the field. The length of an
arrow is proportional to the strength of the
field at that point.

VELOVECT, u, v [, x, y]
Standard Library procedure that draws a
two-dimensional velocity field plot, with each
directed arrow indicating the magnitude and
direction of the field.

Polygon Generation
Routines
POLY_SPHERE, radius, px, py, vertex_list,

polygon_list
Generates the vertex list and polygon list that
represent a sphere.

POLY_SURF, surf_dat, vertex_list,
polygon_list, pg_num

Generates a 3D vertex list and a polygon list,
given a 2D array containing Z values.

SHADE_VOLUME, volume, value, vertex,
poly

Given a 3D volume and a contour value,
produces a list of vertices and polygons
describing the contour surface (also known
as an iso-surface).

28 Chapter 1: Functional Summary of Routines PV-WAVE Reference

Polygon Manipulation
Routines
POLY_C_CONV (polygon_list, colors)

Returns a list of colors for each polygon,
given a polygon list and a list of colors for
each vertex.

POLY_COUNT (polygon_list)
Returns the total number of polygons
contained in a polygon list.

POLY_MERGE, vertex_list1, vertex_list2,
polygon_list1, polygon_list2, vert,
poly, pg_num

Merges two vertex lists and two polygon lists
together so that they can be rendered in a
single pass.

Polygon Rendering
Routines
MOLEC(filename)

Creates an image of a ball and stick
molecular model.

POLY_PLOT, vertex_list, polygon_list,
pg_num, winx, winy, fill_colors,
edge_colors, poly_opaque

Renders a given list of polygons.

POLYSHADE (vertices, polygons)

POLYSHADE (x, y, z, polygons)
Constructs a shaded surface representation
of one or more solids described by a set of
polygons.

RENDER (object1, ..., objectn)
Generates a ray-traced rendered image from
one or more predefined objects.

RENDER24(b)
Generates a ray-traced rendered 24-bit
image of m objects.

Programming Routines
ADDVAR, name, local

Creates a variable on the $MAIN$ program
level and binds a local variable to it.

BREAKPOINT, file, line
Lets you insert and remove breakpoints in
programs for debugging.

CHECKFILE(filename)
Determines if a file can be read from or
written to.

CHECK_MATH ([print_flag,
message_inhibit])

Returns and clears the accumulated math
error status.

DEFINE_KEY, key [, value]
Programs a keyboard function key with a
string value, or with a specified action.

DEFSYSV, name, value [, read_only]
Creates a new system variable initialized to
the specified value.

DELFUNC, functioni ,..., functionn

Deletes one or more compiled functions from
memory.

DELPROC, procedurei ,..., proceduren

Deletes one or more compiled procedures
from memory.

DELSTRUCT, structurei ,..., structuren

Deletes one or more named structure
definitions from memory.

DELVAR, v1, ... ,vn

Deletes variables from the main program
level.

EXIT
Exits PV-WAVE and returns you to the
operating system.

FINITE (x)
Returns a value indicating if the input
variable is finite or not.

Programming Routines 29

HAK
Standard Library procedure that lets you
implement a “hit any key to continue”
function.

KEYWORD_SET (expr)
Tests if an input expression has a nonzero
value.

MESSAGE, text
Issues error and informational messages
using the same mechanism employed by
built-in PV-WAVE routines.

N_ELEMENTS (expr)
Returns the number of elements contained in
any expression or variable.

N_PARAMS ()
Returns the number of non-keyword
parameters used in calling a PV-WAVE
procedure or function.

N_TAGS (expr)
Returns the number of structure tags
contained in any expression.

ON_ERROR, n
Determines the action taken when an error is
detected inside a PV-WAVE user-written
procedure or function.

ON_ERROR_GOTO, label
Specifies a statement to jump to if an error
occurs in the current procedure.

ON_IOERROR, label
Specifies a statement to jump to if an I/O
error occurs in the current procedure.

PARAM_PRESENT (parameter)
Tests if a parameter was actually present in
the call to a procedure or function.

PARSEFILENAME (pathname)
Extracts specified parts of a full file
pathname.

RENAME, variable, new_name
Renames a PV-WAVE variable.

RETALL
Issues RETURNs from nested routines.
Used primarily to recover from errors in user-
written procedures and functions.

RETURN [, expr]
Returns control to the caller of a user-written
procedure or function.

SAME(x, y)
Tests if two variables are the same.

SIZE (expr)
Returns a vector containing size and type
information for the given expression.

STOP [, expr1,... , exprn]
Stops the execution of a running program or
batch file, and returns control to the
interactive mode.

STRMESSAGE (errno)
Returns the text of the error message
specified by the input error number.

STRUCTREF ({structure})
Returns a list of all existing references to a
structure.

TAG_NAMES (expr)
Returns a string array containing the names
of the tags in a structure expression.

UPVAR, name, local
Accesses a variable that is not on the current
program level.

VAR_MATCH()
Standard Library function that scans for
PV-WAVE variables that match the given
criteria.

WAIT, seconds
Suspends execution of a PV-WAVE program
for a specified period.

30 Chapter 1: Functional Summary of Routines PV-WAVE Reference

Ray Tracing Routines
CONE ()

Defines a conic object that can be used by
the RENDER function.

CYLINDER ()
Defines a cylindrical object that can be used
by the RENDER function.

MESH (vertex_list, polygon_list)
Defines a polygonal mesh object that can be
used by the RENDER function.

RENDER (object1, ..., objectn)
Generates a ray-traced rendered image from
one or more predefined objects.

RENDER24(b)
Generates a ray-traced rendered 24-bit
image of m objects.

SPHERE ()
Defines a spherical object that can be used
by the RENDER function.

VOLUME (voxels)
Defines the volumetric data that can be used
by the RENDER function.

Session Routines
INFO, expr1, ... , exprn

Displays information on many aspects of the
current PV-WAVE session.

JOURNAL [, param]
Provides a record of an interactive session
by saving in a file all text entered from the
terminal in response to a prompt.

RESTORE [, filename]
Restores the PV-WAVE objects saved in a
file by the SAVE procedure.

SAVE [, var1, ... , varn]
Saves variables in a file for later recovery by
RESTORE.

Special Mathematical
Functions
BESELI (x [, n])

Calculates the Bessel I function for the input
parameter.

BESELJ (x [, n])
Calculates the Bessel J function for the input
parameter.

BESELY (x [, n])
Calculates the Bessel Y function for the input
parameter.

ERRORF (x)
Calculates the standard error function of the
input variable.

GAMMA (x)
Calculates the gamma function of the input
variable.

GAUSSINT (x)
Evaluates the integral of the Gaussian
probability function.

String Processing Routines
STRCOMPRESS (string)

Compresses the white space in an input
string.

STRJOIN(expr [, sep]
Concatenates all of the elements of a string
array into a single scalar string.

STRLEN (expr)
Returns the length of the input parameter.

STRLOOKUP([name])
Queries, creates, saves, or modifies a string
server database.

STRLOWCASE (string)
Converts a copy of the input string to
lowercase letters.

Table Manipulation Functions 31

STRMATCH(string, expr [, registers])
Matches a specified string to an existing
regular expression.

STRMID (expr, first_character, length)
Extracts a substring from a string expression.

STRPOS (object, search_string [, position])
Searches for the occurrence of a substring
within an object string, and returns its
position.

STRPUT, destination, source [, position]
Inserts the contents of one string into
another.

STRSPLIT(expr, pattern)
Splits a string into an array of tokens
(substrings).

STRSUBST(expr, pattern, repl)
Performs string substitution (search and
replace).

STRTRIM (string [, flag])
Removes extra blank spaces from an input
string.

STRUPCASE (string)
Converts a copy of the input string to
uppercase letters.

Table Manipulation
Functions
BUILD_TABLE (' vari [alias], ..., varn [alias]

')
Creates a table from one or more vectors
(one-dimensional arrays).

GROUP_BY(in_table, ‘sum_column [alias]
[ASC | DESC]’)

Performs summary (aggregate) functions to
groups of rows in a PV-WAVE table
variable.

ORDER_BY(in_table, ‘col_1 [ASC | DESC]
[, col_2 [ASC | DESC]] ...
[, col_n [ASC | DESC]]’)

Sorts the rows in a PV-WAVE table variable
to create a new table.

QUERY_TABLE (table, ' [Distinct] * | coli
[alias] [, ..., coln [alias]] [Where cond]
[Group By colgi [,... colgn]] | [Order
By coloi [direction][,..,colon
[direction]]] ')

Subsets a table created with the
BUILD_TABLE function.

UNIQUE (vec)
Returns a vector (one-dimensional array)
containing the unique elements from another
vector variable.

32 Chapter 1: Functional Summary of Routines PV-WAVE Reference

Transcendental
Mathematical Functions
ACOS (x)

Returns the arc-cosine of x.

ALOG (x)
Returns the natural logarithm of x.

ALOG10 (x)
Returns the logarithm to the base 10 of x.

ASIN (x)
Returns the arcsine of x.

ATAN (x [, y])
Calculates the arctangent of the input
variable (s).

COS (x)
Calculates the cosine of the input variable.

COSH (x)
Calculates the hyperbolic cosine of the input
variable.

EXP (x)
Raises e to the power of the value of the input
variable.

SIN (x)
Returns the sine of the input variable.

SINH (x)
Returns the hyperbolic sine of the input
variable.

SQRT (x)
Calculates the square root of the input
variable.

TAN (x)
Returns the tangent of the input variable.

TANH (x)
Returns the hyperbolic tangent of the input
variable.

VDA Tools Routines
Navigator

Starts the Navigator.

WzAnimate, var
Starts a VDA Tool used for animating a
sequence of images.

WzColorEdit [, var1[, var2, var3]]
Starts a VDA Tool used for editing the image
and plot color tables used in other VDA Tools.

WzContour, var
Starts a VDA Tool used for plotting contours.

WzExport, var
Starts a VDA Tool used for exporting a
PV-WAVE variable to an external file in a
specified format.

WzHistogram, var
Starts a VDA Tool used for plotting a
histogram.

WzImage, var
Starts a VDA Tool used for displaying image
data.

WzImport [, var1, var2, ... , varn]
Starts a VDA Tool used for importing data
into PV-WAVE.

WzMultiView
Starts a VDA Tool used to display multiple
plots.

WzPlot, var1 [, var2, ... , varn]
Starts a VDA Tool used for 2D plotting.

WzPreview [, filename]
Starts a VDA Tool used to view an ASCII file’s
contents and select which parts of the file are
to be read in as PV-WAVE variables.

WzSurface, z [, x, y]
Starts a VDA Tool used for surface plots.

VDA Tools Manager Routines 33

WzTable, var
Starts a VDA Tool used for creating an
editable 2D array of cells containing string
data.

WzVariable
Starts a VDA Tool used for viewing and
exporting variables.

VDA Tools Manager
Routines

NOTE For detailed information on the
following routines, please refer to the
PV-WAVE Application Developer’s Guide.

TmAddSelectedVars, tool_name, var_name
Adds selected variables from a VDA Tool to
the list of selected variables in the Tools
Manager.

TmAddVar, tool_name, var_name
Adds a variable to a VDA Tool.

TmAxis, tool_name
Adds axes to a VDA Tool.

TmCodeGen, string
Writes a specified string to the code
generation file.

TmCopy, tool_name
Copies the selected graphical elements from
the specified VDA Tool to the clipboard.

TmCut, tool_name
Cuts the selected graphical elements from
the specified VDA Tool and moves them to
the clipboard.

TmDelVar, tool_name [, var_names]
Removes variables from a VDA Tool.

TmDelete, tool_name
Permanently deletes the selected graphical
elements from the specified VDA Tool.

TmDeselectVars
Clears the current list of selected variables.

TmDynamicDisplay, indices
Displays selected data in all active VDA
Tools, provided that the VDA Tools can
display the related variable(s).

TmEndCodeGen
Closes the file in which generated code is
written.

TmEnumerateAttributes(tool_name, item)
Obtains the attributes for a specified
graphical element, variable, or other item in a
VDA Tool.

TmEnumerateItems(tool_name)
Obtains the items defined for a specified
VDA Tool.

TmEnumerateMethods(tool_name)
Obtains the methods that were set for a VDA
Tool.

TmEnumerateSelectedVars()
Returns the names of variables on the
selected variables list.

TmEnumerateToolNames()
Returns all the registered VDA Tool names.

TmEnumerateVars(tool_name)
Returns all the variables associated with an
instance of a VDA Tool.

TmExecuteMethod, tool_name,
method_name

Executes a method that was set by
TmSetMethod.

TmExport, variable_names,
destination_tool_names

Exports $MAIN$-level variables to specified
VDA Tools or to all currently active VDA
Tools.

TmExportSelection, destination_tool_names
Exports the contents of the variable selection
list to specified VDA Tools.

34 Chapter 1: Functional Summary of Routines PV-WAVE Reference

TmGetAttribute(tool_name, item, attr_name)
Returns the value that was set for an attribute
in a VDA Tool instance.

TmGetMessage([message_file],
message_code)

Loads a string resource file into the resource
database and extracts a message string from
the database.

TmGetMethod(tool_name, method_name)
Returns the data structure of the specified
method.

TmGetTop(tool_name)
Gets the top-level widget ID for a VDA Tool.

TmGetUniqueToolName(tool_name)
Returns a unique name for a particular
instance of a specified VDA Tool.

TmGetVarMainName(tool_name,
local_variable)

Returns the $MAIN$ level name of a
variable.

TmInit
Initializes the VDA Tools Manager layer.

TmList(tool_name)
Creates a list item.

TmListAppend, tool_name, list_name, item
Adds a new item at the end of the specified
list.

TmListClear, tool_name, list_name
Resets a specified list to its initial state,
clearing all previously defined items.

TmListDelete, tool_name, list_name [, pos]
Deletes an item in the specified list.

TmListDestroy, tool_name, list_name
Clears all items and destroys the list.

TmListExtend, tool_name, list_name
Extends the specified list by adding empty
items.

TmListGetMethod(tool_name, list_name,
method_name)

Returns the procedure name associated with
the specified list method name.

TmListInsert, tool_name, list_name, item,
pos

Inserts a new item into the specified list.

TmListReplace, tool_name, list_name, item,
pos

Replaces an item in a list with a new item.

TmListRetrieve(tool_name, list_name)
Gets the items currently set in the specified
list.

TmListSetMethod, tool_name, list_name,
method_name, method

Sets the method procedure name for a
specific list method.

TmPaste, tool_name
Pastes the graphical elements from the
clipboard to the specified VDA Tool.

TmRegister, unique_name, topShell
Registers a VDA Tool with the Tools
Manager.

TmRestoreTemplate(tool_name, filename)
Restores a saved VDA Tool template.

TmRestoreTools(filename)
Restores the VDA Tools that were saved with
the TmSaveTools procedure.

TmSaveTools, filename [, tool_names]
Saves the specified VDA Tools in a file.

TmSetAttribute(tool_name, item, attr_name,
attr_value)

Set an attribute for an item in the given VDA
Tool.

TmSetMethod, tool_name, method_name,
method_call

Sets a method for a given VDA Tool.

VDA Tools Manager Graphical Element Routines 35

TmStartCodegen, filename
Opens a file into which PV-WAVE code is
written.

TmUnregister, tool_name
Removes the specified VDA Tool from the
Tools Manager registry.

VDA Tools Manager
Graphical Element Routines

NOTE For detailed information on the
following routines, please refer to the
PV-WAVE Application Developer’s Guide.

TmAddGrael, tool_name, grael_name
Adds a graphical element to the graphical
element list for the specified instance of a
VDA Tool.

TmAddSelectedGrael, tool_name,
grael_name

Adds a graphical element to the graphical
element selection list.

TmAxis, tool_name
Adds axes to a VDA Tool.

TmBitmap, tool_name, bitmap_name
Adds a bitmap (2D array) to a VDA Tool.

TmBottomGrael, tool_name, grael_name
Sets the specified graphical element to be on
the bottom of the display list (displayed
behind the other graphical elements).

TmDelGrael, tool_name, grael_name
Removes a specified graphical element from
the list of graphical elements associated with
a VDA Tool instance.

TmDelSelectedGraels, tool_name,
grael_name

Deletes a graphical element from the list of
selected graphical elements.

TmEnumerateGraelMethods(tool_name,
grael_name)

Obtain a list of all the methods set for a
graphical element in a specified VDA Tool.

TmEnumerateGraels(tool_name)
Returns all the graphical elements that were
set for a given VDA Tool.

TmEnumerateSelectedGraels(tool_name)
Obtains a list of graphical elements or other
items currently on the graphical items
selection list.

TmExecuteGraelMethod, tool_name,
grael_name, method_name

Executes a method for a graphical method
based on the method name.

TmGetGraelMethod(tool_name,grael_name,
method_name)

Obtains the data structure for the specified
method.

TmGetGraelRectangle(tool_name,
grael_name)

Returns the rectangular boundary of a
graphical element.

TmGetUniqueGraelName(tool_name,
grael_name)

Obtains a unique name based on the name
of the specified graphical element.

TmGroupGraels(tool_name, grael_names)
Groups a number of selected graphical
elements as one graphical element with a
unique name.

TmLegend, tool_name
Adds a legend to a VDA Tool. The exact size
and position of the legend is determined
interactively by the user.

TmLine, tool_name
Adds a line to a VDA Tool. The exact length
and position of the line is determined
interactively by the user.

36 Chapter 1: Functional Summary of Routines PV-WAVE Reference

TmRect, tool_name
Adds a rectangle to a VDA Tool. The exact
size and position of the rectangle is
determined interactively by the user.

TmSetGraelMethod, tool_name, grael_name,
method_name,
method_value

Sets the name of the method procedure for a
given method name and graphical element.

TmSetGraelRectangle, tool_name,
grael_name, rectangle

Sets the selection rectangle for a graphical
element, or a set of graphical elements.

TmText, tool_name
Adds text to a VDA Tool. The position of the
text and the text itself are determined
interactively by the user.

TmTopGrael, tool_name, grael_name
Sets the specified graphical element to be at
the top of the display list (displayed in front of
other graphical elements).

TmUngroupGraels, tool_name, group_name
Ungroups a group of graphical elements.

VDA Utilities Routines

NOTE For detailed information on the
following routines, please refer to the
PV-WAVE Application Developer’s Guide.

WoAddButtons, toolname, buttons
Adds a bank of buttons to a button bar.

WoAddMessage, toolname, message_key
Adds a message to a message area created
by WoMessage.

WoAddStatus, toolname, status_key
Display a message in the status bar of a VDA
Tool.

WoBuildResourceFilename(file)
Returns the full path name for a specified
resource file.

WoButtonBar(parent, toolname, [buttons])
Creates a predefined, two-row button bar
that can be included in a VDA Tool.

WoButtonBarSet, toolname, descriptor,
setting

Changes the setting of a button in a button
bar.

WoButtonBarSetSensitivity, toolname,
descriptor, sensitivity

Sets the sensitivity of one or more buttons on
a button bar.

WoCheckFile(file)
Confirms if a file is readable or writable.

WoColorButton(parent)
Creates a button that brings up a color table
dialog box used to set colors in a VDA Tool.
The button has an associated color pixmap
that reflects the currently selected color.

WoColorButtonGetValue(wid)
Gets the currently selected color index from
a color button created by WoColorButton.

VDA Utilities Routines 37

WoColorButtonSetValue(wid, color)
Sets the current color index for a color button
created by WoColorButton, and updates the
color button’s color pixmap.

WoColorConvert(color)
Convert from a long RGB value to an index
into the current color table, or from an index
in the current color table to an RGB value.

WoColorGrid(parent)
Creates a grid of color squares from the
current color table.

WoColorGridGetValue(wid, index,
num_values)

Gets the color indices for a range of colors in
a color grid.

WoColorGridSetValue, wid, index, color
Sets the color indices for a range of colors in
the color grid.

WoColorWheel(tool_name, color_index,
value_changed_cb)

Creates a color wheel that can be used to
modify a single color in the current color
table.

WoConfirmClose, wid, tool_name
Displays a dialog box requiring the user to
confirm a window close action.

WoDialogStatus, toolname, status
Saves or restores the status of a dialog box
by saving or restoring the state of its widgets
as stored in the Tools Manager.

WoFontOptionMenu(parent, toolname)
Creates an option menu with the standard list
of software (vector-drawn) fonts found in
PV-WAVE.

WoFontOptionMenuGetValue(wid)
Gets the software font command for the
currently selected font.

WoFontOptionMenuSetValue, wid, font
Sets the current font and updates the font
option menu.

WoGenericDialog(parent, topLayout
[,callback])

Creates a generic dialog box for use in VDA
Tools.

WoGetToolNameFromTitle(window_title)
Gets the unique name of a VDA tool given
the unique window title of the VDA Tool.

WoGetUniqueWindowTitle(primary,
secondary)

Given a window title, adds a numeric suffix to
make the title unique.

WoLabeledText(parent, label_names,
verify_callback)

Creates a group of aligned text widgets
(widgets with a label and a text field).

WoLinestyleOptionMenu(parent, toolname)
Creates an option menu for selecting
linestyles.

WoLinestyleOptionMenuGetValue(wid)
Gets the currently selected linestyle.

WoLineStyleOptionMenuSetValue, wid,
linestyle

Sets the option menu to a specified linestyle.

WoLoadResources, file
Loads resources and strings from a file for
VDA tools.

WoLoadStrings, file
Loads strings from a resource file for use by
the VDA tools.

WoMenuBar(parent, toolname [,menus])
Create a menu bar for a VDA Tool.

WoMenuBarSetSensitivity, toolname,
pane_index, item_index, sensitivity

Sets the sensitivity of one or more items in a
menu.

WoMenuBarSetToggle, tool_name,
pane_index, item_index, value

Sets the status of a menu toggle button.

38 Chapter 1: Functional Summary of Routines PV-WAVE Reference

WoMessage(parent, toolname)
Creates a message area for a VDA Tool

WoSaveAsPixmap, tool_name, varname
Saves graphics from a specified VDA Tool as
a pixmap.

WoSetCursor, tool_name
Changes the cursor for a VDA Tool.

WoSetToolIcon, tool_name, icon
Assigns a pixmap to be the icon for a VDA
Tool.

WoSetWindowTitle, tool_name,
window_title

Specifies a unique title for a VDA Tool
window.

WoStatus(parent, toolname)
Create a status bar for a VDA Tool.

WoVariableOptionMenu(parent, toolname)
Creates an option menu containing the
names of all of the variables associated with
the current tool.

WoVariableOptionMenuGetValue(wid)
Gets the currently selected variable name
from an option menu that was created with
the WoVariableOptionMenu function.

WoVariableOptionMenuSetValue, wid, value
Sets the current selection in the variable
option menu.

View Setup Routines
CENTER_VIEW

Sets system viewing parameters to display
data in the center of the current window (a
convenient way to set up a 3D view).

SET_VIEW3D, viewpoint, viewvector,
perspective, izoom, viewup,
viewcenter, winx, winy, xr, yr, zr

Generates a 3D view, given a view position
and a view direction.

T3D
Standard Library procedure that
accumulates one or more sequences of
translation, scaling, rotation, perspective, or
oblique transformation and stores the results
in the system variable !P.T.

VIEWER, win_num, xsize, ysize, size_fac,
xpos, ypos, colors, retain, xdim, ydim,
zdim

Lets users interactively define a 3D view, a
slicing plane, and multiple cut-away volumes
for volume rendering. (Creates a View
Control and a View Orientation window in
which to make these definitions.)

Virtual Reality Modeling Language (VRML) Routines 39

Virtual Reality Modeling
Language (VRML) Routines
VRML_AXIS, origin [, length, range]

Adds an axis to a VRML world.

VRML_CAMERA, position
Positions a VRML camera for rendering the
VRML view.

VRML_CLOSE
Closes the VRML file.

VRML_CONE
Creates a VRML cone.

VRML_CUBE
Positions a VRML cube in the world.

VRML_CYLINDER
Positions a VRML cylinder in the world.

VRML_LIGHT, position
Sets up the light source for a VRML world.

VRML_LINE, x, y, z
Creates a VRML line object.

VRML_OPEN
Opens a VRML file and writes out header
information consistent with VRML
formatting.

VRML_POLY, vlist, plist
Creates a VRML polyline node, based on PV-
WAVE’s variables for vertex list and polygon
list.

VRML_SPHERE
Creates a sphere in a VRML world.

VRML_SPOTLIGHT, position
Creates a VRML spotlight.

VRML_SURFACE, z [, x, y]
Creates a VRML surface node based on
PV-WAVE–type variables.

VRML_TEXT, text
Creates a VRML text object in an open
VRML file.

Volume Manipulation
Routines
AFFINE(a, b, [c])

Applies an affine transformation to an array.

BLOB(a, i, b)
Isolates a homogeneous region in an array.

BLOBCOUNT(a, b)
Counts homogeneous regions in an array.

BOUNDARY(a,r)
Computes the boundary of a region in an
array.

DERIVN(a, n)
Differentiates a function represented by an
array.

MOMENT(a, i)
Computes moments of an array.

NEIGHBORS(a, i)
Finds the neighbors of specified array
elements.

RESAMP(array, dim1, ..., dimn)
Resamples an array to new dimensions.

SLICE_VOL (volume, dim, cut_plane)
Returns a 2D array containing a slice from a
3D volumetric array.

VOL_PAD (volume, pad_width)
Returns a 3D volume of data padded on all
six sides with zeroes.

VOL_TRANS (volume, dim, trans)
Returns a 3D volume of data transformed by
a 4-by-4 matrix.

40 Chapter 1: Functional Summary of Routines PV-WAVE Reference

Volume Rendering Routines
RENDER (object1, ..., objectn)

Generates a ray-traced rendered image from
one or more predefined objects.

VECTOR_FIELD3, vx, vy, vz, n_points
Plots a 3D vector field from three arrays.

VOL_MARKER, vol, n_points
Displays colored markers scattered
throughout a volume.

VOL_REND (volume, imgx, imgy)
Renders volumetric data in a translucent
manner.

WAVE Widgets Routines

NOTE For detailed information on the
following routines, please refer to the
PV-WAVE Application Developer’s Guide.

WwAlert(parent, label [, answers])
Creates a modal (blocking) or modeless
(non-blocking) popup alert box containing a
message and optional control buttons.

WwAlertPopdown, wid
Destroys an alert box.

WwButtonBox (parent, labels, callback)
Creates a horizontally or vertically oriented
box containing push buttons.

WwCallback(wid, callback, reason,
client_data)

Adds or removes a WAVE Widgets callback.

WwCommand (parent, enteredCallback,
doneCallback)

Creates a command window.

WwControlsBox (parent, labels, range,
changedCallback)

Creates a box containing sliders.

WwDialog (parent, label, OKCallback,
CancelCallback, HelpCallback)

Creates a blocking or nonblocking dialog
box.

WwDrawing (parent, windowid,
drawCallback, wsize, dsize)

Creates a drawing area, which allows users
to display graphics generated by PV-WAVE.

WwFileSelection (parent, OKCallback,
CancelCallback, HelpCallback)

Creates a file selection widget, which lets the
user display the contents of directories and
select files.

WwGenericDialog(parent, layout [, labels]
[, callback])

Creates a generic dialog box that can be
filled with custom widgets.

WwGetButton(event)
Obtains the index of a pressed or released
button passed as an event structure by a
WAVE Widgets event handler.

WwGetKey(event)
Obtains the ASCII value of a pressed or
released key passed as an event structure by
a WAVE Widgets event handler.

WwGetPosition(event)
Obtains the coordinates of a selected point
inside a widget. The selected point
coordinates are passed in an event structure
by a WAVE Widgets event handler.

WwGetValue (widget)
Returns a specific value for a given widget.

WwHandler(wid, handler [, mask
[, userdata]])

Adds or removes a WAVE Widgets event
handler from a widget.

WAVE Widgets Routines 41

WwInit (app_name, appclass_name,
workarea [, destroyCallback])

Initializes the WAVE Widgets environment,
opens the display, creates the first top-level
shell, and creates a layout widget.

WwLayout (parent)
Creates a layout widget that is used to
control the arrangement of other widgets.

WwList (parent, items, selectedCallback,
defaultCallback)

Creates a scrolling list widget.

WwListUtils(wid [, param1[, param2]])
Manages the contents of a list widget.

WwLoop
Handles the dispatching of events and calling
of PV-WAVE callbacks.

WwMainWindow (parent, workarea,
[destroyCallback])

Creates a top-level window and a layout
widget.

WwMenuBar (parent, items)
Creates a menu bar.

WwMenuItem (parent, item, value
[, callback])

Adds, modifies, or deletes specified menu
items.

WwMessage (parent, label, OKCallback,
CancelCallback, HelpCallback)

Creates a blocking or nonblocking message
box.

WwMultiClickHandler(wid, handler
[, userdata])

Adds or removes a multi-click event handler.

WwOptionMenu (parent, label, items)
Creates an option menu.

WwPickFile(parent [, HelpCallback])
Creates a modal file selection dialog that
blocks until a file name has been selected.

WwPopupMenu (parent, items)
Creates a popup menu.

WwPreview, parent, confirmCallback,
clearCallback

Creates an ASCII data preview widget.

WwPreviewUtils(wid [, param1, param2,
param3])

Manages the contents of a preview widget.

WwRadioBox (parent, labels, callback)
Creates a box containing radio buttons.

WwResource([resvar])
Queries, creates, saves, or modifies the
widget resource database.

WwSeparator(parent)
Creates a horizontal or vertical line that
separates components in a graphical user
interface.

WwSetCursor(wid, cursor)
Sets the cursor for a widget.

WwSetValue (widget, [value])
Sets the specified value for a given widget.

WwTable (parent, callback [, variable])
Creates an editable 2D array of cells
containing string data, similar to a
spreadsheet.

WwTableUtils(wid [, param1, ..., param9])
Manages the contents of a table widget.

WwText (parent, verifyCallback)
Creates a text widget that can be used for
both single-line text entry or as a full text
editor. In addition, this function can create a
static text label.

WwTimer(time, timer_proc [, userdata])
Registers a WAVE Widgets timer procedure.

WwToolBox (parent, labels, callback)
Creates an array of graphic buttons (icons).

42 Chapter 1: Functional Summary of Routines PV-WAVE Reference

WAVE Widget Utilities
WgAnimateTool, image_data [, parent

[, shell]]
Creates a window for animating a sequence
of images.

WgCbarTool [, parent [, shell [, windowid
[, movedCallback], [, range]]]]]

Creates a simple color bar that can be used
to view and interactively shift a PV-WAVE
color table.

WgCeditTool [, parent [, shell]]
Creates a full-featured set of menus and
widgets enclosed in a window; this window
allows you to edit the values in PV-WAVE
color tables in many different ways.

WgCtTool [, parent [, shell]]
Creates a simple widget that can be used
interactively to modify a PV-WAVE color
table.

WgIsoSurfTool, surface_data [, parent
[, shell]]

Creates a window with a built-in set of
controls; these controls allow you to easily
view and modify an iso-surface taken from a
three-dimensional block of data.

WgOrbit, vertices, polygons, parent, shell
Creates an interactive window for viewing
objects.

WgMovieTool, image_data [, parent [, shell
[, windowid [, rate]]]]

Creates a window that cycles through a
sequence of images.

WgSimageTool, image_data [, parent
[, shell]]

Creates two windows: 1) a scrolling image
window and 2) an optional smaller window
that shows a reduced view of the entire
image.

WgSliceTool, block_data [, parent
[, last_slice [, shell]]]

Creates a window with a built-in set of
controls; these controls allow you to easily
select and view “slices” from a three-
dimensional block of data.

WgStripTool [, x, y1, y2, … , y10, parent
[, shell]]

Creates a window that displays data in a
style that simulates a real-time, moving strip
chart.

WgSurfaceTool, surface_data [, parent
[, shell]]

Creates a surface window with a built-in set
of controls: these controls allow you to
interactively modify surface parameters and
view the result of those modifications.

WgTextTool [, parent [, shell]]
Creates a scrolling window for viewing text
from a file or character string.

Widget Toolbox Routines

NOTE For detailed information on the
following routines, please refer to the
PV-WAVE Application Developer’s Guide.

WtAddCallback (widget, reason, callback
[, client_data])

Registers a PV-WAVE callback routine for a
given widget.

WtAddHandler (widget, eventmask, handler
[, client_data])

Registers the X event handler function for a
given widget.

WtClose (widget)
Closes the current Xt (Motif) session, and
destroys all children of the top-level widget
created in WtInit. This routine can also be
used to destroy additional widget trees.

Widget Toolbox Routines 43

WtCreate (name, class, parent [, argv])
Creates a widget or shell instance specified by widget class.

WtCursor (function, widget [, index])
Sets or changes the cursor.

WtGet (widget [, resource])
Retrieves widget resources.

WtInit (app_name, appclass_name [, Xserverargs ...])
Initializes the Widget Toolbox and the Xt toolkit, opens the display, and creates the first top-level
shell.

WtInput (function [, parameters])
Registers a PV-WAVE input source handler procedure.

WtList (function, widget [, parameters])
Controls the characteristics of scrolling list widgets.

WtLookupString(event)
Maps a KeyPress or KeyRelease event to its KeyEvent structure (and optionally, to its Keysym) when
a user presses a key.

WtLoop
Handles the dispatching of events and calling of PV-WAVE callback routines.

WtMainLoop
Handles the dispatching of events.

WtPointer (function, widget [, parameters])
The pointer utility function.

WtPreview(action, widget)
Handles utility functions for the preview widget (XvnPreview).

WtProcessEvent()
Handles the dispatching of a Widget Toolbox event.

WtResource([resvar])
Queries, creates, saves, or modifies the widget resource database.

WtSet (widget, argv)
Sets widget resources.

WtTable (function, widget [, parameters])
Modifies an xbaeMatrix class widget.

WtTimer (function, params, [client_data])
Registers a callback function for a given timer.

WtWorkProc (function, parameters)
Registers a PV-WAVE work procedure for background processing.

44 Chapter 1: Functional Summary of Routines PV-WAVE Reference Volume 1

Window Routines
WCOPY ([window_index])

(Microsoft Windows Only) Copies the contents of a graphics window onto the Clipboard.

WDELETE [, window_index]
Deletes the specified window.

WINDOW [, window_index]
Creates a window for the display of graphics or text.

WMENU (strings)
Displays a menu inside the current window whose choices are given by the elements of a string array
and which returns the index of the user’s response.

WPASTE ([window_index])
(Microsoft Windows Only) Pastes the contents of the Clipboard into a graphics window.

WPRINT [, window_index]
(Microsoft Windows Only) Prints the contents of a specified window.

WREAD_DIB ([window_index])
(Microsoft Windows Only) Loads a Device Independent Bitmap (DIB) from a file into a graphics
window.

WREAD_META ([window_index])
(Microsoft Windows Only) Loads a Windows metafile (WMF) into a graphics window.

WSET [, window_index]
Used to select the current window to be used by the graphics and imaging routines.

WSHOW [, window_index [, show]]
Exposes or hides the designated window. It does not automatically make the designated window the
active window.

WWRITE_DIB ([window_index])
(Microsoft Windows Only) Saves the contents of a graphics window to a file as a Device Independent
Bitmap (DIB).

WWRITE_META ([window_index])
(Microsoft Windows Only) Saves the contents of a graphics window to a file as a Windows metafile
(WMF).

45

CHAPTER

2

Procedure and Function Reference
This chapter contains detailed descriptions of the procedures and functions distrib-
uted with PV-WAVE. Most of these system procedures and functions are
proprietary. However, you have access to the source code for some routines—such
routines are called Standard Library procedures and functions.

Standard Library Routines

Standard Library procedures and functions are designated as such in their descrip-
tions. The code for these routines can be found in:

(UNIX) <wavedir>/lib/std

(OpenVMS) <wavedir>:[LIB.STD]

(Windows) <wavedir>\lib\std

Where <wavedir> is the main PV-WAVE directory.

Users’ Library Routines

Additional routines that have been contributed by PV-WAVE users comprise the
Users’ Library. For the names of these routines, list the Users’ Library in:

(UNIX) <wavedir>/lib/user

(OpenVMS) <wavedir>:[LIB.USER]

(Windows) <wavedir>\lib\user

Where <wavedir> is the main PV-WAVE directory.

Users’ Library routines are not covered in the PV-WAVE Reference; use the docu-
mentation available in the .pro source file for each routine.

For more information, see the PV-WAVE Programmer’s Guide.

46 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

ABS Function
Returns the absolute value of x.

Usage
result = ABS(x)

Input Parameters
x — The value that is evaluated. May be of any dimension.

Returned Value
result — The absolute value of x.

Keywords
None.

Discussion
ABS is defined by:

f(x) = |x|

If x is an array, the result has the same dimension. Each element of the returned
array contains the absolute value of the corresponding element in the input array.

When x is a complex number, the result is the magnitude of the complex number:

When x has a data type of complex, the result is double-precision floating-point.
All other data types produce a result with the same data type as x.

Example
x = [-1, 2, 3, -4, 5]

PRINT, ABS(x)

1 2 3 4 5

x = COMPLEX(4, 3)

PRINT, ABS(x)

5.0000000

See Also
See General Mathematical Functions on page 14.

resulti Reali
2 Imaginaryi

2+=

ACOS Function 47

ACOS Function
Returns the arc-cosine of x.

Usage

result = ACOS(x)

Input Parameters

x — The cosine of the desired angle. Cannot be of a complex data type and must
be in the range –1 ≤ x ≤ 1.

Returned Value

result — Arc-cosine of x.

Keywords

None.

Discussion

The inverse cosine function, or arc-cosine, denoted by cos –1, is defined by:

y = cos –1x

if and only if

cos y = x

where

–1 ≤ x ≤ 1 and 0 ≤ y ≤ π

The parameter x can be an array, with the result having the same data type where
each element contains the arc-cosine of the corresponding element from x.

When x is of double-precision floating-point data type, the result is of the same
type. All other data types are converted to single-precision floating-point and yield
a floating-point result. The result is an angle, expressed in radians, whose cosine is
x.

Values generated by ACOS range between 0 and π.

48 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Example
x = ACOS(1)

PRINT, x

0

See Also

COS

For a list of other transcendental functions, see Chapter 1, Functional Summary of
Routines.

ADD_EXEC_ON_SELECT Procedure (UNIX)
Adds a single new item to the EXEC_ON_SELECT list.

Usage

ADD_EXEC_ON_SELECT, lun, command

Input Parameters

lun — Logical unit number.

command — Procedure name.

Description

A new logical unit number and associated command is added to the
EXEC_ON_SELECT list. This procedure is designed to be called from an
EXEC_ON_SELECT callback procedure.

See Also

DROP_EXEC_ON_SELECT, EXEC_ON_SELECT, SELECT_READ_LUN

ADDVAR Procedure 49

ADDVAR Procedure
Creates a variable on the $MAIN$ program level and binds a local variable to it.

Usage

ADDVAR, name, local

Input Parameters

name — A string containing the name of a variable to create on the $MAIN$ pro-
gram level.

Output Parameters

local — The name of the local variable that you want to bind to the variable name
on the $MAIN$ program level.

Keywords

None.

Example

This example shows how ADDVAR is used to pass a variable from inside a proce-
dure to the $MAIN$ program level.

PRO test_addvar

; Create a scalar variable inside a procedure, then use ADDVAR to pass it to
; the top-level procedure $MAIN$.
ADDVAR, ’sclvar’, local

local = 1.2345

local = local + 1.

PRINT, local

END

Now, at the WAVE> prompt, do the following:
test_advar

INFO, /Traceback

% At $MAIN$.

; Verify that you are now on the $MAIN$ program level.

50 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

INFO, /Variables

; This INFO command verifies that the scalar created inside the
; procedure now exists on the $MAIN$ program level.
SCLVAR FLOAT = 2.23450

See Also

DELVAR, UPVAR

AFFINE Function
Standard Library function that applies an affine transformation to an array.

Usage

result = AFFINE(a, b, [c])

Input Parameters

a — An n-dimensional array.

b — An invertible (n,n) array.

c — An n-element vector (optional).

Returned Value

result — An array representing a (and of the same dimensions as a) under the
coordinate transformation y = b#x + c, where y and x are coordinates for the
result and for a, respectively, which differ from array index coordinates by a simple
translation to the array centroid.

Keywords

None.

Example

See wave/lib/user/examples/affine_ex.

See Also

ROT, ROTATE, ROT_INT

ALOG Function 51

ALOG Function
Returns the natural logarithm of x.

Usage

result = ALOG(x)

Input Parameters
x — The expression that is > 0 which is evaluated. This expression can be an array.

Returned Value
result — The natural logarithm of x.

Keywords

None.

Discussion

ALOG is defined as:

y = logex

Double-precision floating-point and complex values return a result with the same
data type. All other data types are converted to single-precision floating-point and
yield a floating-point result.

ALOG handles complex numbers in the following way:

Alog(x) ≡ Complex(loge(|x|, arctan(x)))

Examples
x = ALOG(10)

PRINT, x

2.30259

x = ALOG(1)

PRINT, x

0

See Also

ALOG10

For a list of other transcendental functions, see Chapter 1, Functional Summary of
Routines.

52 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

ALOG10 Function
Returns the logarithm to the base 10 of x.

Usage

result = ALOG10(x)

Input Parameters

x — The expression that is > 0 which is evaluated. This expression can be an array.

Returned Value

result — The base 10 logarithm for x.

Keywords

None.

Discussion

ALOG10 is defined by:

y = log10x

Double-precision floating-point and complex values return a result with the same
data type. All other data types are converted to single-precision floating-point and
yield a floating-point result.

ALOG10 handles complex numbers in the following way:

Alog10(x) = Complex(log10(|x|, arctan(x)))

Examples
x = ALOG10(10)

PRINT, x

1

x = ALOG10(100)

PRINT, x

ASARR Function 53

2

x = ALOG10(50)

PRINT, x

1.69897

See Also

ALOG

For a list of other transcendental functions, see Chapter 1, Functional Summary of
Routines.

ASARR Function
Creates an associative array containing specified variables and expressions.

Usage

result = ASARR(key1, value1, ... keyn , valuen)

result = ASARR(keys_arr, values_list)

Input Parameters

keyi — One or more strings, each containing the key name for an element of the
associative array.

valuei — Expressions or variables used to set the values of the associative array
elements.

keys_arr — A Fstring array containing one or more key names for elements of the
associative array.

values_list — A variable of type list containing expressions or variables used to set
the values of the associative array elements. The LIST function is used to create list
variables.

Returned Value

result — A new associative array containing the specified elements and their asso-
ciated names.

54 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

None.

Discussion

An associative array is an array of elements (variables or expressions), each with a
unique name. The names act like array subscripts; they let you access the elements
of the associative array. An associative array is a distinct data type in PV-WAVE.
You can use a method similar to array subscripting to reference the elements of an
associative array.

Example

This example demonstrates how to create an associative array. The INFO and
PRINT commands are used to show the contents of the array.

asar1 = ASARR(’byte’, 1B, ’float’, 2.2, ’string’, ’3.3’, $
’struct’, {,a:1, b:lindgen(2)})

; Create the associative array by specifying the array elements (key names
; and values) as separate parameters. Note that each element is of a
; different data type.

asar2 = ASARR([’byte’, ’float’, ’string’, ’struct’], $
LIST(1B, 2.2, ’3.3’, {,a:1, b:lindgen(2)}))

; Create an associative array that is equivalent to the previous one, only
; this time the input parameters consist of a string array of key names
; and a list array of values.

INFO, asar1, /Full

; Show information on the associative array asar1.

ASAR1 AS. ARR = Associative Array(4)

byte BYTE = 1

struct STRUCT = ** Structure $1, 2 tags, 12 length:

A INT 1

B LONG Array(2)

float FLOAT = 2.20000

string STRING = ’3.3’

PRINT, asar1

; Print the contents of the associative array asar1.

{’byte’ 1 ’struct’{ 1 0 1} ’float’ 2.20000 ’string’3.3 }

PRINT, asar2

; Print the contents of the associative array asar2.

ASIN Function 55

{’byte’ 1 ’struct’{1 0 1} ’float’ 2.20000 ’string’3.3 }

; The contents of the second associative array are the same as the first.

See Also

ASKEYS, ISASKEY, LIST

ASIN Function
Returns the arcsine of x.

Usage

result = ASIN(x)

Input Parameters

x — The sine of the desired angle. Cannot be a complex data type and must be in
the range of (– 1 ≤ x ≤ 1).

Returned Value

result — The arcsine of x.

Keywords

None.

Discussion

The inverse sine function, or arcsine, denoted by sin – 1, is defined by:

y = sin– 1x

if and only if

sin y = x

where

–1 ≤ x ≤ 1 and –π/2 ≤ y ≤ π/2

56 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

The parameter x can be an array, with the result having the same data type as x,
where each element contains the arcsine of the corresponding element from x.

When x is of double-precision floating-point data type, the result is of the same
type. All other data types are converted to single-precision floating-point and yield
a floating-point result. The result is an angle, expressed in radians, whose sine is x.

Values generated by ASIN range between –π/2 and π/2.

Example
x = ASIN(0)

PRINT, x

0

See Also

SIN

For a list of other transcendental functions, see Chapter 1, Functional Summary of
Routines.

ASKEYS Function
Obtains the key names for a given associative array.

Usage

result = ASKEYS(asarr)

Input Parameters

asarr — The name of an associative array.

Returned Value

result — A string containing the key names in the given associative array. If the
array is empty, an empty string is returned.

Keywords

None.

ASKEYS Function 57

Discussion

A key name is the name associated with an element in an associative array.
ASKEYS returns the key names of the elements in an associative array. If the asso-
ciative array is empty, an empty string is returned. To create an associative array,
use the ASARR function.

Example

ASKEYS is used to obtain the key names in an associative array. The names are
used to reference the values of the array to replace the original values with new
integer values. The INFO command is then used to show the modified contents of
the associative array.

asar = ASARR(’byte’, 1B, ’float’, 2.2, ’string’, ’3.3’, $
’struct’, {,a:1, b:lindgen(2)})

keys = ASKEYS(asar)

PRINT, keys

byte struct float string

; These key names appear later in the output of the INFO command.

FOR I = 0, N_ELEMENTS(asar1) - 1 DO $
asar1(keys(i)) = i + 10

INFO, asar1, /Full

; Show the replaced values.

ASAR1AS. ARR = Associative Array(4)

byte INT = 10

struct INT = 11

float INT = 12

string INT = 13

See Also

ASARR, ISASKEY, LIST

58 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

ASSOC Function
Associates an array definition with a file, allowing random access input and output.

Usage

result = ASSOC(unit, array_definition [, offset])

Input Parameters

unit — The file unit to associate with array_definition.

array_definition — An expression that defines the data type and dimensions of the
associated data.

offset — The offset in the file to the start of the data in the file. For stream files and
RMS block mode files, this offset is given in bytes. For RMS record-oriented files,
this offset is specified in records.

TIP The offset parameter is useful for skipping past descriptive header blocks in
files.

Returned Value

result — A variable that associates the array definition with the file.

Keywords

None.

Discussion

ASSOC provides a basic method of random access input/output. The associated
variable (the one storing the association) is created by assigning the result of
ASSOC to a variable. This variable provides a means for mapping a file into vec-
tors or arrays of a specified type and size.

UNIX USERS ASSOC does not work with UNIX FORTRAN binary files.

ASSOC Function 59

Example 1

Assume you have a binary file, image_file.img, with five 512-by-512 byte
images and a 1024-byte header:

OPENR 1, ’image_file.img’

; Open the file.
aimage = ASSOC(1, BYTARR(512, 512), 1024)

image1 = aimage(0)

; Read the first image.
image5 = aimage(4)

; Read the fifth image.
TVSCL, aimage(2)

; Display the third image.
fft_image = FFT(aimage (1), -1)

; Do an FFT function on the second image.
arow = ASSOC(1, BYTARR(512), 1024)

row100 = arow(99)

; Read the 100th row.
PLOT, arow(512)

; Plot the first row in the second image.

Example 2

For another example showing how to transfer data into an associated variable, see
the PV-WAVE Programmer’s Guide.

See Also

OPEN (UNIX/OpenVMS), OPEN (Windows)

60 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

ATAN Function
Returns the arctangent of the input.

Usage

result = ATAN(y [, x])

Input Parameters

y — The tangent of the desired angle.

x — If the second argument is supplied, ATAN returns the angle whose tangent is
equal to y /x. If both arguments are zero, the result is undefined.

Returned Value

result — The angle, in radians, whose tangent is y (or, optionally y /x).

Discussion

If two parameters are supplied, the angle whose tangent is equal to y /x is returned.
The range of ATAN is between –π / 2 and π / 2 for the single argument case and
between –π and π if two arguments are given. If y or x are double-precision float-
ing, the result of ATAN is also double precision. Arguments are not allowed to be
complex. All other types are converted to single-precision floating point and yield
floating-point results.

Example
PRINT, !radeg*atan(2,3)

33.6901

; This result is the angle (in degrees) whose tangent is 2/3.

See Also

ACOS, ASIN, COS, SIN, TAN

For a list of other transcendental functions, see Chapter 1, Functional Summary of
Routines.

AVG Function 61

AVG Function
Standard Library function that returns the average value of an array. Optionally, it
can return the average value of one dimension of an array.

Usage

result = AVG(array [, dim])

Input Parameters

array — The array that is averaged. This array may be any data type except string.

dim — (optional) The specific dimension of array that will be averaged. Must be
a number that is in the range 0 ≤ dim < n, where n is the number of dimensions in
array.

Returned Value

result — The average value of array. If dim is not specified, result will be of float-
ing-point type; otherwise, it will be of the same data type as array.

If dim is specified, result is an array containing the average values for all elements
of the specified dimension.

Keywords

None.

Discussion

AVG is defined as:

The optional parameter dim allows you to find the average values for one dimen-
sion of array rather than the whole array. The first dimension in the array is denoted
by 0, the second dimension by 1, and so on.

f x()

xn

x 1=

n

∑
n

---------------=

62 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

If the dimension you specify is not valid for array, the input array is returned as the
result.

Example 1
array = INTARR(3, 4)

array(*, 0) = [5, 7, 9]

array(*, 1) = [2, 8, 5]

array(*, 2) = [3, 4, 8]

array(*, 3) = [3, 3, 3]

PRINT, AVG(array)

5.00000

PRINT, AVG(array, 0)

7 5 5 3

PRINT, AVG(array, 1)

3 5 6

Example 2

When AVG is called with the dimension parameter, the result is an array with the
dimensions of the input array, except for the dimension specified. In this case, each
element of the result is the average of the corresponding vector in the input array.
For example, if Array has dimensions of (3,4,5), then the command

avg_dim = AVG(array, 1)

is equivalent to these commands:

avg_dim = FLTARR(3, 5)

FOR j = 0,4 DO BEGIN

FOR i = 0,2 DO BEGIN

avg_dim(i,j) = TOTAL(array(i,*,j)) / 4.

ENDFOR

ENDFOR

See Also

MAX, MEDIAN, MIN, SQRT, STDEV

AXIS Procedure 63

AXIS Procedure
Draws an axis of the specified type and scale at a given position.

Usage

AXIS [[[, x], y], z]

Input Parameters

x, y, and z — (optional) Scalars giving the coordinates of the new AXIS.

Keywords

XAxis — Specifies how the x-axis is to be drawn:

YAxis — Specifies how the y-axis is to be drawn:

ZAxis — Specifies how the z-axis is to be drawn:

Additional keywords let you control many aspects of the plot’s appearance. Addi-
tional plotting keywords are listed below. For a description of each keyword, see
Chapter 3, Graphics and Plotting Keywords.

0 Draws an axis under the plot window, with the tick marks
pointing up.

1 Draws an axis over the window, with tick marks pointing
down.

0 Draws a y-axis at the left of the plot window, with tick
marks pointing to the right.

1 Draws a y-axis at the right of the plot window, with tick
marks pointing to the left.

1 Lower-right

2 Lower-left

3 Upper-left

4 Upper-right

Channel Position [XYZ]Range

64 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Save — Indicates that the scaling to and from data coordinates established by the
call to AXIS is to be saved in the appropriate axis system variable, !X, !Y, or !Z. If
not present, the scaling is not changed.

Discussion

If no coordinates are specified, the axis is drawn in its default position as given by
the XAxis, YAxis or ZAxis keyword. When drawing an x-axis, the x-coordinate is
ignored. Similarly, the y and z parameters are ignored when drawing their respec-
tive axes.

The new scale is saved for use by subsequent overplots if the Save keyword is
present.

Example

The following example shows how the AXIS procedure can be used with normal
or polar plots to draw axes through the origin dividing the plot window into four
quadrants:

theta = FINDGEN(361) * !Dtor

PLOT, /Polar, XStyle=4, YStyle=4, Title='Nine-Leaved Rose', $
5 * (COS(9 * theta), theta

Charsize Save [XYZ]Style

Charthick Subtitle [XYZ]Tickformat

Clip T3d [XYZ]Ticklen

Color Thick [XYZ]Tickname

Data Tickformat [XYZ]Ticks

Device Ticklen [XYZ]Tickv

Font Title [XYZ]Title

Gridstyle [XY]Axis [XYZ]Type

Noclip [XYZ]Charsize YLabelCenter

Nodata [XYZ]Gridstyle YNozero

Noerase [XYZ]Margin ZAxis

Normal [XYZ]Minor ZValue

AXIS Procedure 65

; Make a polar plot, suppressing the x- and y-axes with the
; XStyle and YStyle keywords.

WAIT, 2

AXIS, 0, 0, XAxis=0, /Data

; Draw an x-axis through data y-coordinate of 0. Because the
; XAxis keyword has a value of 0, the tick marks point down.

WAIT, 2

AXIS, 0, 0, 0, YAxis=0, /Data

; Similarly, draw the y-axis through data x-coordinate of 0.

See Also

PLOT

For more information and an illustration, see the PV-WAVE User’s Guide.

66 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

2
Procedure and Function Reference

BAR Procedure
Plots a 2D bar graph that can include stacked and grouped bars, as well as various
color and fill pattern options.

Usage

BAR, [x,] y

Input Parameters

x — (optional) An array of values to plot along the x-axis. The values y(i) are
plotted from x(i) to x(i+1).

y — An array of values to plot along the y-axis (or the x-axis if /Horizontal is
specified).

If y is a 2D array and the Stack keyword is not set, then the first dimension
is construed as a group and the second dimension as a bar value.

If y is a 2D array and the Stack keyword is set, then the first dimension is
construed as a stack and the second dimension as a bar value.

If y is a 3D array, then the first dimension is construed as a group, the sec-
ond as the stack, and the third as a bar in a stack in a group. The Stack
keyword is not relevant.

NOTE Each of these plotting options is discussed in the Examples section.

Keywords

Barmin — Sets the value to draw the bars down to. (Default: 0)

DrawLegendBox — If nonzero, a box is drawn around the legend. (Default: no
box)

Endpoints — If set, y is a 2D array containing endpoints (minimum and maximum
values) and Grouped and Stacked keywords are not availab.e.

FillColors — Specifies a 1D array of color index values. These values specify the
colors with which the bars are filled. By default, the bars are filled with solid color.
If either FillSpacing or FillOrientation are used, the bars are filled with lines

BAR Procedure 67

instead of solid color. In this case, FillColors specifies the line colors. (Default: no
fill color)

FillLinestyle — An integer or integer array specifying the style of fill lines. If set
to a scalar, all bars are filled with the same linestyle. If set to an array, the linestyle
of each bar is mapped, sequentially, to the value of each array index. (Default:
!P.Linestyle)

NOTE This keyword has no effect unless either FillSpacing or FillOrientation are
used.

Valid linestyle indices are shown in the following table:

FillOrientation — A floating point scalar or array specifying the orientation of fill
lines, in degrees, counterclockwise from the horizontal. If set to a scalar, the
orientation of fill lines in all bars is the same. If set to an array, the orientation of
each bar is mapped, sequentially, to the value of each array index. (Default:
Horizontal lines)

FillSpacing — A floating point scalar or array specifying the space, in centimeters,
between fill lines. If set to a scalar, the spacing between lines in all bars is the same.
If set to an array, the spacing for each bar is mapped, sequentially, to the value of
each array index. (Default: five times the value of the FillThick keyword, converted
to centimeters.)

FillThick — A floating point scalar or array specifying the thickness of fill lines.
If set to a scalar, all bars are filled with lines of the same thickness. If set to an array,
the thicknesses are mapped, sequentially, to the value of each array index. A
thickness of 1 is normal, two is double-wide, and so on. (Default: !P.Thick)

Index X Windows Style Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

68 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

NOTE This keyword has no effect unless either FillSpacing or FillOrientation are
used.

Horizontal — If nonzero, the y values are shown on the x-axis. If zero, the x values
are shown on the y-axis.

LegendBoxColor — An integer specifying the color of the legend box.

LegendCharSize — A floating-point scalar specifying the size of text in the
legend. (Default: 1.0).

LegendLabels — An array of strings used to label individual bars. The number of
strings in the array must correspond to the number of individual bars.

LegendPosition — A four-element floating point array specifying the position of
the legend in normal coordinates.

LegendTextColor — An integer specifying the color of the text in the legend.

LineColors — Specifies a 1D array of color indices.

OutlineColor — An integer specifying the color index to use for the color of the
outline for the bars (Default: black)

Stacked — If the input array is a 2D array and the Stacked keyword is set, then the
first dimension of the input array is construed as a stack and the second dimension
as a bar value. See the Examples section for examples of stacked and grouped bar
charts.

Width — Sets the width of each bar. When set to 1, bars touch each other. When
set to 0.5, bars are separated by the width of a bar. (Default: 0.8)

XTickName — An array of strings specifying the names of tick marks. If the bar
chart represents simple bars or stacked bars, the tick name corresponds to each one.
If the bar chart represents groups of bars or stacked bars, the XTickName
correspond to each group.

YTickName — An array of strings, for the y-axis (or x-axis if the Horizontal
keyword is specified), which specifies both the number of major tick marks (with
no minor tick mark) and their labeling.

Additional BAR keywords are listed below. For a description of each keyword, see
Chapter 3, Graphics and Plotting Keywords.

[XY]Range Noerase [XY]Title

Position Title YLabelCenter

BAR Procedure 69

Discussion

The x and y variables must be simple numeric types. The dependent axis only
shows major tick marks. Tick marks are placed in the center, to the left, and to the
right of individual bars or groups of bars. Only the center tick is labeled.

Either the FillLineStyle or FillOrientation keyword (or both) must be specified to
fill the bars with lines.

A stacked bar is a bar that depicts more than one value, where each value is shown
on top of the previous value. A group is a set of two or more related bars appearing
next to one another on the chart. It is possible to create grouped bars that are also
stacked. Refer to the following examples for information on producing stacked and
grouped bar charts.

The BAR2D procedure also draws bar graphs; however, it does not permit stacked
and grouped bars.

Examples

This section includes three example plots. First, data is defined for the examples.
Then the following bar plots are created:

• A horizontal bar chart with a legend. The bars are filled with colors and
patterns.

• A chart of grouped bars with a legend. The bars are filled with colors and
patterns.

• A chart of stacked and grouped bars. This plot includes a legend and pattern-
filled bars.

Define Data for the Examples

; The following expressions create an array of data to plot (the

; bar values) and tick names for the x and y-axes.

simple = [10, 20, 10, 40]

XTickNames=[”Quarter 1”, ”Quarter 2”, ”Quarter 3”, ”Quarter 4”]

YTickNames=[”$ 0000”, ”$ 1000”, ”$ 2000”, ”$ 3000”]

;

; The following expression creates a 2D array specifying data for

; four groups of bars containing three sets of bars per group.

;

group1 = [[100, 200, 100], [200, 150, 100], [400, 200, 100], $

70 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

[100, 110, 120]]

;

; The following expression creates a 3D array specifying data for

; two groups of bars containing three stacks with two values per

; stack.

;

group2 = [[[10, 20], [30, 40], [100, 60]], $

[[30, 10], [50, 50], [60, 40]]]

Example 1: Horizontal Bars

Note that the patterns inside the bars are created by filling the bars with lines of
various styles and thicknesses.

BAR, simple, XTickName=XTickNames, YTickName=YTickNames, $

FillOrientation=[30, 10, 0, 90], LineCol=[1,3,5,7], Outline=4, $

Fillcolors=[4, 5, 7, 1], Filllinestyle=[1,2,3,4], $

Fillthick=[1,2,3,4], $

LegendLabel=[”EAST”, ”NORTH”, ”WEST”, ”SOUTH”], $

LegendTextColor=5, LegendCharSize=2, $

LegendPosition=[0.00, 0.3, 0.22, 0.6], $

Position=[0.3, 0.1, 0.95, 0.95], $

/Horizontal, Title=”Patterned Horizontal Bar”

BAR Procedure 71

Figure 2-1 A horizontal bar chart with a legend. The bars are filled with colors and lines.

Example 2: Grouped Bars

In this example, a 2D array is used to create a chart of grouped bars.

BAR, group1, XTickName=XTickNames, YTickName=YTickNames, $

FillOrientation=[30, 0, 90], LineCol=[1,5,7], Outline=8, $

Fillcolors=[4, 7, 1], FillLinestyle=[1,3,4], $

fillthick=[1,3,4], $

LegendLabel=[”EAST”, ”NORTH”, ”SOUTH”], LegendTextColor=3, $

LegendCharSize=2, /DrawLegendBox, $

LegendPosition=[0.79, 0.7, 0.99, 0.9], $

Position=[0.1, 0.1, 0.8, 0.95], $

Title=”Grouped Bars”

72 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-2 A bar chart with grouped bars and a legend. The bars are filled with colors and
line.

Example 3: Stacked Bars

In this example, a 3D array is used to create a chart of grouped and stacked bars.

BAR, group1, XTickName=XTickNames, $

FillOrientation=[30, 0, 90], LineCol=[1,5,7], Outline=8, $

filllinestyle=[1,3,4] , $

LegendLabel=[”EAST”, ”NORTH”, ”SOUTH”], LegendTextColor=1, $

LegendCharSize=2.0, /DrawLegendBox,$

LegendPosition=[0.79, 0.7, 0.99, 0.9], $

Position=[0.2, 0.1, 0.8, 0.95],$

/Stacked, Title=”Stacked Bars”

BAR2D Procedure 73

Figure 2-3 A bar chart with grouped and stacked bars. This plot includes a legend and line
filled bars.

See Also

BAR2D, BAR3D

BAR2D Procedure
Creates a 2D bar graph.

Usage

BAR2D, [x,] y

Input Parameters

x — (optional) Specifies a 1D array of x values. (Default: the index number in the
y array)

74 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

y — Specifies a 1D array of y values.

Keywords

ColumnColors — An array of color indices specifying the colors to use for the
column bars.

Outline — If nonzero, each bar is outlined. (Default: no outlining)

Additional BAR keywords are listed below. For a description of each keyword, see
Chapter 3, Graphics and Plotting Keywords.

Discussion

This procedure creates a simple bar chart. To create more complex bar charts that
include grouped and stacked bars, legends, and pattern-filled bars, see the BAR
procedure.

Examples
y = FINDGEN(5)

TEK_COLOR

BAR2D, y, Title= ’Buffalo Securities Demo’, Xtitle = ’X Axis’, $
Ytitle = ’Y Axis’

Background Normal [XY]Minor

Charsize Position [XY]Range

Charthick Subtitle [XY]Style

Color Thick [XY]Ticklen

Data Ticklen [XY]Tickname

Device Title [XY]Ticks

Font [XY]Charsize [XY]Title

Gridstyle [XY]Gridstyle YLabelCenter

Linestyle [XY]Margin

BAR3D Procedure 75

Figure 2-4 A simple 2D bar chart.

See Also

BAR, BAR3D

BAR3D Procedure
Creates a 3D bar graph.

Usage

BAR3D, z

Input Parameters

z — A 2D array of z values.

76 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

ColumnColors — An array of color indices specifying the colors to use for column
bars.

Noshade — If nonzero, turns off the shading of each bar. (Default: bars are shaded)

Outline — If nonzero, each bar is outlined. (Default: no outlining)

RowColors — An array of color indices specifying the colors to use for row bars.

Other BAR3D keywords are listed below. For a description of each keyword, see
Chapter 3, Graphics and Plotting Keywords.

Discussion

The z parameter is a 2D array of elevation values. The 3D effect is established by
modifying the colortable to create darker color values for use on the top and left
sides of the bars. By default, the bars are displayed vertically (upward).

Examples
xx = DIST(5)

TEK_COLOR

BAR3D, xx, Title= ’Buffalo Securities Demo’, Xtitle = ’X Axis’, $
Ytitle = ’Y Axis’, Ztitle = ’Z Axis’

See Also

BAR, BAR2D

Ax Font Ticklen [XYZ]Ticklen

Az Gridstyle Title [XYZ]Tickname

Background Horizontal [XYZ]Charsize [XYZ]Ticks

Charsize Linestyle [XYZ]Gridstyle [XYZ]Title

Charthick Normal [XYZ]Margin YLabelCenter

Color Position [XYZ]Minor ZAxis

Data Subtitle [XYZ]Range ZValue

Device Thick [XYZ]Style

BESELI Function 77

BESELI Function
Calculates the Bessel I function for the input parameter.

Usage

result = BESELI(x [, n])

Input Parameters

x — The expression that is evaluated.

n — (optional) An integer ≥ 0. (Default: 0)

Returned Value

result — The Bessel I function for x, having the same dimensions as x.

Keywords

None.

Discussion

The Bessel I function is one of a mathematical series that arise in solving
differential equations for systems with cylindrical symmetry. The Bessel series can
be useful in communications and signal processing, since they give the relative
amplitude of the spectral components of a frequency-modulated carrier wave.

The Bessel I function is similar to the Bessel J function, except that it is evaluated
for imaginary parameters.

BESELI is a numerical approximation to the solution of the differential equation
for an imaginary x:

x2 * y'' + x * y' – (x2 + n2) * y = 0 n ≥ 0

The BESELI function is a solution of the first kind of (modified) Bessel functions
of order n. The general solution of the above differential equation using the
BESELI function can be shown in the following ways for arbitrary constants A and
B:

y = A * BESELI(x, n) + B * BESELI(x, –n)

; Solution for n ≠ 0, 1, 2, . . .

78 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

y = A * BESELI(x, n) + B * BESELK(x, n)

; Solution for all n.

or

; Solution for all n.

Note that BESELK may be generated from the BESELI function.

See Also

BESELJ, BESELY

For a synopsis of all the Bessel functions, see Mathematical Handbook of Formulas
and Tables, by Murray R. Spiegel, McGraw-Hill Book Company, New York, 1968.

For sample usage of the Bessel functions in physics, see Boundary Value Problems,
Second Edition, edited by David L. Powers, Academic Press, New York, 1979, pp.
213-216.

BESELJ Function
Calculates the Bessel J function for the input parameter.

Usage

result = BESELJ(x [, n])

Input Parameters

x — The expression that is evaluated.

n — (optional) An integer. (Default: 0)

Returned Value

result — The Bessel J function for x. It is a floating-point data type, with the same
dimensions as x.

y A BESELI x n,()⋅ B BESELI x n,() dx

x BESELI x n,()()2⋅
--∫⋅ ⋅+=

BESELJ Function 79

Keywords

None.

Discussion

The Bessel J function is one of a mathematical series that arise in solving
differential equations for systems with cylindrical symmetry. The Bessel series can
be useful in communications and signal processing, since they give the relative
amplitude of the spectral components of a frequency-modulated carrier wave.

Bessel J is a Bessel function of the first order, and has a finite limit as x approaches
zero.

BESELJ is a numerical approximation to the solution of the differential equation
for a real x:

x2 * y'' + x * y' + (x2 – n2) * y = 0 n ≥ 0

The BESELJ function is a solution of the first kind of Bessel functions of order n.
The general solution of the above differential equation using the BESELJ function
can be shown in the following ways for arbitrary constants A and B:

y = A * BESELJ(x, n) + B * BESELJ(x, –n)

; Solution for n ≠ 0, 1, 2, . . .

y = A * BESELJ(x, n) + B * BESELY(x, n)

; Solution for all n.

or

; Solution for all n.

UNIX USERS Under UNIX, BESELJ uses the j0(3M), j1(3M), and jn(3M)
functions from the UNIX math library. For details about any of these functions,
refer to its UNIX man page.

See Also

BESELI, BESELY

y A BESELJ x n,()⋅ B BESELJ x n,() dx

x BESELJ x n,()()2⋅
--∫⋅ ⋅+=

80 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

For a synopsis of all the Bessel functions, see Mathematical Handbook of Formulas
and Tables, by Murray R. Spiegel, McGraw-Hill Book Company, New York, 1968.

For sample usage of the Bessel functions in physics, see Boundary Value Problems,
Second Edition, edited by David L. Powers, Academic Press, New York, 1979, pp.
213-216.

BESELY Function
Calculates the Bessel Y function for the input parameter.

Usage

result = BESELY(x [, n])

Input Parameters

x — The expression that is evaluated. This expression must be > 0.

n — (optional) An integer. (Default: 0)

Returned Value

result — The Bessel Y function for x, having the same dimensions as x.

Keywords

None.

Discussion

The Bessel Y function is one of a mathematical series that arise in solving
differential equations for systems with cylindrical symmetry. The Bessel series can
be useful in communications and signal processing, since they give the relative
amplitude of the spectral components of a frequency-modulated carrier wave.

Bessel Y is a Bessel function of the second order. Unlike the Bessel J function, it
has no finite limit as x approaches zero.

BESELY is a numerical approximation to the solution of the differential equation
for a real x:

x2 * y'' + x * y' + (x2 – n2) * y = 0 n ≥ 0

BESELY Function 81

The BESELY function is a solution of the second kind of Bessel functions of order
n. The general solution of the above differential equation using the BESELJ
function is as follows:

when n ≠ 0, 1, 2, . . .

and

when n = 0, 1, 2, . . .

UNIX USERS Under UNIX, BESELY uses the j0(3M), j1(3M), and jn(3M)
functions from the UNIX math library. For details about any of these functions,
refer to its UNIX man page.

See Also

BESELI, BESELJ

For a synopsis of all the Bessel functions, see Mathematical Handbook of Formulas
and Tables, by Murray R. Spiegel, McGraw-Hill Book Company, New York, 1968.

For sample usage of the Bessel functions in physics, see Boundary Value Problems,
Second Edition, edited by David L. Powers, Academic Press, New York, 1979, pp.
213-216.

BESELY x n,() BESELJ x n,() nπ()cos BESELJ x n–,()–
nπ()sin

--=

BESELY x n,() lim p n→()BESELJ x p,() pπ()cos BESELJ x p–,()–
pπ()sin

---=

82 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

BILINEAR Function
Standard Library function that creates an array containing values calculated using
a bilinear interpolation to solve for requested points interior to an input grid spec-
ified by the input array.

Usage

result = BILINEAR(array, x, y)

Input Parameters

array — The array that is interpolated. The array must be a two-dimensional
floating-point array with dimensions (n, m).

x — A floating-point array containing the x subscripts of array (see Discussion).
Must satisfy the following conditions:

0 ≤ min(x) < n

0 < max(x) ≤ n

y — A floating-point array containing the y subscripts of array (see Discussion).
Must satisfy the following conditions:

0 ≤ min(y) < m

0 < max(y) ≤ m

Returned Value

result — A two-dimensional floating-point array (n, m) containing the results of the
bilinear interpolation for the requested points.

If x is of dimension i and y is of dimension j, the result has dimensions (i, j). In other
words, both x and y will be converted to (i, j) dimensions. If you want the result to
have dimensions (i, j), then x can be either FLTARR(i) or FLTARR(i, j). This is also
true for y.

Keywords

None.

BILINEAR Function 83

Discussion

Given a two-dimensional input array, BILINEAR uses the specified set of
reference points to compute each element of an output array with a bilinear
interpolation algorithm.

The array x/y contains the X/Y subscripts of the elements in array that are used for
the interpolation:

• If x is a one-dimensional array, the same subscripts are used in each row of the
output array.

• If x is a two-dimensional array, different X subscripts may be used on each row
of the output array.

• If y is a one-dimensional array, the same subscripts are used in each column of
the output array.

• If y is a two-dimensional array, different Y subscripts may be used on each col-
umn of the output array.

Note that specifying x and y as two-dimensional arrays allows you to independently
define the X and Y location of each point to be interpolated from the original array.

TIP Using two-dimensional arrays for x and y with BILINEAR in-creases the
speed of the algorithm. If x and y are one-dimensional, they are converted to two-
dimensional arrays before they are returned by the function. This permits them to
be reused in subsequent calls to BILINEAR, thereby saving time.

Conversely, BILINEAR can be time consuming for large, one-dimensional arrays.

Example 1
array = FLTARR(3,3)

array(1, 1) = 1

; Create an array that is all zeros except for a center value of 1.
x = [.1, .2]

y = [.1, .4, .7, .9]

; Find the values where x = .1, .2 and y = .1, .4, .7, .9, knowing that
; when x = 1 and y = 1, the value in the array is 1, but at all other
; points it is zero.

PRINT, BILINEAR(array, x, y)

0.0100000 0.0200000

0.0400000 0.0800000

0.0700000 0.140000

0.0900000 0.180000

84 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Example 2
a = DIST(100)

original = SHIFT(SIN(a/5)/EXP(a/50),50,50)

; Create original data.

LOADCT, 5

; Load color table 5.

TVSCL, original

; Display data.

b = FINDGEN(100)

; Make an array of linear values from 0 to 99.

PLOT, b

; Look at b.

x = b^2 / 100.0

; Create exponentially "warped" arrays to be used for spacing on the x-axis.

OPLOT, x

; Look at x; it is non-linear.

y = x

; Set y equal to x.

result = BILINEAR(original, x, y)

; Perform bilinear interpolation from "original" to "result" based
; on the (non-linear) spacing characteristics of the indices in x and y.

ERASE

TVSCL, result

; Note that the original data has been interpolated in the upper right
; corner of "result" due to the non-linearity of the x- and y-axis arrays.

See Also

CONGRID, INTERPOL, SPLINE

BINDGEN Function 85

BINDGEN Function
Returns a byte array with the specified dimensions, setting the contents of the result
to increasing numbers starting at 0.

Usage

result = BINDGEN(dim1 [, dim2, ... , dimn])

Input Parameters

dimi — The dimensions of the result array. May be any scalar expression. Up to
eight dimensions can be specified.

Returned Value

result — An initialized byte array. If the resulting array is treated as a one-
dimensional array, then its initialization is given by the following:

array (i) = BYTE (i MOD 256)

for .

Keywords

None.

Discussion

Each element of the result array is set to the value of its one-dimensional subscript.

Example
a = BINDGEN(4, 2)

; Create a byte array.

INFO, a

A BYTE = Array(4, 2)

PRINT, a

 0 1 2 3

 4 5 6 7

i 0 1 … D j 1–
j 1=

n

∏

, , ,=

86 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

See Also

BYTARR, BYTE, CINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN,
SINDGEN

BLOB Function
Standard Library function that isolates a homogeneous region in an array.

Usage

result = BLOB(a, i, b)

Input Parameters

a — An array of n dimensions.

i — A vector of n integers giving a seed element for the region.

b — A two-element vector giving bounds for values in the region.

Returned Value

result — An (m,n) array of m n-dimensional indices into a. result defines the
region containing i whose values lie in the range [b(0),b(1)]. If no such region
exists then result is returned as -1.

Keywords

k — A positive integer (less than or equal to n) controlling connectivity: two cells
are connected if they share a common boundary point, and if their centroids are
within the square root of k of each other. k = 1 by default, which implies connected
cells share a common face.

Example

See wave/lib/user/examples/blob_grow.pro

See Also

BLOBCOUNT, BOUNDARY, NEIGHBORS

BLOBCOUNT Function 87

BLOBCOUNT Function
Standard Library function that counts homogeneous regions in an array.

Usage

result = BLOBCOUNT(a, b)

Input Parameters

a — An array of n dimensions.

b — A two-element vector of bounds for values in a region.

Returned Value

result — A list in which each element defines a distinct region whose values lie in
the range [b(0),b(1)]. result(j) is a (m(j),n) array of m(j) n-dimensional indices into
a. If no such regions exist, then result is returned as -1.

Keywords

k — A positive integer (less than or equal to n) controlling connectivity: two cells
are connected if they share a common boundary point, and if their centroids are
within the square root of k of each other. k = 1 by default, which implies that
connected cells share a common face.

Example 1
a = (image_read(!data_dir+'vni_small.tif'))('pixels')

a = bytscl(resamp(a,500,500)) & tv, a

r = blobcount(a, [255,255])

for i = 0, n_elements(r)-1 do a(index_conv(a,r(i))) = 50 & tv, a

Example 2

See wave/lib/user/examples/blobcount_ex.pro

See Also

BLOB, BOUNDARY, NEIGHBORS

88 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

BOUNDARY Function
Standard Library function that computes the boundary of a region in an array.

Usage

result = BOUNDARY(a,r)

Input Parameters

a — An array of n dimensions.

r — A vector of indices defining the region of a.

Returned Value

result — A vector of indices defining the boundary of r.

Keywords

k — A positive integer (less than or equal to n) defining connectivity. A boundary
element of r is an element of r with neighbors not in r; two array cells are neighbors
if they share a common boundary point and their centroids are within the square
root of k of each other. k = 1 by default, which implies neighbors share a common
face.

Examples
a = indgen(5, 4) & pm, a

print, fix(boundary(a,[1,2,3,6,7,8,12,13]))

print, fix(boundary(a,[1,2,3,6,7,8,12,13],k=2))

a = bytscl(dist(500)) & r = where(150 le a and a le 200)

a(boundary(a,r)) = 0 & tv, a

See Also

BLOB, BLOBCOUNT, NEIGHBORS

BREAKPOINT Procedure 89

BREAKPOINT Procedure
Lets you insert and remove breakpoints in programs for debugging.

Usage

BREAKPOINT, file, line

Input Parameters

file — The name of the source file in which to insert the breakpoint.

line — Specify either a line number (integer) or a procedure/function name
(string). If you specify a line number, the breakpoint is set at that line. If you
specify a procedure or function name, the breakpoint is set at the beginning of the
procedure or function.

Keywords

Allclear — Removes all currently set breakpoints.

Clear — Removes the breakpoint specified by its index, or by the file and line
parameters. If only one input parameter is specified, it is interpreted as an index
identifying the currently set breakpoint. If two input parameters are specified, they
are interpreted as the file and line of the currently set breakpoint.

Set — Sets a breakpoint in the specified file at the specified line number.

Discussion

A breakpoint causes program execution to stop after the designated statement is
executed. Breakpoints are specified using the source file name and line number.
You can insert breakpoints in programs without editing the source file.

Once a breakpoint has stopped execution, use .CON to continue execution.

Use INFO, /Breakpoint to display the breakpoint table, which gives the
index, module, line number, and file location of each breakpoint.

Examples

To clear a breakpoint:

BREAKPOINT, /Clear, 3

90 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

; Clear the breakpoint with index 3.

BREAKPOINT, /Clear, ’test.pro’, 8

; Clear the breakpoint corresponding to the statement in the file
; test.pro, line number 8.

To set a breakpoint at line 23, in the source file xyz.pro:

BREAKPOINT, ’xyz.pro’, 23

or

BREAKPOINT, /Set, ’xyz.pro’, 23

See Also

CHECK_MATH, INFO, ON_ERROR, STOP

BUILDRESOURCEFILENAME Function
Standard library routine that returns the full pathname for a specified resource file.

Usage

resource_file = BUILDRESOURCEFILENAME(file)

Input Parameter

file — The name of the resource file.

Returned Value

resource_file — A string containing the resource file path.

Keywords

Appdir — A string that specifies the application directory name. This is the
directory in which the application searches for resource files, string resource files,
and icon files. (Default: ’vdatools’)

Subdir — A string specifying a resource file subdirectory. (Default:!Lang, whose
default string is ’american’)

BUILDRESOURCEFILENAME Function 91

Discussion

By default, the function looks for file first in directories specified by the
environment variable WAVE_RESPATH.

UNIX USERS The WAVE_RESPATH environment variable is a colon-separated
list of directories, similar to the WAVE_PATH environment variable in PV-WAVE.
If not found in a WAVE_RESPATH directory, the directory <wavedir>/xres/
!Lang/vdatools is searched, where <wavedir> is the main PV-WAVE direc-
tory and !Lang represents the value of the !Lang system variable (!Lang default is
’american’).

OpenVMS USERS The WAVE_RESPATH logical is a comma-separated list of
directories and text libraries, similar to the WAVE_PATH logical in PV-WAVE. If
not found in a WAVE_RESPATH directory, the directory
<wavedir>:[XRES.!Lang.VDATOOLS] is searched, where<wavedir> is the
main PV-WAVE directory and !Lang represents the value of the !Lang system vari-
able (!Lang default is ’american’).

Windows USERS The WAVE_RESPATH environment variable is a semicolon-
separated list of directories, similar to the WAVE_PATH environment variable in
PV-WAVE. If not found in a WAVE_RESPATH directory, the directory
<wavedir>\xres\!Lang\vdatools is searched, where <wavedir> is the
main PV-WAVE directory and !Lang represents the value of the !Lang system vari-
able (!Lang default is ’american’).

If Subdir alone is specified, the file is searched for in:

(UNIX) <wavedir>/xres/subdir/vdatools

(OpenVMS) <wavedir>:[XRES.SUBDIR.VDATOOLS]

(Windows) <wavedir>\xres\subdir\vdatools

Where <wavedir> is the main PV-WAVE directory.

If only Appdir is specified, the application searches for resources in the following
directory:

(UNIX) <wavedir>/xres/!Lang/appdir

(OpenVMS) <wavedir>:[XRES.!Lang.APPDIR]

(Windows) <wavedir>\xres\!Lang\appdir

Where <wavedir> is the main PV-WAVE directory.

92 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

If both Subdir and Appdir are specified, the application searches for resources in
the following directory:

(UNIX) <wavedir>/xres/subdir/appdir

(OpenVMS) <wavedir>:[XRES.SUBDIR.APPDIR]

(Windows) <wavedir>\xres\subdir\appdir

Where <wavedir> is the main PV-WAVE directory.

If the file is not already in the resource database, the full pathname is returned.

Example

The following commands are taken from the code for a VDA Tool called
WzMyVDA. The full pathname of the resource file for WzMyVDA is returned and
is passed to the Resource keyword of WwInit.

...

resource_file = BUILDRESOURCEFILENAME(’wzmyvda.ad’)

top = WwInit(’WzMyVDA’, ’VDATools’, layout, $

’DestroyCB’, Shell_name = ’WzMyVDA’, $

Layout_name = ’toolArea’, $

Title = unique_name, /Form, $

ConfirmClose = ’ConfirmClose’, $

Resource = resource_file, $

Userdata = unique_name)

...

See Also

LOADRESOURCES, LOADSTRINGS

For information on environment variables and logicals used with PV-WAVE, see
the PV-WAVE Programmer’s Guide.

BUILD_TABLE Function 93

BUILD_TABLE Function
Creates a table from one or more vectors (one-dimensional arrays).

Usage

result = BUILD_TABLE(' var1 [alias], ..., varn [alias] ')

Input Paramters

vari — A vector (one-dimensional array) variable. If additional vectors are
specified, they must contain the same number of elements as vari. The input
variable(s) can be of any data type.

alias — (optional) Specifies a new name for the table column. By default, the input
variable’s name is used.

Returned Value

result — A table containing n columns, where n is equal to the number of input
variables.

Input Keywords

In_Structure — A scalar string expression that specifies the name of a PV-WAVE
structure to use to create the result table. This structure can either be defined by
the user, or obtained from the Out_Structure keyword from a previous
BUILD_TABLE call. If user-defined, the tag definitions of this structure must
meet the requirements for PV-WAVE table variables. If no value is specified by
In_Structure, PV-WAVE creates a new named structure, based on the types of the
column variables specified in the parameter string. The purpose of this keyword is
to allow you to append new rows to an existing table variable.

Output Keywords

Out_Structure — A string variable which receives the name of the PV-WAVE
structure that was used to create the result table. The purpose of this keyword is to
allow you to append rows to the result table with subsequent calls to
BUILD_TABLE. In this scenario, Out_Structure is used to save the name of the
structure created during the first BUILD_TABLE call. This same structure name
is used (with the In_Structure keyword) to append rows to the result table.

94 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

Once created, you can subset the table using the QUERY_TABLE function. Each
vector must have the same number of elements. If not, an error message is
displayed and the table is not created.

A table is built from vector (one-dimensional array) variables only. You cannot
include expressions in the BUILD_TABLE function. For example, The following
BUILD_TABLE call is not allowed:

result = BUILD_TABLE(’EXT(0:5), COST(0:5)’)

However, you can achieve the desired results by performing the array subsetting
operations first, then using the resulting variables in BUILD_TABLE. For
example:

EXT = EXT(0:5)

COST = COST(0:5)

result = BUILD_TABLE(’EXT, COST’)

In addition, you cannot include scalars or multidimensional-array variables in
BUILD_TABLE.

NOTE ASC and DESC are reserved words (used by QUERY_TABLE for direc-
tion) and thus are not allowed to be used as variable names or aliases.

Example 1

The following command creates a table consisting of eight columns of data. The
columns are created from data read into PV-WAVE and placed into vector
variables.

phone_data = BUILD_TABLE(’DATE, TIME, ’ + $
’DUR, INIT, EXT, COST, AREA, NUMBER’)

Here is a portion of the resulting table:

DATE TIME DUR INIT EXT COST AREA NUMBER

901002 093200 21.40 TAC 311 5.78 215 2155554242

901002 094700 1.05 BWD 358 0 303 5553869

901002 094700 17.44 EBH 320 4.71 214 2145559893

901002 094800 16.23 TDW 289 0 303 5555836

901002 094800 1.31 RLD 248 .35 617 6175551999

BUILD_TABLE Function 95

You can use the INFO command to view the new table structure, for example:

INFO, /Structure, phone_data

** Structure TABLE_0, 8 tags, 40 length:

The Structure keyword is used in this example because tables are represented in
PV-WAVE as an array of structures.

The QUERY_TABLE function can be used to retrieve information from this table.
For example:

res = QUERY_TABLE(phone_data, ’ * Where COST > 1.0’)

This query produces a new table containing only the rows where the cost is greater
than one dollar.

Example 2

This example demonstrates the use of the optional alias parameter. This parameter
lets you specify new names for the columns of the table. By default, the names of
the input variables are used as column names.

phone_data1 = BUILD_TABLE(’DATE Call_Date,’ + $
TIME Call_Time, DUR Call_Length,’ + $
’INIT, EXT, COST Charge, AREA Area_Code,’+ $
’NUMBER Phone_Number’)

901003 091500 2.53 DLH 332 .68 614 6145555553

901003 091600 2.33 JAT 000 0 303 555344

901003 091600 .35 CCW 418 .27 303 5555190

901003 091600 1.53 SRB 379 .41 212 2125556618

DATE LONG 901002

TIME LONG 93200

DUR FLOAT 21.4000

INIT STRING ’TAC’

EXT LONG 311

COST FLOAT 5.78000

AREA LONG 215

NUMBER STRING 2155554242

DATE TIME DUR INIT EXT COST AREA NUMBER

96 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

The structure of this table reflects the new column names:

INFO, /structure, phone_data

** Structure TABLE_0, 8 tags, 40 length:

See Also

GROUP_BY, ORDER_BY, QUERY_TABLE, UNIQUE

For more information on BUILD_TABLE, see ,

For information on reading data into variables, see .

BYTARR Function
Returns a byte vector or array.

Usage

result = BYTARR(dim1 [, dim2, ... , dimn])

Input Parameters

dimi — The dimensions of the array. This may be any scalar expression, and can
have up to eight dimensions specified.

Returned Value

result — A one-dimensional or multi-dimensional byte array.

CALL_DATE LONG 901002

CALL_TIME LONG 93200

CALL_LENGTH FLOAT 21.4000

INIT STRING ’TAC’

EXT LONG 311

CHARGE FLOAT 5.78000

AREA_CODE LONG 215

PHONE_NUMBER STRING 2155554242

BYTE Function 97

Keywords

Nozero — Normally, BYTARR sets every element of the result to zero. If Nozero
is nonzero, this zeroing is not performed, thereby causing BYTARR to execute
faster.

Examples
a = BYTARR(5)

PRINT, a

0 0 0 0 0

b = BYTARR(2, 3, 5, 7)

INFO, b

B BYTE = ARRAY(2, 3, 5, 7)

See Also

BINDGEN, BYTE, BYTEORDER, BYTSCL, DBLARR,
COMPLEXARR, FLTARR, INTARR, LONARR,
MAKE_ARRAY, STRARR

BYTE Function
Converts an expression to byte data type.

Extracts data from an expression and places it in a byte scalar or array.

Usage

result = BYTE(expr)
This form is used to convert data.

result = BYTE(expr, offset [, dim1, ... , dimn])
This form is used to extract data.

Input Parameters

To convert data:

expr — The expression to be converted.

To extract data:

98 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

expr — The expression from which to extract data.

offset — The offset, in bytes, from the beginning of expr to where the
extraction is to begin. If present, causes BYTE to extract data, not convert
it.

dimi — (optional) The dimensions of the result. May be any scalar expres-
sion. Up to eight dimensions may be specified.

Returned Value

For data conversion:

result — A copy of expr converted to byte data type. The result has the same size
and structure (scalar or array) as expr.

For extracting data:

result — A copy of only part of expr—the part that is defined by the offset and dim
input parameters. The result has the size and structure of the specified dimensions
and is of the byte data type. If no dimensions are specified, the result is scalar.

Keywords

None.

Discussion

BYTE can be useful in a variety of applications — for example, in hexadecimal
math, when you want to be certain that you are working with a byte value to ensure
that any comparison you make is valid.

If expr is of type string, each character is converted to its ASCII value and placed
into a vector. In other words, each vector element is the ASCII character code of
the corresponding character in the string.

If expr is not of type string, then expr is converted to byte data type. The result is
expr modulo 256.

TIP Use BYTSCL to convert expr to byte data type using scaling rather than
modulo.

CAUTION If the values of expr are within the range of a long integer, but outside
the range of the byte data type (0 to +255), a misleading result occurs without an

BYTE Function 99

accompanying message. For example, BYTE(256)erroneously results in 0. If the
values of expr are outside the range of a long integer data type, an error message
may be displayed.

In addition, PV-WAVE does not check for overflow during conversion to byte data
type. The values in expr are simply converted to long integers and the low 8 bits are
extracted.

Example 1
a = BYTE(’01abc’)

INFO, a

A BYTE = Array(5)

PRINT, a

48 49 97 98 99

Example 2
a = BYTE(1.2)

PRINT, a

1

Example 3
a = BYTE(-1)

PRINT, a

255

; The calculated result is 255 (bytes are modulo 256).

See Also

BINDGEN, BYTARR, BYTEORDER, BYTSCL, COMPLEX, DOUBLE,
FIX, FLOAT, LONG

For more information on using this function to extract data, see the PV-WAVE
Programmer’s Guide.

100 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

BYTEORDER Procedure
Converts integers between host and network byte ordering. This procedure can also
be used to swap the order of bytes within both short and long integers.

Usage

BYTEORDER, variable1, ..., variablen

Input Parameters

variablei — A variable (see Discussion below).

Output Parameters

variablei — A variable (see Discussion below).

Keywords

Htonl — Host to network, longwords.

Htons — Host to network, short integers.

Lswap — Longword swap. Always swaps the order of the bytes within each
longword. For example, the four bytes within a longword are changed from
(B

0
,B

1
,B

2
,B

3
) to (B

3
, B

2
,B

1
, B

0
).

Ntohl — Network to host, longwords.

Ntohs — Network to host, short integers.

Sswap — Short word swap. Always swaps the bytes within short integers. The even
and odd numbered bytes are interchanged.

Discussion

BYTEORDER is most commonly used when dealing with binary data from non-
native architectures that may have different byte ordering. An easier solution to use
when reading or writing this sort of data is the XDR format, as explained in the
PV-WAVE Programmer’s Guide.

The size of the parameter, in bytes, must be evenly divisible by two for short integer
swaps, and by four for long integer swaps. BYTEORDER operates on both scalars

BYTEORDER Procedure 101

and arrays. The parameter must be a variable, not an expression or constant, and
may not contain strings.

NOTE The contents of variablei are overwritten by the result.

Network byte ordering is big endian. This means that multiple byte integers are
transmitted beginning with the most significant byte.

Examples
a = ’1234’X

; Form a hexadecimal value that can be easily interpreted. Note that
; the hex value "12" is in the high-order byte, and "34" is in the low order byte.

b = a

; Remember that b will be overwritten by BYTEORDER.

BYTEORDER, b, /Sswap

PRINT, Format=’(2Z9)’, a, b

1234 3412

; The result shows that the high- and low-order bytes in b have been switched.

a = ’12345678’XL

b = a

BYTEORDER, b, /Lswap

PRINT, Format=’(2Z9)’, a, b

12345678 78563412

; Bytes in b are swapped as expected, whereas in hexadecimal
; format, two digits represent a single byte.

See Also
BYTE

102 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

BYTSCL Function
Scales and converts an array to byte data type.

Usage

result = BYTSCL(array)

Input Parameters

array — The array to be scaled and converted to byte data type.

Returned Value

result — A copy of array whose values have been scaled and converted to bytes.

Keywords

Max — The maximum value of array elements to be considered. If Max is not
specified, array is searched for its largest value.

Min — The minimum value of array elements to be considered. If Min is not
specified, array is searched for its smallest value.

Top — The maximum value of the scaled result. (Default: 255)

Discussion

BYTSCL can be used in a variety of applications — for example, to compress the
gray levels in an image to suit the levels supported by the particular hardware you
are using. It can also be used to increase or reduce the contrast of an image by
expanding or restricting the number of gray levels used.

BYTSCL linearly scales all values of array that lie in the range (Min ≤ x ≤ Max)
into the range (0 ≤ x ≤ Top). The result has the same number of dimensions as the
original array.

If the values of array are outside this range (Min ≤ x ≤ Max), BYTSCL maps all
values of array < Min to zero, and maps all values of array > Max to Top (255 by
default).

BYTSCL Function 103

Example 1

To scale an array of floats to byte values, you might enter:

arr = FINDGEN(100)

byt = BYTSCL(arr, Max=50.0)

PRINT, SIZE(byt)

1 100 1 100

PRINT, byt

0 5 10 15 20 25 30 35 40 45 50 56 61 66 71 76 81
86 91

96 101 107 112 117 122 127 132 137 142 147 152 158 163 168 173
178 183 188

193 198 203 209 214 219 224 229 234 239 244 249 255 255 255 255
255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255

255 255 255 255 255

Example 2

This example uses the BYTSCL function to enhance the contrast of an image. The
image is stored in a byte array, b. The argument

BYTSCL(b, Min = 50, Max = 70)

in the second call to the TV procedure scales the values of b so all bytes with a
value less than or equal to 50 are set to 0, and all bytes with a value greater than or
equal to 70 are set to 255. All bytes with a value between 50 and 70 are scaled to
lie in the range {0...255}.

OPENR, unit, FILEPATH(’whirlpool.img’, Subdir = ’data’), /Get_Lun

; Open the file galaxy.dat for reading.

b = BYTARR(512,512)

; Retrieve the first galaxy image, which is stored as a 256-by-256 byte array.

READU, unit, b

FREE_LUN, unit

!Order = 1

LOADCT, 3

WINDOW, 0, Xsize = 1024, Ysize = 512

; Load the red temperature color table and create a window big
; enough for two images.

104 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

TV, b, 0

; Display the image, without any contrast enhancement, at left side of window.

TV, BYTSCL(b, Min = 50, Max = 70), 1

; Display the contrast enhanced image at right side of window.

Figure 2-5 Galaxy image before (left) and after (right) contrast enhancement.

See Also

BYTE, BYTARR, BINDGEN

CALL_UNIX Function (UNIX) 105

2k
Procedure and Function Reference

CALL_UNIX Function (UNIX)
Lets a PV-WAVE procedure communicate with an external routine written in C.

Usage

result = CALL_UNIX(p1 [, p2, ... , p30])

Input Parameters

pi — A variable of any type. At least one parameter must be passed, but there can
be up to 30 parameters. If the external routine does not require any parameters, the
value of p must be zero.

Returned Value

result — A user-defined variable or data type to be returned from the external
program. The returned variable cannot be –1, since –1 is reserved to indicate
failure.

Keywords

Close — If present and nonzero, causes PV-WAVE to close Unit at the end of
CALL_UNIX. (If Unit is not specified, Close has no effect.)

Hostname — A string that identifies the node name of the host on which the called
external program is executing. If not specified, the default value of “localhost” is
used.

Procedure — A string with a maximum length of 40 characters. Can say anything,
but its intended use is to control program flow in the external routine.

Program — An integer identifier that enables the C routine w_listen to match
a particular call to CALL_UNIX to a particular external routine. Must be greater
than or equal to zero. The default value is zero. Program is intended to allow more
than one external routine to be called by CALL_UNIX.

Unit — An integer used to reference an RPC socket:

• If Unit is zero, Unit is returned with a valid unit number.

• If Unit is nonzero, the value specified by Unit is used.

• If Unit is not specified, an RPC socket is reopened with each call to
CALL_UNIX.

106 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

By specifying Unit, the overhead of opening an RPC socket each time is saved. In
most cases, however, the overhead is not noticeable.

User — A string with a maximum length of 40 characters. Can say anything, but
its intended use is for controlling access to the external routine.

Timeout — An integer that indicates the maximum time, in seconds, that
PV-WAVE will wait for the external routine to finish. The default value is 60
seconds. If the external routine requires more than 60 seconds to execute, Timeout
must be specified. There is no value to indicate an infinite amount of time.

Discussion

CALL_UNIX sends parameters to another process that is running the external C
routine.

The external routine uses the following C routines:

• w_listen to connect with the process running PV-WAVE

• w_get_par to actually get the parameters

• w_send_reply, w_smpl_reply, or w_cmpnd_reply to send values
and parameters back to PV-WAVE.

For information on these C routines, see the PV-WAVE Application DeveloperÌs
 Guide.

If an error occurs in a call to CALL_UNIX, –1 is returned. ON_IOERROR can also
be used to catch CALL_UNIX errors.

Example

NOTE For information on these C routines, see the PV-WAVE Application Devel-
oper’s Guide.

See Also

ON_IOERROR, UNIX_LISTEN, UNIX_REPLY

CD Procedure 107

CD Procedure
Changes the current working directory.

Usage

CD [, directory]

Input Parameters

directory — (optional) If specified, this parameter is a string specifying the path of
the new working directory. If it is specified as a null string, the working directory
is changed to the user’s home directory.

If this parameter is not specified, no directory change is made and the current
directory remains the working directory.

Keywords

Current — Creates a variable that stores the current directory name. You can store
the name of the current working directory and change the working directory in a
single statement:

CD, new_dir, Current=old_dir

The variable old_dir contains the name of the working directory before the
change to new_dir.

Discussion

Initially, the working directory is the directory from which you started PV-WAVE.

This procedure changes the working directory for the current PV-WAVE session
and any child processes started during the session after the change is made. It does
not affect the working directory of the process that started PV-WAVE. Therefore,
when you exit PV-WAVE, you will be in the directory you were in when you
started.

The PUSHD, POPD, and PRINTD procedures, which maintain a directory stack
and call CD to change directories, provide a convenient interface to CD.

108 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Examples

UNIX

On a UNIX system, to change the current working directory to
/usr/home/mydata, enter the following at the WAVE> prompt:

CD, ’/usr/home/mydata’

To move to the home directory, enter the following:

CD, ’’

OpenVMS

On an OpenVMS system, to change the current working directory to
SYS$SYSDEVICE:[MYDATA], enter the following at the WAVE> prompt:

CD, ’SYS$SYSDEVICE:[MYDATA]’

To move to the home directory, enter the following:

CD, ’’

Windows

To change the current directory to D:\user\home\mydata, enter the
following at the WAVE> prompt:

CD, ’D:\user\home\mydata’

See Also

!Dir, !Path, FILEPATH, POPD, PRINTD, PUSHD

C_EDIT Procedure 109

C_EDIT Procedure
Standard Library procedure that lets you interactively create a new color table
based on the HLS or HSV color system.

Usage

C_EDIT [, colors_out]

Input Parameters

None.

Output Parameters

colors_out — (optional) Contains the color values of the final color table in the
form of a two-dimensional array that has the number of colors in the color table as
the first dimension and the integer 3 as the second dimension.

The values for red are stored in the first row, the values for green are stored in the
second row, and those for blue in the third row; in other words:

red = colors_out(*, 0)

green = colors_out(*, 1)

blue = colors_out(*, 2)

Keywords

Hls — If set to 1, indicates the HLS (hue, lightness, saturation) color system should
be used.

Hsv — If set to 1, indicates the HSV (hue, saturation, value) color system should
be used. This is the default.

Discussion

C_EDIT works only on displays with window systems. It creates an interactive
window that lets you use the mouse to create a new color table. This window is
shown in .

110 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-6 The C_EDIT window lets you use the mouse to create a new color table based
on either the HLS or HSV color system.

C_EDIT not only changes the colors displayed in the window that it creates, it also
changes the colors in other windows so that you can watch different anomalies rise
out of your data.

C_EDIT is similar to the COLOR_EDIT procedure, except that the color wheel has
been replaced by two additional slider bars. This allows better control of HSV
colors near zero percent saturation.

The C_EDIT window contains the following items:

• Color Bar — Displays the current color table. It is updated as changes are
made to the color table. (When C_EDIT is initialized, it sets the current color
table to red.)

• Pixel Value Slider Bar — Used to set tie points.

• Color Parameter Slider Bars — Used to adjust the values for the three color
parameters of value (or lightness), saturation, and hue.

• Graphs — Plot the current values of the three color system parameters against
pixel value. These graphs are updated as tie points are selected, and the color
table is changed.

color bar

pixel value

color
parameter

slider bar

p
slider bars

graphs
of color
parameters
vs. pixel
values

C_EDIT Procedure 111

To use C_EDIT:

❑ Adjust the three color-parameter slider bars by dragging the left mouse button
within each bar until you reach the first color you want in your color table.

❑ On the Pixel Value slider bar, click with the left mouse button at the position
where you want that particular color to be. The range on this bar begins at 0
and ends with the maximum value for your color table.

A small tie point then appears indicating the exact point where this color will
occur in the color table. The values in the color table are interpolated between
the tie points.

❑ If you need to erase the tie point, click on it with the middle mouse button.

Windows USERS If you have a two-button mouse, use <Alt> in combination
with the left mouse button to erase the tie point.

The color-system parameter graphs on the right of the window and the color
bar at the top of the window are updated whenever a tie point is created or
removed.

❑ Create your second color by again adjusting the three color- parameter slider
bars and entering the corresponding tie point in the Pixel Value slider bar.

Repeat this step until you have finished creating all the colors you want in your
color table.

❑ Use the right mouse button to exit the procedure.

Sample Usage

Assume that the HSV values associated with the default tie points are (0, 1, 0) for
the 0 pixel value and (1, 1, 0) for the 255 pixel value. Suppose a new tie point at
pixel value 100 is selected after setting the HSV values to (.8, .5, 0). Then the Hue
values are interpolated between 0 and .8 and assigned to pixel values 0 to 100, and
interpolated between .8 and 1 and assigned to pixel values 101 to 255. The
Saturation values are interpolated between 1 and .5, and between .5 and 1, and
assigned to the same pixel values. The Value quantities remain unchanged in this
example.

You may select as many tie points as desired, with the understanding that each tie
point is associated with the color system parameters in effect when the selection is
made.

Note that when the HSV color system is being used, a Value of 1.0 is maximum
brightness of the selected hue. In the HLS color system, a Lightness of 0.5 is the

112 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

maximum brightness of a chromatic hue; 0.0 is black, and 1.0 is bright white. Also,
in the HLS system, which models a double-ended cone, the Saturation has no effect
at the extreme ends of the cone (i.e., Lightness equals 0 or 1).

Example 1
TVSCL, DIST(200)

C_EDIT, rgb_arry

— User modifies the color table and exits the procedure. —

SAVE, filename = ’my_colortable’, rgb_array

LOADCT, 5

RESTORE, ’my_colortable’

rgb_array = REFORM(rgb_array, $
N_ELEMENTS(rgb_array)/3,3)

TVLCT, rgb_array(*,0),rgb_array(*,1), $
rgb_array(*,2)

Example 2
TVSCL, DIST(200)

C_EDIT

— User modifies the color table and exits the procedure. —

TVLCT, r, g, b, /Get

SAVE, filename = ’my_colortable_ 2’, r, g, b

LOADCT, 8

RESTORE, ’my_colortable_2’

TVLCT, r, g, b

See Also

COLOR_CONVERT, COLOR_EDIT, COLOR_PALETTE, HLS, HSV,
LOADCT, MODIFYCT, PALETTE, PSEUDO, STRETCH, TVLCT,
WgCbarTool, WgCeditTool, WgCtTool

For more background information about color systems, see the PV-WAVE User’s
Guide.

For an excellent discussion of the HSV and HLS color systems, see Computer
Graphics: Principles and Practice, by Foley, Van Dam, Feiner, and Hughes,
Second Edition, Addison Wesley Publishing Company, Reading, MA, 1990.

CENTER_VIEW Procedure 113

CENTER_VIEW Procedure
Sets system viewing parameters to display data in the center of the current window
(a convenient way to set up a 3D view).

Usage

CENTER_VIEW

Parameters

None.

Keywords

Ax — The angle, in degrees, at which to rotate the data around the x-axis. (Default:
–60.0)

Ay — The angle, in degrees, at which to rotate the data around the y-axis. (Default:
0.0)

Az — The angle, in degrees, at which to rotate the data around the z-axis. (Default:
30.0)

Persp — The perspective projection distance. If Persp is 0.0 (the default), then
parallel projection is set.

Winx — The x size of the plot window in device coordinates. (Default: 640)

Winy — The y size of the plot window in device coordinates. (Default: 512)

Xr, Yr, Zr— Two-element vectors. Xr(0), Yr(0), and Zr(0) contain the minimum x,
y, and z values, respectively, in the data to be plotted. Xr(1), Yr(1), and Zr(1) contain
the maximum values for this data. The default is [–1.0, 1.0] for each of Xr, Yr, and
Zr.

Zoom — The magnification factor. The default is [0.5, 0.5, 0.5].

If Zoom contains one element, then the view is zoomed equally in the x, y, and z
dimensions.

If Zoom contains three elements, then the view is scaled by Zoom(0) in the x
direction, Zoom(1) in the y direction, and Zoom(2) in the z direction.

114 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

CENTER_VIEW sets the system 3D viewing transformation and conversion
factors from data coordinates to normal coordinates so that data is displayed in the
center of the current window. The correct aspect ratio of the data is preserved even
if the plot window is not square.

NOTE The data is rotated Az degrees about the z-axis first, Ay degrees about the
y-axis second, and Ax degrees about the x-axis last.

CAUTION This procedure sets the system variables !P.T, !P.T3D, !X.S, !Y.S, and
!Z.S, overriding any values you may have previously set. (These system variables
are described in Chapter 4, System Variables.)

Example
PRO f_gridemo4

; This program shows 4D gridding of dense data and a cut-away view
; of a block of volume data.

points = RANDOMU(s, 4, 1000)

; Generate random data to be used for shading.

ival = FAST_GRID4(points, 32, 32, 32)

ival = BYTSCL(ival)

; Grid the generated data.

block = BYTARR(30, 30, 30)

block(*, *, *) = 255

block = VOL_PAD(block, 1)

; Pad the data with zeroes.

block(0:16, 0:16, 16:31) = 0

; Cut away a portion of the block array by setting the elements to zero.

WINDOW, 0, Colors=128

LOADCT, 3

CENTER_VIEW, Xr=[0.0, 31.0], Yr=[0.0, 31.0], $
Zr=[0.0, 31.0], Ax=(-60.0), Az=45.0, $
Zoom=0.6

; Set up the viewing window and load the color table. (The
; indices for the 32-by-32-by-32 volume we are viewing go
; from 0 to 31.)

SET_SHADING, Light=[-1.0, 1.0, 0.2]

; Change the direction of the light source for shading.

CHEBYSHEV Function 115

SHADE_VOLUME, block, 1, vertex_list, $
polygon_list, Shades=ival, /Low

; Compute the 3D contour surface.

img1 = POLYSHADE(vertex_list, polygon_list, /T3d)

; Render the cut-away block with light source shading.

img2 = POLYSHADE(vertex_list, polygon_list, Shades=ival, /T3d)

; Render the cut-away block shaded by the gridded data.

TVSCL, (FIX(img1) + FIX(img2))

; Display the resulting composite image of the light source-shaded
; block and data-shaded image of the block.

END

For other examples, see the following demonstration programs: grid_demo4,
grid_demo5, sphere_demo1, sphere_demo2, sphere_demo3,
vol_demo2, vol_demo3, and vol_demo4 in these directories:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

SET_VIEW3D

CHEBYSHEV Function
Standard Library function that implements the forward and reverse Chebyshev
polynomial expansion of a set of data.

Usage

result = CHEBYSHEV(data, ntype)

Input Parameters

data — The input data (either the original dataset or the Chebyshev polynomial
expansion, depending upon ntype).

ntype — The numeric type to be returned:

116 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value

result — The numeric type specified by ntype.

Keywords

None.

Discussion

CHEBYSHEV uses a straightforward implementation of the recursion formula. If
you use discontinuous data, the result is subject to round-off error.

CHECKFILE Function
Determines if a file can be read from or written to.

Usage

status = CHECKFILE(filename)

Input Paramters

filename — A string containing the name of a file. If a pathname is not included,
the function looks in the current directory for the file.

Returned Value

status — A value indicating if the file can be used for the given operation.

–1 To return the set of Chebyshev polynomials.

+1 To return the original data.

1 Indicates the file can be used for the specified operation.

0 Indicates the file cannot be used.

CHECKFILE Function 117

Keywords

FullName — (UNIX Only) A string containing the expanded filename is returned.
Constructs such as ~user and $ENV_VAR are expanded.

Is_Dir — Returns a 1 if filename is a directory.

Read — If specified and nonzero, the function verifies that the file is readable.

NOTE Either the Read keyword or the Write keyword must be specified.

Size — Returns the size of the file in bytes.

Write — If specified and nonzero, the function verifies that the file is writable.

Discussion

You must supply either the Read or Write keyword. If neither of these keywords is
supplied, the CHECKFILE function returns 0.

Example

status = CHECKFILE(!Data_dir + ’head.img’, /Read)

PRINT, status
1

status = CHECKFILE(!Data_dir + ’new_head.img’, /Write)

PRINT, status
1

status = CHECKFILE(!Data_dir + ’head_not.img’, /Read)

PRINT, status
0

; Check the status of a file.

status = CHECKFILE(!Dir, /Read, Is_Dir = isdir)

PRINT, status
1

PRINT, isdir
1

; Determine if a directory exists.

118 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

status = CHECKFILE(!Data_dir + ’head.img’, Size = sz)

PRINT, sz
262144

; Check the size of a file.

See Also

WoCheckFile in the PV-WAVE Application Developer’s Guide

CHECK_MATH Function
Returns and clears the accumulated math error status.

Usage

result = CHECK_MATH([print_flag, message_inhibit])

Input Parameters

print_flag — (optional) If present and nonzero, indicates an error message is to be
printed if any accumulated math errors exist. Otherwise, no messages are printed.

message_inhibit — (optional) Disables or enables the printing of math error
exception error messages when they are detected. By default, these messages are
enabled. Set message_inhibit to 1 to inhibit, and 0 to re-enable.

When the interpreter exits to the interactive mode, error messages are printed for
accumulated math errors that were suppressed but not cleared.

Returned Value

result — An integer indicating the accumulated math error status since the last call
or issuance of the interactive prompt. (See the Discussion section below for a list
of values.)

CAUTION On machines that do not implement the IEEE standard for floating-
point math, CHECK_MATH does not properly maintain an accumulated error
status.

CHECK_MATH Function 119

Keywords

Trap — Controls how floating-point traps are handled:

• If set to 0, no error messages are printed except the final accumulated error
status.

• If set to 1 (the default), traps are enabled and programs are allowed to continue
after floating-point errors. The first eight floating-point error exceptions issue
messages. Subsequent errors are silent.

If a floating-point error occurs which is not logged, the accumulated floating-
point error status is printed when PV-WAVE returns to the interactive mode.

NOTE Trap handling is machine dependent. Some machines won’t work properly
with traps enabled, while others don’t allow disabling traps.

Discussion

The result of CHECK_MATH is 0 if no math errors have occurred since the last
call or issuance of the interactive prompt. Other error status values as follows,
where each binary bit represents an error:

CAUTION Not all machines detect all errors.

Value Condition

0 No errors detected since the last interactive prompt or call to
CHECK_MATH.

1 Integer divide by zero.

2 Integer overflow.

16 Floating-point divide by zero.

32 Floating-point underflow.

64 Floating-point overflow.

128 Floating-point operand error. An illegal operand was encountered,
such as a negative operand to the SQRT or ALOG functions; or an
attempt to convert to integer a number whose absolute value is greater
than 231 – 1.

120 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Example
a = [1.0, 1.0, 2.0]

; Array a will not fail as divisor.

b = [1.0, 0.0, 2.0]

; The second element in array b should cause a divide-by-zero error.

junkstatus = CHECK_MATH(1, 0, Trap=1)

; Clear the previous error status and print error messages if an error exists.

c = 1.0 / a

status = CHECK_MATH(0, 0)

PRINT, a, c, status

1.00000 1.00000 2.00000

1.00000 1.00000 0.500000

0

d = 1.0 / b

; Cause an integer divide-by-zero error.
% Program caused arithmetic error:

% Floating divide by 0

% Detected at $MAIN$.

status = CHECK_MATH(0, 0)

PRINT, b, d, status

1.00000 0.00000 2.00000

1.00000 Inf 0.500000

16

See Also

FINITE, ON_ERROR, RETURN, STOP

For additional information on error handling, see the PV-WAVE Programmer’s
Guide.

CINDGEN Function 121

CINDGEN Function
Returns a complex single-precision floating-point array.

Usage

result = CINDGEN(dim1 [, dim2 , ... , dimn])

Input Parameters

dimi — The dimensions of the result. The dimensions may be any scalar expression,
and up to eight dimensions may be specified.

Returned Value

result — An initialized complex array with real and imaginary parts of type single
precision, floating point. If the resulting array is treated as a one-dimensional array,
then its initialization is given by the following:

for

Keywords

None.

Example
c = CINDGEN(4)

INFO, c

C COMPLEX = Array(4)

PRINT, c

(0.00000, 0.00000)

(1.00000, 0.00000)

(2.00000, 0.00000)

(3.00000, 0.00000)

array i() COMPLEX i 0,()=

i 0 1 … D j 1–
j 1=

n

∏

, , ,=

122 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

See Also

BINDGEN, COMPLEX, COMPLEXARR, DCINDGEN, DINDGEN,
FINDGEN, INDGEN, LINDGEN, SINDGEN

CLOSE Procedure
Closes the specified file units.

Usage

CLOSE [, unit1, ... , unitn]

Input Parameters

uniti — (optional) The file units to close.

Keywords

All — If present and nonzero, closes all file units and frees any file units that were
allocated via GET_LUN.

Files — If present and nonzero, closes all file units between 1 and 99. File units
greater than 99, which are associated with the GET_LUN and FREE_LUN
procedures, are not affected.

Discussion

All open files are closed and deallocated when you exit PV-WAVE.

Example
OPENW, 1, ’test’

PRINTF, 1, ’Example Text’

CLOSE, 1

See Also

FREE_LUN, GET_LUN, OPEN (UNIX/OpenVMS), OPEN (Windows),
READ, WRITEU

COLOR_CONVERT Procedure 123

COLOR_CONVERT Procedure
Converts colors to and from the RGB color system, and either the HLS or HSV
systems.

Usage

COLOR_CONVERT, i0, i1, i2, o0, o1, o2, keyword

Input Parameters

i0, i1, i2 — The input color triple(s). May be either scalars or arrays of the same
length.

Output Parameters

o0, o1, o2 — The variables to receive the result. Their structure is copied from the
input parameters.

Keywords

One of the following keywords is required:

CMY_RGB — Convert from CMY (cyan, magenta, yellow) to RGB (red, green,
blue).

HLS_RGB — Convert from HLS (hue, lightness, saturation) to RGB .

HSV_RGB — Convert from HSV (hue, saturation, value) to RGB.

RGB_CMY — Convert from RGB to CMY.

RGB_HLS — Convert from RGB to HLS.

RGB_HSV — Convert from RGB to HSV.

Discussion

RGB and CMY values are bytes in the range of 0 to 255.

Hue is a floating-point number measured in degrees, from 0.0 to 360.0; a hue of 0.0
degrees is the color red, green is 120.0 degrees, and blue is 240.0 degrees.

Saturation, lightness, and value are floating-point numbers in the range of 0.0 to
1.0.

124 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Note that when RGB values are the same during an RGB to HSV conversion, the
saturation is set to 0.0 and the hue is undefined.

Example
COLOR_CONVERT, 255, 255, 0, h, s, v, /RGB_HSV

; Converts the RGB color triple (0,255,255), which is the color
; yellow at full intensity and saturation, to the HSV system.

PRINT, h, s, v

60.00000 1.00000 1.00000

; The resulting hue in the variable h is 60 degrees. The saturation
; and value (s and v) are set to 1.0.

See Also

COLOR_EDIT, HLS, HSV, HSV_TO_RGB, LOADCT,
MODIFYCT, PALETTE, PSEUDO, RGB_TO_HSV, STRETCH, TVLCT,
WgCeditTool

For more background information about color systems, see the PV-WAVE User’s
Guide.

For a discussion of the various color systems, see Computer Graphics: Principles
and Practice, by Foley, Van Dam, Feiner, and Hughes, Second Edition, Addison
Wesley Publishing Company, Reading, MA, 1990, pp. 585-596.

COLOR_EDIT Procedure
Standard Library procedure that lets you interactively create color tables based on
the HLS or HSV color system.

Usage

COLOR_EDIT [, colors_out]

Input Parameters

None.

COLOR_EDIT Procedure 125

Output Parameters

colors_out — (optional) Contains the color values of the final color table in the
form of a two-dimensional array that has the number of colors in the color table as
the first dimension and the integer 3 as the second dimension.

The values for red are stored in the first row, the values for green are stored in the
second row, and those for blue in the third row; in other words:

red = colors_out(*, 0)

green = colors_out(*, 1)

blue = colors_out(*, 2)

Keywords

HLS — If set to 1, indicates the HLS (hue, lightness, saturation) color system
should be used.

HSV — If set to 1, indicates the HSV (hue, saturation, value) color system should
be used. (Default: 1)

Discussion

COLOR_EDIT creates an interactive window that lets you use the mouse to create
a new color table. This window is shown in .

126 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-7 The COLOR_EDIT window lets you use the mouse to create a new color table
based on either the HLS or HSV color system.

COLOR_EDIT not only changes the colors displayed in the window that it creates,
it also changes the colors in other windows so that you can watch different
anomalies rise out of your data.

TIP If you need greater control of HSV colors near zero percent saturation, use the
C_EDIT procedure.

The COLOR_EDIT window contains the following items:

• Color Bar — Displays the current color table. It is updated as changes are
made to the color table. (When COLOR_EDIT is initialized, it sets the current
color table to red.)

• Color Wheel — Lets you simultaneously select the hue (position from the azi-
muth of the wheel) and saturation (distance from the center of the wheel) with
the cursor.

• Slider Bars — Use the top bar to select either the value (HSV system) or the
lightness (HLS system) parameter, depending on the system in use. Use the

color bar

color wheel

slider bars

graphs
of color
parameters
vs. pixel
values

COLOR_EDIT Procedure 127

bottom bar to select the pixel value that will become a tie point (explained
below).

• Graphs — Plots the current values of the three color system parameters versus
pixel value. These graphs are updated as tie points are selected and the color
table is changed.

To use COLOR_EDIT:

❑ Adjust the Value/Lightness slider bar and color wheel by dragging the left
mouse button within each until you reach the first color you want in your color
table.

❑ On the Pixel Value slider bar, click with the left mouse button at the position
where you want that particular color to be. The range on this bar begins at 0
and ends with the maximum value for your color table.)

A small tie point then appears indicating the exact point where this color will
occur in the color table. The values in the color table are interpolated between
the tie points.

❑ If you need to erase the tie point, simply click on it with the middle mouse
button.

Windows USERS If you have a two-button mouse, use <Alt> in combination
with the left mouse button to erase the tie point.

The color system parameter graphs on the right of the window and the color
bar at the top of the window are updated whenever a tie point is created or
removed.

❑ Create your second color by again adjusting the Value/Lightness slider bar and
color wheel and entering the corresponding tie point in the Pixel Value slider
bar.

Repeat this step until you have finished creating all the colors you want in your
color table.

❑ Use the right mouse button to exit the procedure.

For more information on using interactive color table procedures, see Sample
Usage on page 111.

Example 1
TVSCL, FINDGEN(256, 256)

COLOR_EDIT, rgb_array

128 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

— User modifies the color table and exits the procedure. —

SAVE, filename=’my_colortable’, rgb_array

LOADCT, 2

RESTORE, ’my_colortable’

rgb_array=REFORM(rgb_array, N_ELEMENTS(rgb_array)/3, 3)

TVLCT, rgb_array(*, 0), rgb_array(*, 1), rgb_array(*, 2)

Example 2
TVSCL, FINDGEN(256, 256)

COLOR_EDIT

— User modifies the color table and exits the procedure. —

TVLCT, r, g, b, /get

SAVE, filename=’my_colortable_2’, r, g, b

LOADCT, 8

RESTORE, ’my_colortable_2’

TVLCT, r, g, b

See Also

C_EDIT, COLOR_CONVERT, COLOR_PALETTE, HLS, HSV, LOADCT,
MODIFYCT, PALETTE, PSEUDO, STRETCH, TVLCT, WgCbarTool,
WgCeditTool, WgCtTool

For additional background information about color systems, see the PV-WAVE
User’s Guide.

For an excellent discussion of the HSV and HLS color systems, see Computer
Graphics: Principles and Practice, by Foley, Van Dam, Feiner, and Hughes,
Second Edition, Addison Wesley Publishing Company, Reading, MA, 1990.

COLOR_PALETTE Procedure 129

COLOR_PALETTE Procedure
Standard Library procedure that displays the current color table colors and their
associated color table indices.

Usage

COLOR_PALETTE

Parameters

None.

Keywords

None.

Discussion

COLOR_PALETTE works only on displays with window systems. It displays the
current color table in a new window, along with the corresponding numerical
values or color table indices, thereby letting you visually determine the color
associated with a particular color index. This window (Motif version only) is
shown in .

Windows USERS The total number of colors that can appear in the
COLOR_PALETTE window is 236, which reflects the current value of
!D.N_Colors. The black cells in the upper-right corner of the window represent
colors that are not available to PV-WAVE because they have been reserved by
Windows.

130 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-8 The COLOR_PALETTE window (Motif version). This window displays every
other color in the current color table, along with the corresponding numerical value or color
table index. The black cells in the upper-right corner of the window represent colors that are
not available to PV-WAVE because they have been reserved by another application, such
as the window manager.

Example 1
b = FINDGEN(37)

x = b * 10

y = SIN(x * !Dtor)

; Create an array containing the values for a sine function from 0 to 360 degrees.
PLOT, x, y, XRange=[0,360], XStyle=1, YStyle=1

; Plot data and set the range to be exactly 0 to 360.
COLOR_PALETTE

; Put up a window containing a display of the current color table and
; its associated color indices.

TEK_COLOR

; Load a predefined color table that contains 32 distinct colors.

COMPILE Procedure 131

POLYFILL, x, y, Color=6

POLYFILL, x, y/2, Color=3

POLYFILL, x, y/6, Color=4

; Fill in areas under the curve with different colors.
z = COS(x * !Dtor)

; Create an array containing the values for a COS function from 0 to 360 degrees.
OPLOT, x, z/8, Linestyle=2, Color=5

; Plot the cosine data on top of the sine data.

Example 2
OPENR, lun, !Data_dir + ’head.img’, /Get_lun

image = BYTARR(512, 512)

READU, lun, image

LOADCT, 0

TVSCL, image

COLOR_PALETTE

LOADCT, 5

LOADCT, 3

See Also

COLOR_CONVERT, COLOR_EDIT, MODIFYCT, PALETTE, WgCeditTool

For more information about the number of colors that are displayed in the palette,
see the PV-WAVE User’s Guide.

COMPILE Procedure
Saves compiled user-written procedures and functions in a file.

Usage

COMPILE, routine1 [, ..., routinen]

Input Parameters

routinei — A string containing the name of the compiled function or procedure that
you want to save.

132 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

All — If nonzero, all currently compiled user-written functions and procedures are
saved.

Filename — Specifies the name of a file in which to save specified compiled
routines. By default, a file named routine.cpr is saved in the current working
directory.

Verbose — If present and nonzero, prints a message for each saved function and
procedure.

Discussion

The COMPILE procedure saves compiled routines in a format (XDR) that is
recognized by all the platforms on which PV-WAVE runs.

When a compiled routine is called in a PV-WAVE application, the directories in
the !Path system variable are searched for a .cpr file with the same name as the
called routine. If the .cpr file is found, it is loaded and immediately executed. If
a .cpr file is not found, PV-WAVE searches !Path for a .pro file with the same
name. If the .pro file is found, it is executed instead.

With a special runtime license, saved compiled applications can be executed from
the operating system level using the runtime mode flag. For example:

wave -r filename

The -r flag signifies “runtime” mode. It is possible to set an environment variable
so that the -r flag is not needed.

To do this enter the following command:

(UNIX) setenv WAVE_FEATURE_TYPE RT

(OpenVMS) DEFINE WAVE_FEATURE_TYPE RT

(Windows) set WAVE_FEATURE= RT

Then, you can execute compiled routines from the operating system prompt by
entering:

wave filename

Note that you do not use the .cpr extension when you execute compiled routines
from the operating system prompt.

NOTE To execute a runtime mode application, you must have a runtime license.
Without a runtime license for PV-WAVE, you will be unable to start PV-WAVE in

COMPILE Procedure 133

runtime mode as described in this section. For information on obtaining a runtime
license for PV-WAVE, please contact Visual Numerics.

Example 1

This example demonstrates how to save a single compiled procedure. Assume the
following procedure is saved in the current working directory in the file
log_plot.pro:

PRO log_plot

x = FLTARR(256)

x(80:120) = 1

freq = FINDGEN(256)

freq = freq < (256-freq)

fil = 1. / (1+(freq / 20) ^2)

PLOT_IO, freq, ABS(FFT(X,1)), Xtitle = $
’Relative Frequency’, Ytitle =’Power’, $
Xstyle = 1

OPLOT, freq, fil

WAIT, 3

WDELETE

END

Now start PV-WAVE. At the WAVE> prompt:, compile the procedure with .RUN,
and save the compiled procedure in a file using the COMPILE procedure. Then,
delete the compiled procedure from memory and run the compiled procedure that
is stored in the file.

.RUN log_plot

; Compile the procedure.

COMPILE, ’log_plot’

; Save the compiled procedure.

$ls log_plot*

log_plot.cpr log_plot.pro

; The file log_plot.cpr is created. This file contains the compiled
; procedure.

DELPROC, ’log_plot’

; Delete the log_plot procedure that is currently in memory.

log_plot

; Run the compiled procedure log_plot.cpr.

EXIT

; Exit PV-WAVE, and return to the operating system prompt.

134 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

At the system prompt, enter the following:

% wave -r -nohome log_plot

This command runs the compiled procedure from the operating system prompt.
The -r flag signifies “runtime” mode.

Example 2

This example demonstrates how several files from a single application can be
compiled and saved in one file. This simple application creates a Command Tool
widget and includes three separate callback routines.

Place the following code in a file called comtool.pro, and save the file in the
current working directory:

Widget commands:

PRO ComTool

top=WwInit(’example2’, ’Examples’, layout)

button=WwButtonBox(layout, ’Command’, ’CbuttonCB’)

status=WwSetValue(top, /Display)

WwLoop

END

Callback routines:

PRO CbuttonCB, wid, data

command = WwCommand(wid, ’CommandOK’, $
’CommandDone’, Position=[300,300], $
Title = ’Command Entry Window’)

END

PRO CommandOK, wid, shell

value = WwGetValue(wid)

PRINT, value

END

PRO CommandDone, wid, shell

status = WwSetValue(shell, /Close)

END

Now start PV-WAVE and enter the following commands at the WAVE> prompt:

.RUN comtool

; Compile the application.

COMPILE, ’ComTool’, ’CbuttonCB’, ’CommandOK’, ’CommandDone’, $
Filename = ’comtool’

COMPLEX Function 135

; Save the compiled procedures in the file comtool.cpr.

$ls comtool*

comtool.cpr comtool.pro

; The file comtool.cpr is created. This file contains the compiled
; procedures.

EXIT

At the system prompt, enter the following:

% wave -r comtool

This command runs the compiled comtool application from the operating system
command line. Note that the filename must be the same as the main procedure in
the file for the application to run successfully from the operating system prompt.
The -r flag signifies “runtime” mode.

See Also

RESTORE, SAVE

See the PV-WAVE Programmer’s Guide for more information about runtime mode.

COMPLEX Function
Converts an expression to complex data type.

Extracts data from an expression and places it in a complex scalar or array.

Usage

result = COMPLEX(real [, imaginary])
This form is used to convert data.

result = COMPLEX(expr, offset, [dim1, dim2, ... , dimn])
This form is used to extract data.

Input Parameters

To convert data:

real — Scalar or array to be used as the real part of the complex result.

imaginary — (optional) Scalar or array to be used as the imaginary part of
the complex result. If not present, the imaginary part of the result is zero.

136 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

To extract data:

expr — The expression to be converted, or from which to extract data.

offset — The offset, in bytes, from the beginning of expr to where the
extraction is to begin.

dimi — (optional) The dimensions of the result. This parameter may be any
scalar expression, and up to eight dimensions may be specified.

Returned Value

If converting:

result — The result is a complex data type with the size and structure
determined by the size and structure of real and imaginary input parame-
ters. If either or both of the parameters are arrays, result will be an array,
following the same rules as standard PV-WAVE operators.

If extracting:

result — The result is a complex data type with the size and structure
determined by the size and structure of the dimi parameters. If no dimen-
sions are specified, the result is scalar.

Keywords

None.

Discussion

COMPLEX is used primarily to convert data to complex data type. If real is of type
string and if the string does not contain a valid floating-point value (thereby making
it impossible to convert), then PV-WAVE returns 0 and displays a notice.
Otherwise, expr is converted to complex data type. The ON_IOERROR procedure
can be used to establish a statement to jump to in the case of such errors.

If only one parameter is supplied, the imaginary part of the result is 0; otherwise,
it is set by the imaginary parameter. Parameters are first converted to single-
precision floating-point.

NOTE If three or more parameters are supplied, COMPLEX extracts fields of data
from expr, rather than performing conversion.

COMPLEX Function 137

Example
real = INDGEN(5)

b = COMPLEX(real)

INFO, b

B COMPLEX = Array(5)

PRINT, b

(0.00000, 0.00000)

(1.00000, 0.00000)

(2.00000, 0.00000)

(3.00000, 0.00000)

(4.00000, 0.00000)

img = INTARR(5) + 6

c = COMPLEX(real, img)

INFO, c

C COMPLEX = Array(5)

PRINT, c

(0.00000, 6.00000)

(1.00000, 6.00000)

(2.00000, 6.00000)

(3.00000, 6.00000)

(4.00000, 6.00000)

d = COMPLEX(real, 7)

INFO, d

D COMPLEX = Array(5)

PRINT, d

(0.00000, 7.00000)

(1.00000, 7.00000)

(2.00000, 7.00000)

(3.00000, 7.00000)

(4.00000, 7.00000)

e = COMPLEX(7, img)

INFO, e

E COMPLEX = Array(5)

PRINT, e

(7.00000, 6.00000)

(7.00000, 6.00000)

(7.00000, 6.00000)

(7.00000, 6.00000)

(7.00000, 6.00000)

138 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

See Also

BYTE, COMPLEXARR, DOUBLE, FIX, FLOAT, LONG

For more information on using this function to extract data, see the PV-WAVE
Programmer’s Guide.

COMPLEXARR Function
Returns a complex single-precision floating-point vector or array.

Usage

result = COMPLEXARR(dim1 [, dim2, ... , dimn])

Input Parameters

dimi — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value

result — A complex single-precision floating-point vector or array.

Keywords

Nozero — If Nozero is nonzero, the normal zeroing (see Discussion) is not
performed, thereby causing COMPLEXARR to execute faster.

Discussion

Normally, COMPLEXARR sets every element of the result to zero.

Example
c = COMPLEXARR(4)

INFO, c

C COMPLEX = Array(4)

PRINT, c

(0.00000, 0.00000)

(0.00000, 0.00000)

CONE Function 139

(0.00000, 0.00000)

(0.00000, 0.00000)

See Also

BYTARR, CINDGEN, DBLARR, FLTARR, INTARR, LONARR

CONE Function
Defines a conic object that can be used by the RENDER function.

Usage

result = CONE()

Parameters

None.

Returned Value

result — A structure that defines a conic object.

Keywords

Color — A 256-element double-precision floating-point vector containing the
color (intensity) coefficients of the object. (Default: Color(*)=1.0)

Decal — A 2D array of bytes whose elements correspond to indices into the arrays
of material properties.

Kamb — A 256-element double-precision floating-point vector containing the
ambient (flat shaded) coefficients. (Default: Kamb(*)=0.0)

Kdiff — A 256-element double-precision floating-point vector containing the
diffuse reflectance coefficients. (Default: Kdiff(*)=1.0)

Ktran — A 256-element double-precision floating-point vector containing the
specular transmission coefficients. (Default: Ktran(*)=0.0)

Radius — A double-precision floating-point number that corresponds to a scaling
factor in the range [0...1]. Radius is multiplied by the upper radius at Z = +0.5 to
give the lower radius at Z = -0.5. (Default: Radius=0.0)

140 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Transform — A 4-by-4 double-precision floating-point array containing the local
transformation matrix whose default is the identity matrix.

Discussion

CONE is used by the RENDER function to render conic objects, such as caps on
axes. By default, it is centered at the origin with a height of 1.0, and has an upper
radius of 0.5 (at Z = +1/2) and a lower radius of 0 (at Z = –1/2).

To change the upper radius, use the Scale keyword with the T3D procedure.

To change the lower radius, use the Radius keyword. For example, Radius=0.5
corresponds to a conic object whose lower radius is one-half of the upper radius,
while Radius=0.0 corresponds to a point whose lower radius is 0 (a conic that ends
in a point).

To change the dimensions and orientation of a CONE, use the Transform keyword.

Example
T3D, /Reset, Rotate=[90, 0., 0]

c = CONE(Radius=0.33, Transform=!P.T)

TVSCL,RENDER(c)

See Also

CYLINDER, MESH, RENDER, SPHERE, VOLUME

For more information, see the PV-WAVE User’s Guide.

CONGRID Function
Standard Library function that shrinks or expands an image or array.

Usage

result = CONGRID(image, col, row)

Input Parameters

image — The two-dimensional image to resample. Can be of any data type except
string.

CONGRID Function 141

col — The number of columns to be in the resulting image.

row — The number of rows to be in the resulting image.

Returned Value

result — The resampled image or array.

Keywords

Interp — Specifies the interpolation method to be used in the resampling:

If zero, uses the nearest neighbor method.

If nonzero, uses the bilinear interpolation method.

Discussion

CONGRID shrinks or expands the number of elements in image by interpolating
values at intervals where there might not have been values before. The resulting
image is of the same data type as the input image.

The nearest neighbor interpolation method is not linear, because new values that
are needed are merely set equal to the nearest existing value of image. Therefore,
when increasing the image size, the result may appear as individual blocks. For
more information, see the PV-WAVE User’s Guide.

Example 1

The following commands demonstrate what the mandrill image looks like before
and after resizing:

OPENR, lun, !Data_dir + ’mandril.img’, /Get_lun

mandril_img = BYTARR(512,512)

READU, lun, mandril_img

new_image = CONGRID(mandril_img, 400, 256)

TVSCL, mandril_img

ERASE

TVSCL, new_image

142 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-9 CONGRID has been used to shrink this 512-by-512 mandrill image to one mea-
suring 400-by-256.

Example 2
x = DIST(100)

new_x = CONGRID(x, 500, 200)

TVSCL, x

ERASE

TVSCL, new_x

See Also

BILINEAR, REBIN

CONJ Function
Returns the complex conjugate of the input variable.

Usage

result = CONJ(x)

Input Parameters

x — The variable that is evaluated. The variable can be a single or double-precision
complex scalar or array.

CONJ Function 143

Returned Value

result — The complex conjugate of x.

Keywords

None.

Discussion

If x is single-precision complex, the result is single-precision complex. If x is
double-precision complex, the result is double-precision complex.

CONJ is defined as:

f(i, j) ≡ (i, –j)

where i represents the real part of x, and j represents the imaginary part of x.

If x is an array, the result has the same structure, with each element containing the
complex conjugate of the corresponding element of x.

Example
p = COMPLEX(0, 1)

PRINT, p

(0.00000, 1.00000)

PRINT, CONJ(p)

(0.00000, -1.00000)

See Also

COMPLEX, COMPLEXARR, DCOMPLEX, DCOMPLEXARR,
IMAGINARY

144 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

CONTOUR Procedure
Draws a contour plot from data stored in a rectangular array.

Usage

CONTOUR, z [, x, y]

Input Parameters

z — A 2D array containing the values that make up the contour surface.

x — (optional) A vector or 2D array specifying the x-coordinates for the contour
surface.

y — (optional) A vector or 2D array specifying the y-coordinates for the contour
surface.

Keywords

The CONTOUR keywords let you control many aspects of the contour plot’s
appearance. These keywords are listed in the following table. For a description of
each keyword, see Chapter 3, Graphics and Plotting Keywords.

Background Gridstyle Title

Channel Levels [XYZ]Charsize

Charsize Max_Value [XYZ]Gridstyle

Charthick NLevels [XYZ]Margin

Clip Noclip [XYZ]Minor

Color Nodata [XYZ]Range

C_Annotation Noerase [XYZ]Style

C_Charsize Normal [XYZ]Tickformat

C_Charthick Overplot [XYZ]Ticklen

C_Colors Path_Filename [XYZ]Tickname

C_Labels Position [XYZ]Ticks

C_Linestyle Spline [XYZ]Tickv

CONTOUR Procedure 145

Discussion

If the x and y parameters are provided, the contour is plotted as a function of the
X,Y locations specified by their contents. Otherwise, the contour is generated as a
function of the array index of each element of z.

If x is a vector, each element of x specifies the x-coordinate for a column of z. For
example, X(0) specifies the x-coordinate for Z(0, *). If the x parameter is a 2D
array, each element of x specifies the x-coordinate of the corresponding point in z
(xij specifies the x-coordinate for zij).

If y is a vector, each element of y specifies the y-coordinate for a row of z. If the y
parameter is a 2D array, each element of y specifies the y-coordinate of the
corresponding point in z (yij specifies the y-coordinate for zij).

CONTOUR draws contours using one of two different methods:

• The first method, used by default, examines each array cell and draws all con-
tours emanating from that cell before proceeding to the next cell. This method
is efficient in terms of computer resources, but does not allow contour labeling.

• The second method searches for each contour line and then follows the line
until it reaches a boundary or closes. This method gives better-looking results
with dashed line styles, and allows contour labeling, but requires more com-
puter time. It is used if any of the following keywords is specified:
C_Annotation, C_Charsize, C_Charthick, C_Labels, Follow, Spline, or
Path_Filename.

Although these two methods both draw correct contour maps, differences in their
algorithms can cause small differences in the resulting graph.

Example

In the example below, a contour plot of random data is plotted. The random data is
generated with the PV-WAVE:IMSL Statistics RANDOMOPT procedure. The
Spline keyword causes the contours to be smoothed using cubic splines. The vector

C_Thick Subtitle [XYZ]Title

Data T3d [XYZ]Type

Device Thick YLabelCenter

Follow Tickformat ZAxis

Font Ticklen ZValue

146 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

assigned to the Levels keyword specifies the levels at which contours are desired.
The vector of 1’s assigned to the C_Labels keyword specifies that all contour levels
should be labeled. The C_Charsize keyword is used to increase the size of the
labels.

RANDOMOPT, Set = 1257

z = REFORM(RANDOM(36), 6, 6)

; Create a 6-by-6 array of random numbers.

CONTOUR, z, /Spline, $
Levels = [0.2, 0.4, 0.6, 0.8], $
C_Labels = [1, 1, 1, 1], C_Charsize = 1.5

; Create a contour plot from the random data.

Figure 2-10 Contour plot of random data.

See Also

CONTOUR2, IMAGE_CONT, SHOW3, SURFACE

For more information, see

CONTOUR2 Procedure 147

CONTOUR2 Procedure
Draws a contour plot from data stored in an array.

Usage

CONTOUR2, z [, x, y]

Input Parameters

z — A 1D or 2D array containing values of the dependent variable z=z(x, y).

x — A 1D or 2D array containing values of the first independent variable. If z is
1D, then x is a required 1D input variable with the same number of elements as z.
If z is 2D, then x is an optional 1D or 2D input.

y — A 1D or 2D array containing values of the second independent variable. If z
is 1D, then y is a required 1D input variable with the same number of elements as
z. If z is 2D, then y is an optional 1D or 2D input.

Keywords

C_Fillcolors — Specifies an array of color indices used to fill the contour intervals.

Fill — Fills contour intervals with color. This keyword can have the following
values:

NOTE If Fill is specified, labeling is disabled. See Example 2 for information on
creating a filled contour plot with labels.

Frequency — A floating-point value > 0.0 that determines how frequently labels
are printed along the contour. If z is an m-by-n array, the default Frequency value
is: MIN(m,n)/3.5. If z is a 1D array of length m, the default Frequency value
is: SQRT(m)/3.5.

Label_style — An integer specifying the contour label fill style. Possible values
are:

0 No fill (Default)

1 Filled intervals with contour lines

2 Filled intervals with no contour lines

148 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

The CONTOUR2 keywords let you control many aspects of the contour plot’s
appearance. For a description of each keyword, see Chapter 3, Graphics and
Plotting Keywords.

0 Do not print labels (Default)

1 Print labels and fill them with the background color. This option takes
effect if any other contour label keywords are specified
(C_Annotation, C_Charsize, C_Labels, C_Charthick, Frequency).

2 Print labels with a transparent background.

3 Print labels with the fill colors specified by C_Fillcolors.

Background Gridstyle [XYZ]Charsize

Channel Levels [XYZ]Gridstyle

Charsize Max_Value [XYZ]Margin

Charthick NLevels [XYZ]Minor

Clip Noclip [XYZ]Range

Color Nodata [XYZ]Style

C_Annotation Noerase [XYZ]Tickformat

C_Charsize Normal [XYZ]Ticklen

C_Charthick Overplot [XYZ]Tickname

C_Colors Position [XYZ]Ticks

C_Labels Subtitle [XYZ]Tickv

C_Linestyle T3d [XYZ]Title

C_Thick Thick [XYZ]Type

Data Tickformat YLabelCenter

Device Ticklen ZAxis

Font Title ZValue

CONTOUR2 Procedure 149

Discussion

CONTOUR2 is an implementation of an algorithm developed by Dr. Albrecht
Preusser, "Computing area filling contours for surfaces defined by piecewise
polynomials", Computer Aided Geometric Design 3 (1986), pp. 267-279. For
more information, see the following Web page:

www.fhi-berlin.mpg.de/~grz/pub/preusser.html

CONTOUR2 provides functionality that CONTOUR does not. CONTOUR
accepts only gridded data: the x and y arrays must define a curvilinear coordinate
system. CONTOUR2 places no such restriction on x and y, and thus accepts
scattered data as well as gridded data.

For scattered data z, x, and y are 1D arrays of the same length.

For gridded data z is a 2D (m by n) array, while x and y can be 2D, 1D, or undefined.
If x and y are 2D then they are of dimensions m by n, and z(i,j) corresponds to the
point (x(i,j), y(i,j)). If x and y are 1D then they are of lengths m and n respectively,
and z(i,j) corresponds to the point (x(i), y(j)). If x and y are undefined then they
default to x = FINDGEN(m) and y = FINDGEN(n).

Example 1

In the example below, randomly scattered data is contoured.

seed0=0 & seed1=2 & seed2=5

z = RANDOMU(seed0, 20)

x = RANDOMU(seed1, 20)

y = RANDOMU(seed2, 20)

CONTOUR2, z, x, y, Nlevels=10, /XStyle, /YStyle

150 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-11 Randomly scattered data is contoured.

Example 2

In this example, a filled contour plot with labels is plotted. Labeling is not active
for filled plots, so we’ll generate the filled plot first, then plot the contour lines with
labels over the filled plot using the NoErase keyword. We’ll slightly enlarge the
size and thickness of the contour labels without affecting the axis text by using the
C_Charsize and C_Charthick keywords.

TEK_COLOR

 ; Define a color table.

z = DIST(5)

colorindex=[20, 21, 22]

CONTOUR2, z, /XStyle, /YStyle, NLevels=5, Fill=2, $

C_Fillcolors=colorindex

 ; Generate a filled plot with no contour lines.
 ; Fill contours with colors defined in the colorindex array.

CONTOUR2, z, /XStyle, /YStyle, NLevels=5, Label_style=3, $

/NoErase, C_Colors=0, C_Fillcolors=colorindex, $

C_Charsize=1, C_Charthick=1

 ; Fill contour labels with colors defined in the colorindex array.

CONTOURFILL Procedure 151

Figure 2-12 Contour plot with contour labels and fill color.

See Also

CONTOUR, IMAGE_CONT, SHOW3, SURFACE

For more information on contour plots, see the PV-WAVE User’s Guide.

CONTOURFILL Procedure
Standard Library procedure that fills both open and closed contours with specified
colors or patterns.

Usage

CONTOURFILL, filename, z [, x, y]

Input Parameters

filename — The name of the file containing the contour paths. This file is created
using the CONTOUR procedure with the Path_Filename keyword.

152 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

z — A 2D array used to generate the contour surface. This array is the same as the
one used by CONTOUR.

x — (optional) A vector specifying the x-coordinates used to generate the contours.
This vector is the same as the one used by CONTOUR.

y — (optional) A vector specifying the y-coordinates used to generate the contours.
This array is the same as the one used by CONTOUR.

Keywords

Color_Index — If present, specifies an array containing the color indices to be
used in the plot. Element i of this array contains the color of contour level number
i – 1. Element 0 contains the background color. There must be one more color index
than there are number of contour levels.

If not present, the contour colors span the range of available colors.

Delete_File — If present, deletes filename after the CONTOURFILL procedure
finishes.

Pattern — A 3D array containing the patterns used to fill the various contour levels.
Each pattern is an n-by-m rectangular array of pixels. (See the description of the
Pattern graphics keyword in Chapter 3, Graphics and Plotting Keywords, for an
example.)

If NP number of patterns are specified, Pattern will be dimensioned (n, m, NP). The
patterns are used to fill the various contour levels. If there are more levels than
patterns, the patterns will be cyclically repeated.

XRange and YRange — The desired data range of the x and y-axes, specified as a
two-element vector. The first element is the axis minimum, and the second is the
maximum. PV-WAVE will frequently round this range. You must use the XRange
and YRange keywords with CONTOURFILL if:

• The XRange and YRange keywords are used in the CONTOUR procedure call
that is used to generate input for CONTOURFILL, and

• XRange and YRange are different from the array bounds of the z parameter (the
contour surface data), or the minimum and maximum of the x and y parameters,
when given.

Defaults: When the z parameter has dim1 = nx and dim2 = ny, XRange=[0, nx–1]
and YRange=[0, ny–1]. When x and y parameters are given, XRange=[MIN(x),
MAX(x)] and YRange=[MIN(y), MAX(y)].

CONTOURFILL Procedure 153

TIP For best results, the XRange and YRange keywords used with
CONTOURFILL should match the ones used with CONTOUR.

Discussion

CONTOURFILL can be used with CONTOUR to fill the area between the contour
lines with a solid color or a user-defined pattern. The procedure closes the open
contours as long as the z (and x and y, if used in the calling sequence) parameter is
specified in exactly the same manner as was used with the CONTOUR procedure.

TIP If you are plotting a large data set, use the EMPTY procedure to be sure that
all buffered output is written to the current graphics device.

NOTE CONTOURFILL creates a temporary file named filename+1, so you must
have write permission in the directory where filename exists.

Example 1

This example creates a contour plot of the Pike’s Peak elevation demo file, with the
area in between the contour lines filled with a solid color.

OPENR, 1, !Data_dir + ’pikeselev.dat’

pikes = FLTARR(60, 40)

READF, 1, pikes

; Read in the data file.
TEK_COLOR

; Load a color table.

CONTOUR, pikes, Levels=[5,6,7,8,9,10,11,12,13,14,15]*1000, $
Path=’path.dat’, XStyle=1, YStyle=1

; Contour the data and store the results in file path.dat.

CONTOURFILL, ’path.dat’, pikes, Color_Index=INDGEN(12)

; Display the contour plot with contours filled with solid colors.

154 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-13 Contour plot of Pike’s Peak elevation filled with solid colors.

The following commands fill in the area in between the contour lines with a user-
defined pattern.

pat1 = BYTARR(3, 3)

pat1(1, *) = 255

pat1(*, 1) = 255

; Create the first pattern, a cross pattern.

pat2 = BYTARR(3, 3)

FOR i = 0, 2 DO pat2(i, i) = 255

; Create the second pattern, a diagonal pattern.

pat3 = BYTARR(3, 3)

; Create the third pattern, a solid fill of color zero.

pat4 = REPLICATE(255b, 3, 3)

; Create the fourth pattern, a solid fill of color 255.

pat5 = BYTARR(3, 3)

FOR i = 0, 2 DO pat5(2-i, i) = 255

; Create the fifth pattern, a backwards diagonal pattern.

CONTOURFILL Procedure 155

pat3d = BYTARR(3, 3, 5)

; Create a 3D array in which to store the patterns.

pat3d(*, *, 0) = pat1

pat3d(*, *, 1) = pat2

pat3d(*, *, 2) = pat3

pat3d(*, *, 3) = pat4

pat3d(*, *, 4) = pat5

; Store the patterns in the array named pat3d.

CONTOURFILL, ’path.dat’, pikes, Pattern = pat3d, /Delete_File

; Display the contour plot with the contours lines filled with
; the pattern.

Figure 2-14 Pattern-filled contour map of Pike’s Peak elevation.

Example 2

Instead of using CONTOURFILL to create color-filled contour plots, a similar
result can be achieved by loading a color table with the TEK_COLOR and then
using a command of the form

156 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

TV, BYTSCL(array, Top=n)

where n + 1 equals the number of contour levels to be colored.

In other words, the previous example could be displayed using the commands:

TEK_COLOR

pikes=REBIN(pikes, 600, 400)

TV, BYTSCL(pikes, Top = 10)

Some of the advantages of using this technique to create color-filled contour plots,
instead of the CONTOURFILL procedure, are:

• Easier access to image processing routines that allow you to quickly analyze
your data, such as: DEFROI, HISTOGRAM, and PROFILES.

• You don’t have to create a temporary file in your directory.

See Also

CONTOUR, CONTOUR2, POLYFILL, TEK_COLOR

CONVERT_COORD Function
Converts coordinates from one coordinate system to another.

Usage

result = CONVERT_COORD(points)

result = CONVERT_COORD(x, y [, z])

Input Parameters

points — A (2, n) or (3, n) array of points (or vertices) to convert.

x — A scalar or vector parameter providing the x-coordinates to be converted.

y — A scalar or vector parameter providing the y-coordinates to be converted.

z — (optional) If present, a scalar or vector parameter providing the z-coordinates
of the points to be converted.

CONVERT_COORD Function 157

Returned Value

result — An array of the converted coordinates.

Keywords

T3d — If set, the conversion uses T3d coordinates.

One of the following keywords may be used to specify the input coordinate system.
If no input keyword is used, the function defaults to the data coordinate system.

Data — Specifies that the input coordinates are based on the data coordinate
system.

Device — Specifies that the input coordinates are based on the device coordinate
system.

Normal — Specifies that the input coordinates are based on the normal coordinate
system.

One of the following keywords may be used to specify the output coordinate
system. If no output keyword is used, the coordinates are converted to the data
coordinate system.

To_Data — Converts to the data coordinate system.

To_Device — Converts to the device coordinate system.

To_Normal — Converts to the normal coordinate system.

Discussion

The CONVERT_COORD procedure converts among the data, device, and
normalized coordinate systems for the currently active window and plot.

A valid data coordinate system must be established before you can convert to or
from data coordinates; you may use the PLOT procedure to establish this
coordinate system.

Example

xdata = [.1, .2, .5, .8, .9, .5]

ydata = [.3, .6, .9, .6, .3, .1]

PLOT, xdata, ydata

; Establish data coordinate system

158 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

point = CONVERT_COORD(0.5, 0.5, /Normal, /To_Data)

; Find data coordinate for the center of the window.

PRINT, ’X coord = ’, point(0)

PRINT, ’Y coord = ’, point(1)

PLOTS, point(0), point(1), Symsize = 5.0, Psym = -1

; Print the coordinates and plot a “+” symbol at the center of the window.

See Also

PLOT, PLOTS

System Variables: !X.S

For more information, see Coordinate Conversion and Three Graphics Coordinate
Systems in the PV-WAVE User’s Guide.

CONV_FROM_RECT Function
Converts rectangular coordinates (points) to polar, cylindrical, or one of two spher-
ical coordinate systems: mathematical or global.

Usage

result = CONV_FROM_RECT(vec1, vec2, vec3)

Input Parameters

vec1 — A 1D array containing the x rectangular coordinates.

vec2 — A 1D array containing the y rectangular coordinates.

vec3 — A 1D array containing the z rectangular coordinates. For polar coordinates,
set vec3 to the scalar value 0.

Returned Value

result — By default, global spherical coordinates are returned with (0, *)
containing the longitude, (1, *) containing the latitude, and (2, *) containing the
radii. Note that latitude angles are given with respect to the horizontal axis or
equator.

CONV_FROM_RECT Function 159

If the Sphere keyword is present and nonzero, mathematical spherical coordinates
are returned as in the default case, except that the latitude angles are given with
respect to the vertical, or polar, axis.

If the Polar keyword is present and nonzero, then a FLOAT(2, n) array is returned
with (0, *) containing the angles and (1, *) containing the radii.

If the Cylin keyword is present and nonzero, then a FLOAT(3, n) array is returned
with (0, *) containing the angles, (1, *) containing the radii, and (2, *) containing
the Z values.

Keywords

Cylin — Specifies that cylindrical coordinates are to be returned.

Degrees — If present and nonzero, causes the returned coordinates to be in degrees
instead of radians.

Global — If present and nonzero, the function returns global longitude and latitude
angles. The longitude angles are the horizontal angles on the Earth’s globe, where
the angles east of the Greenwich meridian are positive, and angles to the west are
negative. The latitude angles are vertical angles rotated with respect to the equator.
They are positive in the northern hemisphere and negative in the southern
hemisphere. By default, the function returns these global latitude and longitude
values; this keyword can be used, however, to add clarity to the function call.

Polar — Specifies that polar coordinates are to be returned.

Sphere — If present and nonzero, the function returns a spherical coordinate
system where the vertical angle is rotated with respect to the vertical (or polar) axis
instead of the horizontal axis. The horizontal angles and radii are the same as in the
global spherical case. This system is based on the set of conversion equations in the
CRC Standard Mathematical Tables.

See Also

CONV_TO_RECT

For more information, see the PV-WAVE User’s Guide.

160 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

CONVOL Function
Convolves an array with a kernel (or another array).

Usage

result = CONVOL(array, kernel [, scale_factor])

Input Parameters

array — The array to be convolved. The array can be of any data type except string.

kernel — The array used to convolve each value in array. The dimensions of kernel
must be smaller than those of array, but they can be of any data type except string.
(If a string array is used, PV-WAVE will attempt to convert it and then issue an
error message.)

scale_factor — (optional) A scaling factor that reduces each output value by the
specified factor. The scale_factor parameter can be used with integer and byte type
data only. (Default: 1.0)

Returned Value

result — The convolved array of the same data type and dimensions as array.

Keywords

Center — Specifies how the kernel is to be centered. If nonzero or not specified,
centers the kernel over each array data point. If explicitly set to zero, centers the
kernel a half kernel width to the left of each array data point.

Edge — A scalar string indicating how edge effects are handled. (Default:
’zero’) Valid strings are:

’zero’ — Sets the border of the output image to zero. (Default)

’copy’ — Copies the border of the input image to the output image.

Zero_Negatives — If set, all negative values in the result are set to zero.

Discussion

Convolution is a general process that can be used in smoothing, signal processing,
shifting, edge detection, and other filtering functions. Therefore, it is often used in
conjunction with other functions, such as DIGITAL_FILTER, SMOOTH, and
SHIFT.

CONVOL Function 161

TIP When using CONVOL with image data, make sure the data has been first con-
verted to floating-point type.

The kernel parameter is an array whose dimensions describe the size of the
neighborhood surrounding the value in array that is analyzed. The kernel also
includes values that give a weighting to each point in its array. These weightings
determine the average that is the value in the output array. If kernel is not of the
same type as array, a copy is made and converted into the same type before being
used.

Using the scale_factor parameter allows you to simulate fractional kernel values
and avoid overflow with byte parameters.

In many signal and image processing applications, it is useful to center a symmetric
kernel over the data, to align the result with the original array. The Center keyword
controls the alignment of the kernel with the array and the ordering of the kernel
elements.

Sample Usage

In the convolution of any two functions, r(t) and s(t), for most applications function
s is typically a signal or data stream, which goes on indefinitely in time, while r is
a response function, typically a peaked function that falls to zero in both directions
from its maximum.

In terms of CONVOL parameters, s corresponds to array and r corresponds to
kernel. The effect of convolution is to smear the signal s(t) in time according to the
“recipe” provided by the response function r(t).

One-Dimensional Convolution

For the example below, assume the following equation:

R = CONVOL(A, K, S)

where A is an n-element vector, K is an m-element vector (m < n), and S is the scale
factor.

• If the Center keyword is set to 0, the results are as follows.

When t ≥ m – 1, then:

Rt 1 S⁄() At i– Ki

i 0=

m 1–

∑=

162 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Otherwise, Rt = 0.

• If the Center keyword is omitted or set to 1, the results are shown as follows.

When (m-1)/2 ≤ t ≤ n − 1 - (m-1)/2, then:

Otherwise, Rt = 0.

Two-Dimensional Convolution

For the second example, assume the same equation:

R = CONVOL(A, K, S)

where A is an m-by-n element array, K is an l-by-l element kernel, S is the scale
factor, and the result R is an m-by-n element array.

• If the Center keyword is set to 0, the results are as follows.

When t ≥ l – 1 and u ≥ l – 1, then:

Otherwise, Rt,u = 0.

• The centered two-dimensional case is similar, except the t –i and u – j sub-
scripts are replaced by t + i – l/2 and u + j – l/2.

Example

This example demonstrates what a 512-by-512 mandrill image looks like before
and after applying the CONVOL function. The following parameters were used:

result = CONVOL(mandril_img, kernel, /Center)

where kernel is a 3-by-3 array. This array has the following value:

This kernel value represents a commonly-used algorithm for edge enhancement.

Rt 1 S⁄() At i m 2⁄–+ Ki

i 0=

m 1–

∑=

Rt u, 1 S⁄() At i– u j–, Ki j,
j 0=

l 1–

∑
i 0=

l 1–

∑=

1– 1 1

1– 2– 1

1– 1 1

CONV_TO_RECT Function 163

Figure 2-15 The CONVOL function has been used to enhance the edges of this 512-by-
512 mandrill image. In other words, after CONVOL is applied, the dark colors change quickly
to light ones.

See Also
DIGITAL_FILTER, ROBERTS, SHIFT, SMOOTH, SOBEL

For more information on displaying images, see the PV-WAVE User’s Guide.

For a signal processing example, see the DIGITAL_FILTER Example section.

CONV_TO_RECT Function
Converts polar, cylindrical, or spherical (mathematical or global) coordinates to
rectangular coordinates (points).

Usage

result = CONV_TO_RECT(vec1, vec2, vec3)

Input Parameters

vec1 — A 1D array containing the polar (longitude) angles.

vec2 — A 1D array containing the latitude angles, unless the Polar or Cylin
keywords are present and nonzero. If either keyword is specified, then vec2 should
contain the radii.

vec3 — A 1D array containing the radii for spherical coordinates, unless Polar or
Cylin keywords are present and nonzero. If Polar is specified, then vec3 should be
the scalar value 0 (it is ignored). If Cylin is specified, then vec3 should contain the
z values.

164 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value

result — If the Polar keyword is present and nonzero, then a FLOAT(2, n) array is
returned with (0, *) containing the x-coordinates and (1, *) containing the y-
coordinates.

If Polar is zero (or not present), then a FLOAT(3, *) array is returned with (0, *)
containing the x-coordinates, (1, *) containing the y-coordinates, and (2, *)
containing the z-coordinates.

Keywords

Cylin — Specifies that the input coordinates are cylindrical.

Degrees — If present and nonzero, causes the input coordinates to be in degrees
instead of radians.

Global — If present and nonzero, causes the input coordinates to be in global
longitude and latitude angles. The longitude angles are the horizontal angles on the
Earth’s globe, where the angles east of the Greenwich meridian are positive, and
angles to the west are negative. The latitude angles are vertical angles rotated with
respect to the equator. They are positive in the northern hemisphere and negative in
the southern hemisphere. By default, the function expects these global latitude and
longitude values; this keyword can be used, however, to add clarity to the function
call.

Polar — Specifies that the input coordinates are polar.

Sphere — If present and nonzero, causes the input coordinates to be in a spherical
coordinate system where the vertical angle is rotated with respect to the vertical (or
polar) axis instead of the horizontal axis. The horizontal angles and radii are the
same as in the global spherical case. This system is based on the set of conversion
equations in the CRC Standard Mathematical Tables.

Examples
PRO vol_demo1

; This program displays a 3D fluid flow vector field with random
; starting points for the vectors.

volx = 17

voly = 17

volz = 59

; Specify the size of the volumes.

winx = 500

winy = 700

; Specify the window size.

CONV_TO_RECT Function 165

flow_axial = FLTARR(volx, voly, volz)

OPENR, 1, !Data_Dir + ’cfd_axial.dat’, /Xdr

READU, 1, flow_axial

CLOSE, 1

flow_radial = FLTARR(volx, voly, volz)

OPENR, 1, !Data_Dir + ’cfd_radial.dat’, /Xdr

READU, 1, flow_radial

CLOSE, 1

flow_tangent = FLTARR(volx, voly, volz)

OPENR, 1, !Data_Dir + ’cfd_tangent.dat’, /Xdr

READU, 1, flow_tangent

CLOSE, 1

; Read in the data as cylindrical coordinates.
flow_pressure = FLTARR(volx, voly, volz)

OPENR, 1, !Data_Dir + ’cfd_pressure.dat’, /Xdr

READU, 1, flow_pressure

CLOSE, 1

; Read in the data to be used for the vector color.

points = CONV_TO_RECT(flow_tangent(*), $
flow_radial(*), flow_axial(*), /Cylin, /Degrees)

; Convert the data from cylindrical coordinates to Cartesian
; coordinates.

flow_x = FLTARR(volx, voly, volz)

flow_y = FLTARR(volx, voly, volz)

flow_z = FLTARR(volx, voly, volz)

flow_x(*) = points(0, *)

flow_y(*) = points(1, *)

flow_z(*) = points(2, *)

; Split the points array into three 2D arrays to abstract the x, y, z
; values from the converted data.

T3D, /Reset

T3D, Translate=[-0.5, -0.5, -0.5]

T3D, Scale=[0.9, 0.9, 0.9]

T3D, Rotate=[0.0, 0.0, -30.0]

T3D, Rotate=[-60.0, 0.0, 0.0]

T3D, Translate=[0.5, 0.5, 0.5]

; Set up the transformation matrix for the view.

WINDOW, 0, XSize=winx, YSize=winy, $
XPos=256, YPos=128, Colors=128, $
Title=’3D Velocity Vector Field’

LOADCT, 4

166 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

; Set up the viewing window and load the color table.

VECTOR_FIELD3, flow_x, flow_y, flow_z, 1000, $
Max_Length=2.5, Vec_Color=flow_pressure, $
Min_Color=32, Max_Color=127, $
Axis_Color=100, Mark_Symbol=2, $
Mark_Color=90, Mark_Size=0.5, Thick=2

; Plot the converted data as a vector field.
END

For another example, see the vec_demo2 demonstration program in

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

CONV_FROM_RECT

For more information, see the PV-WAVE User’s Guide.

CORRELATE Function
Standard Library function that calculates a simple correlation coefficient for two
arrays.

Usage

result = CORRELATE(x, y)

Input Parameters
x — The X array for which the correlation coefficient is calculated. Can be of any
data type except string and it must be of the same data type and have the same
number of elements as y.

y — The Y array for which the correlation coefficient is calculated. Can be of any
data type except string and it must be of the same data type and have the same
number of elements as x.

Returned Value

result — The simple product-moment correlation coefficient for x and y.

CORRELATE Function 167

Keywords

None.

Discussion

CORRELATE calculates the product-moment correlation coefficient of the two
arrays that are supplied.

Correlation can be characterized as the probability that values (i.e., the two input
arrays) are related. In other words, it measures whether the events in one population
are likely to have produced effects in another population. A result of 1.0 indicates
a high correlation, while a result of 0.0 indicates no correlation whatsoever.

Example 1
scores_1 = [95,76,60,88,91,97,68,75,82,85]

scores_2 = [93,77,62,87,90,97,67,77,80,86]

scores_corr = CORRELATE(scores_1, scores_2)

PRINT, scores_corr

.993408

Example 2
sample_1 = RANDOMU(seed, 128, 128)

sample_2 = RANDOMU(seed, 128, 128)

samples_corr = CORRELATE(sample_1, sample_2)

PRINT, samples_corr

0.00

Example 3
x = DIST(200)

y = x

exact_corr = CORRELATE(x, y)

PRINT, exact_corr

1.0000

168 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

COS Function
Calculates the cosine of the input variable.

Usage

result = COS(x)

Input Parameters

x — The angle for which the cosine is desired, specified in radians.

Returned Value

result — The trigonometric cosine of x.

Keywords

None.

Discussion

If x is of double-precision floating-point or complex data type, COS yields a result
of the same type. All other types yield a single-precision floating-point result.

COS handles complex numbers in the following manner:

cos(x) = complex(cos(i)cosh(r), –sin(r)sinh(–i))

where r and i are the real and imaginary parts of x. If x is an array, the result of COS
has the same dimensions (size and shape) as x, with each element containing the
cosine of the corresponding element of x.

Example
x = [-60, -30, 0, 30, 60]

PRINT, COS(x * !Dtor)

0.500000 0.866025 1.00000 0.866025 0.500000

See Also

ACOS, ASIN, ATAN, COSH, COSINES, SIN, TAN

For a list of other transcendental functions, see Transcendental Mathematical
Functions in Chapter 1.

COSH Function 169

COSH Function
Calculates the hyperbolic cosine of the input variable.

Usage

result = COSH(x)

Input Parameters

x — The angle, in radians, that is evaluated.

Returned Value

result — The hyperbolic cosine of x.

Keywords

None.

Discussion

COSH is defined by:

cosh(x) ≡ (e x + e -x)/2

If x is of double-precision floating-point data type, or of complex type, COSH
yields a result of the same type. All other data types yield a single-precision
floating-point result.

If x is an array, the result of COSH has the same dimensions, with each element
containing the hyperbolic cosine of the corresponding element of x.

Example
x = [0.3, 0.5, 0.7, 0.9]

PRINT, COSH(x)

1.04534 1.12763 1.25517 1.43309

See Also

COS, SINH, TANH

For a list of other transcendental functions, see Transcendental Mathematical
Functions in Chapter 1.

170 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

COSINES Function
Standard Library basis function that can be used by the SVDFIT function.

Usage

result = COSINES(x, m)

Input Parameters

x — A vector of data values with n elements.

m — The number of terms in the basis function.

Returned Value

result — An n-by-m array, such that:

result(i, j) = COS(j * x(i))

Keywords

None.

Discussion

COSINES consists simply of the following two lines:

FUNCTION COSINES, x, m

RETURN, COS(x # FINDGEN(m))

See Also

SVDFIT

CPROD Function 171

CPROD Function
Standard Library function that returns the Cartesian product of some arrays.

Usage

result = CPROD(a)

Input Parameters

a — A list of n arrays.

Returned Value

result — An (m,n) array where result(i,*) is an element of the Cartesian product of
the n arrays in a, and where result(*,j) contains only elements from a(j); result is
ordered so that result(*,j) cycles through the elements of a(j) in order, and does so
faster than result(*,j+1) cycles through the elements of a(j+1).

Keywords

None.

Example
pm, cprod(list([0,1], [0,1,2], [0,1,2,3]))

CREATE _ HOLIDAYS Procedure
Standard Library procedure that creates the system variable !Holiday_List, which
is used in calculating Date/Time compression.

Usage

CREATE_HOLIDAYS, dt_list

Input Parameters

dt_list — A Date/Time variable containing one or more days to be specified as
holidays.

172 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

None.

Discussion

The result is stored in the system variable !Holiday_List, a 50-element Date/Time
array. !Holiday_List is used in calculating Date/Time compressions for functions
that take the Compress keyword. For instance, the functions DT_SUBTRACT,
DT_ADD, and DT_DURATION can take the Compress keyword which, if set, will
exclude holidays from their results. In addition, the PLOT procedure uses the
Compress keyword to exclude holidays from a plot.

Example1

The following commands define !Holiday_List to contain the dates for Christmas
and New Years:

holidays=STR_TO_DT([’12-25-92’, ’1-1-92’], date_fmt=1)

CREATE_HOLIDAYS, holidays

Example 2
CREATE_HOLIDAYS, STR_TO_DT(’04-july-1992’, $

Date_Fmt=4)

See Also

CREATE_WEEKENDS, DT_COMPRESS, LOAD_HOLIDAYS,
STR_TO_DT

CREATE_WEEKENDS Procedure
Standard Library procedure that creates the system variable !Weekend_List, which
is used in calculating Date/Time compression.

Usage

CREATE_WEEKENDS, day_names

Input Parameters

day_names — A string or string array containing the weekend names.

CREATE_WEEKENDS Procedure 173

Keywords

None.

Discussion

The result is stored in the system variable !Weekend_List, a seven-element integer
array. The values in !Weekend_List are either ones or zeros, where 1 represents a
weekend and 0 represents a weekday. The first element of !Weekend_List
represents Sunday, and the last represents Saturday. !Weekend_List is used in
calculating Date/Time compressions for functions that take the Compress keyword.

For instance, the routines DT_SUBTRACT, DT_ADD and DT_DURATION, can
use the Compress keyword which, if set, excludes weekends from their results. In
addition, the PLOT procedure uses the Compress keyword to remove weekends
from a plot.

The values in the input string day_names must match or be a substring of strings in
the !Day_Names system variable. By default, !Day_Names contains:

PRINT, !Day_Names

Sunday Monday Tuesday Wednesday Thursday

Friday Saturday

Thus, day_names = ['Sat', 'Sun'] is a valid assignment. If all days of the week are
set to weekends, an error results.

Example
CREATE_WEEKENDS, ’Sat’

; Defines Saturday as a weekend.

PRINT, !Weekend_List

0 0 0 0 0 0 1

; The first element in the array !Weekend_List represents
; Sunday. The last represents Saturday. Weekend days have
; a value of 1.

See Also

CREATE_HOLIDAYS, DT_COMPRESS, LOAD_WEEKENDS

174 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

CROSSP Function
Standard Library function that returns the cross product of two three-element
vectors.

Usage

result = CROSSP(v1, v2)

Input Parameters

v1 — The first operand of the cross product. This parameter must be a three-
element vector.

v2 — The second operand of the cross product. Must be a three-element vector.

Returned Value

result — A three-element floating-point vector containing the cross product of v1

and v2.

Keywords

None.

Discussion

The cross product of two arrays is commonly used in a variety of applications. It is
defined as:

or

Example
v1 = [2, 1, -2]

v1 v2×
i j k

a1 b1 c1

a2 b2 c2

=

v1 v2× b1c2 b2c1–()i c1a2 c2a1–() j a1b2 a2b1–()k+ +=

CURSOR Procedure 175

v2 = [4, -1, 3]

result = CROSSP(v1, v2)

PRINT, result

1 -14 -6

CURSOR Procedure
Reads the position of the interactive graphics cursor from the current graphics
device.

Usage

CURSOR, x, y [, wait]

Input Parameters

wait — (optional) An integer specifying when CURSOR returns. This parameter
may be used interchangeably with the five keywords listed below that specify the
type of wait.

UNIX and OpenVMS USERS Not all wait modes work with all display devices.
Many devices, such as Tektronix terminals, do not have the ability to return imme-
diately, and so always wait. In addition, not all types of waiting are available for
devices that do not have the ability to sense transitions or states.

Output Parameters

x — A named variable to receive the cursor’s current column.

y — A named variable to receive the cursor’s current row.

Value Keyword Action

0 Nowait Return immediately.

1 Wait Return if button pressed (the default value).

2 Change Return if button pressed, changed, or pointer moved.

3 Down Return when button down transition is detected.

4 Up Return when button up transition is detected.

176 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

Change — Waits for pointer movement or button down within the currently
selected window.

Data — If present and nonzero, causes the values placed into x and y to be in data
coordinates (the default).

Device — If present and nonzero, causes the values placed into x and y to be in
device coordinates.

Down — Waits for a button down transition within the currently selected window.

Normal — If present and nonzero, causes the values placed into x and y to be in
normalized coordinates.

Nowait — Reads the pointer position and button status and return immediately. If
the pointer is not within the currently selected window, the device coordinates –1,
–1 are returned.

Up — Waits for a button up transition within the current window.

Wait — Waits for a button to be depressed within the currently selected window. If
a button is already pressed, returns immediately.

Discussion

CURSOR enables the graphic cursor on the device and waits for the operator to
position it. On devices that have a mouse, CURSOR normally waits until a mouse
button is pressed. If no mouse is present, CURSOR waits for a key on the keyboard
to be pressed.

NOTE Not all graphics devices have interactive cursors.

The system variable !Err is set to the button status; if no mouse is present, it is set
to the ASCII code of the key. Each mouse button is assigned a bit in !Err—bit 0 is
the left-most button, bit 1 the next, and so on.

Thus, for a three-button mouse, !Err will contain the values 1 – 7, depending upon
which button or combination of buttons was pushed. For example, the left button
produces a value of 1, the middle button 2, and the right button 4, while pressing
the left and right buttons together produce the value 5.

The system variable !Mouse contains the X and Y position of the mouse, the mouse
button status, and a date/time stamp. The mouse position is given in device

CURSOR Procedure 177

coordinates. The button status appears as 1 – 7; these values are contained in the
!Err system variable. The date/time stamp may not be available on all systems.

Since the values returned are, by default, in data coordinates, if no data coordinate
system has been previously established, then calling CURSOR without specifying
either the Normal or Device keywords will result in an error and procedural
execution will be halted.

Example 1
WINDOW, XSize=512, YSize=512

CURSOR, x, y, /Normal

; This returns the normalized coordinates of the point selected in
; the graphics window when a button is pressed. The button press
; is the default event activation, and not overtly specified.

Example 2

In this example, PLOTS and CURSOR are used interactively in a loop to build a
sketch pad. While the cursor is in the graphics window and a button is held down,
CURSOR returns the device coordinates of the cursor. The PLOTS procedure
draws a line segment between the previously returned cursor position and the
current cursor position.

PRO sketch

false = 0

true = 1

window, 0

XYOUTS, 2, 2, "QUIT", Size = 2, /Device

; Create a quit button in the window.

PLOTS, [0, 48, 48], [20, 20, 0], /Device

first = true

REPEAT BEGIN

CURSOR, xnew, ynew, /Device

; Get cursor position, placing the x-coordinate in xnew, and
; the y-coordinate in ynew.

IF (xnew LE 48) AND (ynew LE 20) THEN STOP

; If cursor position is within the QUIT button, then stop.
IF first THEN BEGIN

xold = xnew

yold = ynew

first = false

ENDIF

; First time through loop, set xold and yold to be the same

178 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

; as xnew and ynew.
PLOTS, [xold, xnew], [yold, ynew], /Device

; Plot a line segment from (xold, yold) to (xnew, ynew).
xold = xnew

yold = ynew

ENDREP UNTIL FALSE

END

See Also

!Err, !Mouse, TVCRS

CURVATURES Function
Standard Library function that computes curvatures on a parametrically defined
surface.

Usage

c = curvatures (s)

Input Parameters

s — A 3-element list of 2-dimensional arrays of dimensions d.

Returned Value

c — A 2-element list of 2-dimensional arrays of dimensions d, where c(0) defines
the distribution of minimum curvature and c(1) defines the distribution of maxi-
mum curvature.

Keyword

x - A 2-element list of vectors defining the independent variables. By default,
x(i) = findgen(d(i))

Example

See wave/lib/user/examples/curvatures_ex.pro.

CURVEFIT Function 179

See Also

EUCLIDEAN, JACOBIAN, NORMALS

CURVEFIT Function
Standard Library function that performs a nonlinear least-squares fit to a function
of an arbitrary number of parameters.

Usage

result = CURVEFIT(x, y, wt, parms, [sigma])

Input Parameters

x — A vector containing the independent x-coordinates of the input data points.
There are n elements in the vector.

y — A vector containing the dependent y-coordinates of the input data points. Must
have the same number of elements as the x input parameter.

wt — The vector of weighting factors for determining the weighting of the least-
squares fit (see Discussion). The vector must be the same size as the x input
parameter.

parms — A six-element vector containing the parameters of the fitted function. On
input, it should contain the initial estimates of each parameter.

Output Parameters

parms — On output, contains the calculated parameters of the fitted function.

If parms is supplied as a double-precision variable, the calculations are performed
in double-precision accuracy. Otherwise, the calculations are performed in single-
precision accuracy.

sigma — (optional) A vector containing the standard deviations for the parameters
in parms.

Returned Value

result — A vector containing the calculated y-coordinates of the fitted function.

180 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

None.

Discussion

CURVEFIT uses a nonlinear least-squares method to fit an arbitrary function in
which the partial derivatives are known or can be approximated. This is in contrast
to linear least-squares fitting methods that would require their fitting functions to
be linear in their coefficients.

The initial estimates of parms should be as close to the actual values as possible or
the solution may not converge. CURVEFIT performs iterations of the fitting
function until the chi-squared value for the goodness of fit changes by less than 0.1
percent, or until 20 iterations are reached.

TIP These initial estimates for parms can be calculated from the result of the
POLY_FIT function when it is used to fit a straight line through data.

The function to be fit must be defined and called with FUNCT.

CURVEFIT is modified from the program CURFIT found in Data Reduction and
Error Analysis for the Physical Sciences, by Philip Bevington, McGraw-Hill, New
York, 1969. It combines a gradient search with an analytical solution developed
from linearizing the fitting function. This method is termed a “gradient-expansion
algorithm.”

Weighting Factor

Weighting is useful when you want to correct for potential errors in the data you
are fitting to a curve. The weighting factor, wt, adjusts the parameters of the curve
so that the error at each point of the curve is minimized.

wt can have any value, as long as its size is correct. Some possible ways to weight
a curve are suggested below (where i is an index into y, the vector of Y values):

✔ For statistical weighting, use wt = 1/yi

✔ For instrumental weighting, use wt = 1/(Std dev of yi)

✔ For no weighting, use wt = 1

• Statistical Weighting — Statistical weighting is useful when you arrived at
your dependent values by measuring a number of discrete events with respect
to the independent variable, such as counting the number of cars passing
through an intersection over 10-minute intervals.

CYLINDER Function 181

• Instrumental Weighting — Instrumental weighting is useful when you are
measuring things from a scale, such as length, mass, voltage, or current, and
you suspect that unequal errors have been introduced into the data by the mea-
suring device. For example, if an ohm meter has three different scales (one for
0 to 1 ohm, one for 2 to 99 ohms, and one for 100 ohms or more), the weighting
factor would be the same for each measurement taken with the same scale.

TIP In most cases, you would use a different weighting factor for each scale or
instrument that was used to measure your original data.

• No Weighting — If you feel that fluctuations in your data are due to instrument
error but that the uncertainties of the measuring device used are equal for all
the data collected, you would probably specify no weighting (wt = 1).

Example

For an example, refer to the gaussfit.pro file in the Standard Library.

See Also

FUNCT, GAUSSFIT, POLY_FIT

CYLINDER Function
Defines a cylindrical object that can be used by the RENDER function.

Usage

result = CYLINDER()

Parameters

None.

Returned Value

result — A structure that defines a cylinder object.

182 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

Color — A 256-element double-precision floating-point vector containing the
color (intensity) coefficients of the object. (Default: Color(*)=1.0)

Decal — A 2D array of bytes whose elements correspond to indices into the arrays
of material properties.

Kamb — A 256-element double-precision floating-point vector containing the
ambient (flat shaded) coefficients. (Default: Kamb(*)=0.0)

Kdiff — A 256-element double-precision floating-point vector containing the
diffuse reflectance coefficients. (Default: Kdiff(*)=1.0)

Ktran — A 256-element double-precision floating-point vector containing the
specular transmission coefficients. (Default: Ktran(*)=0.0)

Transform — A 4-by-4 double-precision floating-point array containing the local
transformation matrix whose default is the identity matrix.

Discussion

A CYLINDER is used by the RENDER function to render cylindrical objects, such
as for molecular modeling (symbolizing bonds), or for generating axes and 3D
lines. It is defined as having a radius of 0.5 and being centered at the origin with a
height of 0.5 in the +z direction and 0.5 in the –z direction.

To change the dimensions and orientation of a CYLINDER, use the Transform
keyword.

Example
T3D, /Reset, Rotate=[90, 0., 0]

c = CYLINDER(Transform=!P.T)

TVSCL, RENDER (c)

See Also

CONE, MESH, RENDER, SPHERE, VOLUME

For more information, see the PV-WAVE User’s Guide.

DAY_NAME Function 183

2
Procedure and Function Reference

DAY_NAME Function
Standard Library procedure that returns a string array or string constant containing
the name of the day of the week for each day in a Date/Time variable.

Usage

result = DAY_NAME(dt_var)

Input Parameters

dt_var — A date/time variable.

Returned Value

result — A string array or string constant containing the name of the day of the
week for each input Date/Time value.

Keywords

None.

Discussion

The names of the days of the week are string values taken from the system variable
!Day_Names.

Example
date = TODAY()

day = DAY_NAME(date)

PRINT, day

Monday

See Also

DAY_OF_WEEK, DAY_OF_YEAR, MONTH_NAME

For more information on Date/Time data, see the PV-WAVE User’s Guide.

184 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DAY_OF_WEEK Function
Returns an array of integers containing the day of the week for each date in a Date/
Time variable.

Usage

result = DAY_OF_WEEK(dt_var)

Input Parameters

dt_var — A Date/Time variable.

Returned Value

result — The day of the week expressed as an integer. Day 0 is Sunday and day 6
is Saturday.

Keywords

None.

Example

Assume that you have a Date/Time variable, date, for April 13, 1992. To find out
which day of the week this date is, enter:

day = DAY_OF_WEEK(date)

PRINT, day

1

; The day is a Monday.

See Also

DAY_NAME, DAY_OF_YEAR, MONTH_NAME

For more information on Date/Time data, see the PV-WAVE User’s Guide.

DAY_OF_YEAR Function 185

DAY_OF_YEAR Function
Returns an array of integers containing the day of the year for each date in a Date/
Time variable.

Usage

result = DAY_OF_YEAR(dt_var)

Input Parameters

dt_var — A Date/Time variable.

Returned Value

result — An array of integers representing the day of the year for each date in the
input variable.

Keywords

None.

Discussion

The result falls in a range between 1 and 365 (or 366 if it is a leap year).

Example
today = TODAY()

; Create a Date/Time variable.

daynumber = DAY_OF_YEAR(today)

PRINT, daynumber

106

See Also

DAY_NAME, DAY_OF_WEEK, MONTH_NAME

For more information on Date/Time data, see the PV-WAVE User’s Guide.

186 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DBLARR Function
Returns a double-precision floating-point vector or array.

Usage

result = DBLARR(dim1, ... , dimn)

Input Parameters

dimi — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value

result —A double-precision floating-point vector or array.

Keywords

Nozero — If Nozero is nonzero, the normal zeroing is not performed, causing
DBLARR to execute faster.

Discussion

Normally, DBLARR sets every element of the result to zero.

Example
r = DBLARR(3, 3)

PRINT, r

0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.0000000

See Also

BYTARR, COMPLEXARR, DCOMPLEXARR, DINDGEN, DOUBLE,
FLTARR, INTARR, LONARR, MAKE_ARRAY

DCINDGEN Function 187

DCINDGEN Function
Returns a double-precision floating-point complex array.

Usage

result = DCINDGEN(dim1 [, dim2 , ... , dimn])

Input Parameters

dimi — The dimensions of the result. The dimensions may be any scalar expression,
and up to eight dimensions may be specified.

Returned Value

result — An initialized complex array with real and imaginary parts of type double
precision, floating point. If the resulting array is treated as a one-dimensional array,
then its initialization is given by the following:

for

Keywords

None.

Example
c = DINDGEN(4)

INFO, c

C DOUBLE COMPLEX = Array(4)

PRINT, c

(0.0000000, 0.0000000)

(1.0000000, 0.0000000)

(2.0000000, 0.0000000)

(3.0000000, 0.0000000)

See Also

COMPLEX, COMPLEXARR, DCOMPLEX, DCOMPLEXARR

array i() DCOMPLEX i 0,()=

i 0 1 … D j 1–
j 1=

n

∏

, , ,=

188 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DCOMPLEX Function
Converts an expression to double-precision complex data type.

Extracts data from an expression and places it in a complex scalar or array.

Usage

result = DCOMPLEX(real [, imaginary])
This form is used to convert data.

result = DCOMPLEX(expr, offset, [dim1, dim2, ... , dimn])
This form is used to extract data.

Input Parameters

To convert data:

real — Scalar or array to be used as the real part of the complex result.

imaginary — (optional) Scalar or array to be used as the imaginary part of
the complex result. If not present, the imaginary part of the result is zero.

To extract data:

expr — The expression to be converted, or from which to extract data.

offset — The offset, in bytes, from the beginning of expr to where the
extraction is to begin.

dimi — (optional) The dimensions of the result. This parameter may be any
scalar expression, and up to eight dimensions may be specified.

Returned Value

If converting:

result — The result is a double-precision complex data type with the size
and structure determined by the size and structure of real and imaginary
input parameters. If either or both of the parameters are arrays, result will
be an array, following the same rules as standard PV-WAVE operators.

If extracting:

result — The result is a complex data type with the size and structure
determined by the size and structure of the dimi parameters. If no dimen-
sions are specified, the result is scalar.

DCOMPLEX Function 189

Keywords

None.

Discussion

DCOMPLEX is used primarily to convert data to complex data type. If real is of
type string and if the string does not contain a valid floating-point value (thereby
making it impossible to convert), then PV-WAVE returns 0 and displays a notice.
Otherwise, expr is converted to complex data type. The ON_IOERROR procedure
can be used to establish a statement to jump to in the case of such errors.

If only one parameter is supplied, the imaginary part of the result is 0; otherwise,
it is set by the imaginary parameter. Parameters are first converted to double-
precision floating-point.

NOTE If three or more parameters are supplied, DCOMPLEX extracts fields of
data from expr, rather than performing conversion.

Example
real = DINDGEN(5)

b = DCOMPLEX(real)

INFO, b

B DOUBLE COMPLEX = Array(5)

PRINT, b

(0.0000000, 0.0000000)

(1.0000000, 0.0000000)

(2.0000000, 0.0000000)

(3.0000000, 0.0000000)

(4.0000000, 0.0000000)

img = INTARR(5) + 6

c = DCOMPLEX(real, img)

INFO, c

C DOUBLE COMPLEX = Array(5)

PRINT, c

(0.0000000, 6.0000000)

(1.0000000, 6.0000000)

(2.0000000, 6.0000000)

(3.0000000, 6.0000000)

(4.0000000, 6.0000000)

d = DCOMPLEX(real, 7)

190 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

INFO, d

D DOUBLE COMPLEX = Array(5)

PRINT, d

(0.0000000, 7.0000000)

(1.0000000, 7.0000000)

(2.0000000, 7.0000000)

(3.0000000, 7.0000000)

(4.0000000, 7.0000000)

e = DCOMPLEX(7, img)

INFO, e

E DOUBLE COMPLEX = Array(5)

PRINT, e

(7.0000000, 6.0000000)

(7.0000000, 6.0000000)

(7.0000000, 6.0000000)

(7.0000000, 6.0000000)

(7.0000000, 6.0000000)

See Also

BYTE, COMPLEXARR, DCOMPLEXARR, DOUBLE, FIX, FLOAT, LONG

For more information on using this function to extract data, see the PV-WAVE
Programmer’s Guide.

DCOMPLEXARR Function
Returns a double-precision floating-point complex vector or array.

Usage

result = DCOMPLEXARR(dim1 [, dim2, ... , dimn])

Input Parameters

dimi — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value

result — A complex double-precision floating-point vector or array.

DC_ERROR_MSG Function 191

Keywords

Nozero — If Nozero is nonzero, the normal zeroing (see Discussion) is not
performed, thereby causing DCOMPLEXARR to execute faster.

Discussion

Normally, DCOMPLEXARR sets every element of the result to zero.

Example
c = DCOMPLEXARR(4)

INFO, c

C DOUBLE COMPLEX = Array(4)

PRINT, c

(0.0000000, 0.0000000)

(0.0000000, 0.0000000)

(0.0000000, 0.0000000)

(0.0000000, 0.0000000)

See Also

BYTARR, CINDGEN, DBLARR, DCOMPLEX, DOUBLE, FLTARR,
INTARR, LONARR

DC_ERROR_MSG Function
Returns the text string associated with the negative status code generated by a
“DC” data import/export function that does not complete successfully.

Usage

msg_str = DC_ERROR_MSG(status)

Input Parameters

status — The error message number returned by any of the "DC" functions. Must
be integer.

192 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value

msg_str — The test string that corresponds to the value of status. Returns a string;
the string is an empty (null) string if status is greater than or equal to 0 (zero).

Keywords

None.

Discussion

When status has a value less than 0 (zero), it indicates a "DC" function error
condition, such as an invalid filename, or an unexpected end-of-file.

Because the error message number status includes both the error number and an ID
number that corresponds to the "DC" function that produced the error, both the
function name and the specific error are described in the message string returned
by DC_ERROR_MSG.

Example

The following statements read a file containing 8-bit image data. Depending on the
status returned by DC_READ_8_BIT, either an error message is written or the
image is displayed in a window the exact size of the image:

status = DC_READ_8_BIT(’mongo.img’, mongo, XSize=xs, YSize=ys)

; Use DC_READ_8_BIT to read the image file.

IF (status LT 0) THEN BEGIN

msg_str = DC_ERROR_MSG(status)

; Obtain the error message if status has a negative value.
PRINT, msg_str

; Print the error message.
ENDIF ELSE BEGIN

WINDOW, XSize=xs, YSize=ys

; Define a window the right size to hold the image.
TVSCL, mongo

; Display the image inside the window.

ENDELSE

DC_OPTIONS Function 193

See Also

DC_OPTIONS

DC_OPTIONS Function
Sets the error message reporting level for all “DC” import/export functions.

Usage

status = DC_OPTIONS(msg_level)

Input Parameters

msg_level — The error message reporting level. Allowed values are:

Each level of message reporting includes all error message reporting levels with a
lower value, as well. For example, Level 3 includes both Level 2 and Level 1
messages.

Returned Value

status — The value returned by DC_OPTIONS; expected values are:

Keywords

None.

0 No messages. All “DC” functions operate in a silent mode.

1 Error messages (messages that indicate a “DC” function has
failed).

2 Error message plus warning messages (messages that indicate
the “DC” function did something, but possibly not what the
user expected).

3 Error message plus warning messages plus informational mes-
sages. All levels of error messages are reported.

< 0 Indicates an error, such as an invalid value for msg_level.

0 Indicates a successful interpretation of msg_level.

194 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

By default, all messages are sent to LUN –2, the standard error stream (stderr
for UNIX and SYS$ERROR for OpenVMS).

If you are using DC_OPTIONS with an error message reporting level of 0,
messages are not automatically sent to the standard error stream, but status codes
are still being generated by the various “DC” functions. These status codes can be
used as input to DC_ERROR_MSG; this is the way to obtain the corresponding
error message string, a string that you can then process or display in any way that
you choose to.

See Also

DC_ERROR_MSG

DC_READ_8_BIT Function
Reads an 8-bit image file.

Usage

status = DC_READ_8_BIT(filename, imgarr)

Input Parameters

filename — A string containing the pathname and filename of the 8-bit image file.

Output Parameters

imgarr — The byte array into which the 8-bit image data is read.

Returned Value

status — The value returned by DC_READ_8_BIT; expected values are:

< 0 Indicates an error, such as an invalid filename.

0 Indicates a successful read.

DC_READ_8_BIT Function 195

Keywords

XSize — The width (size in the x direction) of imgarr. XSize is computed and
output if imgarr is not explicitly dimensioned. XSize is returned as an integer.

YSize — The height (size in the y direction) of imgarr. YSize is computed and
output if imgarr is not explicitly dimensioned. YSize is returned as an integer.

Discussion

DC_READ_8_BIT handles many steps that you have to do yourself when using
other PV-WAVE functions and procedures. These steps include: 1) opening the
file, 2) assigning it a logical unit number (LUN), and 3) closing the file when you
are done reading the data.

If the dimensions of the byte array imgarr are not known, DC_READ_8_BIT
makes a “best guess” about the width and height of the image. It guesses by
checking the number of bytes in the file and comparing that number to the number
of bytes associated with the following common image sizes:

If no match is found, DC_READ_8_BIT assumes that the image is square, and
returns XSize and YSize as the square root of the number of bytes in the file.

NOTE You do not need to explicitly dimension imgarr, but if your image data is
not one of the standard sizes shown above, you will get more predictable results if
you dimension imgarr yourself.

Example

If still_life.img is a 640-by-480 image file, the function call:

Image Width Image Height

640 480

640 512

128 128

256 256

512 512

1024 1024

196 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

status = DC_READ_8_BIT(’still_life.img’, $
s_life, XSize=xdim, YSize=ydim)

reads the binary data in the file still_life.img and transfers it to a variable
nameds_life. It also returnsxdim=640 andydim=480, since these keywords
were provided in the function call.

On the other hand, if still_life.img is a 200-by-350 image file, the values
returned are xdim=264 and ydim=264. The keyword results xdim and ydim
are computed by taking the square root of the number of bytes in the file. This
conversion is done because 200-by-350 is not a “common” image size for which
DC_READ_8_BIT checks.

See Also

DC_ERROR_MSG, DC_WRITE_8_BIT

For more information on input and output of image data, see the PV-WAVE
Programmer’s Guide.

DC_READ_24_BIT Function
Reads a 24-bit image file.

Usage

status = DC_READ_24_BIT(filename, imgarr)

Input Parameters

filename — A string containing the pathname and filename of the 24-bit image file.

Output Parameters

imgarr — The byte array into which the 24-bit image data is read. Must be a 3-
dimensional byte array. Either the first or last dimension of the array is 3; see the
Discussion section for more details.

Returned Value

status — The value returned by DC_READ_24_BIT; expected values are:

DC_READ_24_BIT Function 197

Keywords

Org — Organization (in the file) of the 24-bit image data. Allowed values are:

If not provided, 0 (pixel interleaving) is assumed.

XSize — The width (size in the x-direction) of imgarr. The width is computed and
returned in XSize if imgarr is not explicitly dimensioned. XSize is returned as an
integer.

YSize — The height (size in the y-direction) of imgarr. The height is computed and
returned in YSize if imgarr is not explicitly dimensioned. YSize is returned as an
integer.

Discussion

DC_READ_24_BIT handles many steps that you have to do yourself when using
other PV-WAVE functions and procedures. These steps include: 1) opening the
file, 2) assigning it a logical unit number (LUN), and 3) closing the file when you
are done reading the data.

When choosing the value for the Org keyword, be sure to select an organization
that matches the file, even if it is the opposite of that used in the variable. In other
words, if the data in the file is pixel interleaved, specify Org=0, and if the data is
image interleaved, specify Org=1.

The way the data is read into the variable depends primarily on the dimensions that
the variable was given when it was created. Consequently, an image interleaved file
can be read into a pixel interleaved variable, and vice versa. So, if you want the data
in the variable organized differently than it was organized in the file, pre-dimension
the import variable before calling DC_READ_24_BIT. Dimension the variable
with a width w and a height h that matches those shown in the table later in this
section.

< 0 Indicates an error, such as an invalid filename.

0 Indicates a successful read.

0 Pixel interleaving (RGB triplets).

1 Image interleaving (separate planes).

198 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Dimensionality of the Import Variable

If the dimensions of the byte array imgarr are not known, DC_READ_24_BIT
makes a “best guess” about the width, height, and depth of the image. It guesses by
checking the number of bytes in the file and comparing that number to the number
of bytes associated with the following common image sizes:

If no match is found, DC_READ_24_BIT resorts to assuming that the image is
square, and returns XSize and YSize as the square root of the number of bytes in the
file, divided by 3.

PV-WAVE uses the following guidelines to dimension imgarr:

NOTE You do not need to explicitly dimension imgarr, but if your image data is
not one of the standard sizes (e.g., 3-by-512-by-512 or 640-by-480-by-3), you will
get more predictable results if you dimension imgarr yourself.

Example

If the file harpoon.img contains a 786432 byte 24-bit image-interleaved image,
the function call:

status = DC_READ_24_BIT(’harpoon.img’, $

Image Width Image Height Image Depth

640 480 3

640 512 3

128 128 3

256 256 3

512 512 3

1024 1024 3

Interleaving Method Dimensions of Image Variable

Pixel Interleaving Dimension imgarr as 3 x w x h, where w and h are
the width and length of the image in pixels.

Image Interleaving Dimension imgarr as w x h x 3, where w and h are
the width and length of the image in pixels.

DC_READ_CONTAINER Function 199

H24_image, Org=1, XSize=xdim, YSize=ydim)

reads the file harpoon.img, creates a 512-by-512-by-3 image-interleaved byte
array named H24_image, and returns xdim and ydim as 512.

See Also

DC_ERROR_MSG, DC_WRITE_24_BIT

For more information about 24-bit (binary) data and for more information about
image interleaving options, see the PV-WAVE Programmer’s Guide.

Windows USERS For an example showing how to use DC_READ_FREE to
import data from a Microsoft Excel spreadsheet, see the PV-WAVE Programmer’s
Guide.

DC_READ_CONTAINER Function
Reads a single variable from an HP VEE Container file.

Usage

status = DC_READ_CONTAINER(filename, var_name)

Input Parameters

filename — A string containing the path name and filename of the Container file.

Output Parameters

var_name — The PV-WAVE variable into which the Container file data is read.
The appropriate type and dimension of var_name is set based on the data found in
the Container file.

Returned Value

status — A value returned by DC_READ_CONTAINER indicating the success or
failure of the container file read operation as follows:

< 0 Indicates an error, such as an invalid filename or incorrect file format.

200 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

Double_Complex — All HP-VEE complex data types (Complex and PComplex)
are pairs of double-precision floating point values. However, prior to PV-WAVE
7.0, the only complex data type supported by PV-WAVE was single precision. For
compatibility with versions of PV-WAVE prior to version 7.0, this function still
returns Complex and PComplex as single precision complex by default. Specify
the Double_Complex keyword to retain the precision of the HP-VEE data types and
return a PV-WAVE double-precision complex variable.

End_record — (scalar) Indicates the ending location of the desired variable within
a multi-variable Container file.The keyword isn’t required, if only one variable is
described within the Container file. Valid values for End_record can be obtained
by calling DC_SCAN_CONTAINER.

Extent — Returns the extent value for the variable described in the Container file,
if it exists.

Mapping — Returns the mapping value for the variable described in the Container
file, if it exists.

Start_record — (scalar) Indicates the starting location of the desired variable
within a multi-variable Container file. The keyword isn’t required, if only one
variable is described within the Container file. Valid values for Start_record can be
obtained by calling DC_SCAN_CONTAINER.

Discussion

HP VEE is Hewlett-Packard’s Visual Engineering Environment, a graphical
programing language for creating test systems and solving engineering problems.

DC_READ_CONTAINER enables you to import data into PV-WAVE from HP
VEE. The Container file format is a proprietary HP ASCII file format which
contains a header description of the enclosed data. PV-WAVE reads this header
information and creates a PV-WAVE variable of the appropriate type and
dimension to hold the enclosed data.

An HP VEE Container file is created in HP VEE by using the Write Container
transaction in the To File object. Please refer to your HP VEE documentation for
more information.

0 Indicates a successful read.

DC_READ_DIB Function (Windows) 201

An HP VEE Container file contain one or more variable descriptions (see
DC_SCAN_CONTAINER for a description of how to read Container files with
multiple variables).

Example

In this example, sine is an undefined variable. DC_READ_CONTAINER resizes
the variable sine to fit the container data.

status = DC_READ_CONTAINER(!Data_dir+’hpvee_sine.con’, sine)

INFO
SINE FLOAT = Array(256)

WzPlot, sine

; View the sine data.

See Also

DC_SCAN_CONTAINER

DC_READ_DIB Function (Windows)
Reads data from a Device Independent Bitmap (DIB) format file into a variable.

Usage

status = DC_READ_DIB(filename, imgarr)

Input Parameters

filename — (string) The pathname and filename of the DIB file.

Output Parameters

imgarr — The variable into which the DIB image data is read. May be an array of
any dimension and type; imgarr’s data type is changed to byte and then imgarr is
redimensioned using information in the DIB file.

Returned Value

status — The value returned by DC_READ_DIB; expected values are:

202 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Output Keywords

Colormap — Used to specify a variable in which to place the colormap stored with
the DIB image. Colormap is returned as a 2D array of long integers.

ColorsUsed — Returns the number of colors used by the bitmap image (long).

Compression — Returns the compression style used in the DIB image. Valid
values are:

ImageHeight — Returns the DIB image height (long).

ImageWidth — Returns the DIB image width (long).

ImportantColors — Returns the number of colors that are important for the image
to be displayed as it was saved (long).

XResolution — Returns the number of pixels per meter in the x direction (long).

YResolution — Returns the number of pixels per meter in the y direction (long).

Discussion

Device Independent Bitmap (DIB) is a bitmap format that is useful for transporting
graphics and color table information between different devices and applications in
the Windows environment. DIB files can be produced by graphics applications
such as Microsoft Image Editor, Microsoft Paintbrush, and PV-WAVE.

DC_READ_DIB enables you to import DIB images into variables. It handles: 1)
opening the file, 2) assigning it a logical unit number (LUN), 3) closing the file
when you are finished reading the data, and 4) automatically redimensioning the
input variable.

< 0 Indicates an error, such as an invalid filename.

0 Indicates a successful read.

0 None (no compression)

1 Run-length encoded format for bitmaps with 8 bits per pixel

2 Run-length encoded format for bitmaps with 4 bits per pixel

DC_READ_FIXED Function 203

TIP To read the contents of a DIB file directly into a graphics window without the
intermediate step of having the data placed in a variable, use the function
WREAD_DIB.

Example

Assume that a file called head.bmp contains DIB data that was exported either
from PV-WAVE or from another application. To read this data directly into a
variable headimg, enter:

status = DC_READ_DIB(’head.bmp’, headimg, $
Imagewidth=xsize, Imagelength=ysize, Colormap=colors)

The dimensions of the image array are returned in the variables xsize and
ysize. The DIB image colormap is returned in the 2D array variable colors.

See Also

DC_ERROR_MSG, DC_WRITE_DIB, WREAD_DIB, WWRITE_DIB

For more information on input and output of DIB and metafile images, see the
PV-WAVE Programmer’s Guide.

DC_READ_FIXED Function
Reads fixed-formatted ASCII data using a format that you specify.

Usage

status = DC_READ_FIXED(filename, var_list)

Input Parameters

filename — A string containing the pathname and filename of the file containing
the data.

Output Parameters

var_list — The list of variables into which the data is read. Include as many
variable names in var_list as you want to be filled with data, up to a maximum of
2048. Note that variables of type structure are not supported. An exception to this

204 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

is the !DT, or date/time, structure. It is possible to transfer date/time data using this
routine.

NOTE The variables in the var_list do not need to be predefined unless multiple
data types exist in the data file. An example of a file with multiple data types is:

08/04/1994 10:00:00 23.00 -94.00 11.00

Since the above example contains date/time and float data types, all of the variables
holding this data will need to be declared before the DC_READ_FIXED function
is called.

Returned Value

status — The value returned by DC_READ_FIXED; expected values are:

Keywords

Bytes_Per_Rec — A long integer that specifies how many characters comprise a
single record in the input data file; use only with column-oriented files. If not
provided, each line of data in the file is treated as a new record. For more details
about when to use the Bytes_Per_Rec keyword, see Example 5 on page 214.

Column — A flag that signifies filename is a column-organized file.

Dt_Template — An array of integers indicating the data/time templates that are to
be used for interpreting date/time data. Positive numbers refer to date templates;
negative numbers refer to time templates. For more details, see Example 6 on page
215. To see a complete list of date/time templates, see the PV-WAVE Programmer’s
Guide.

Filters — An array of one-character strings that PV-WAVE should check for and
filter out as it reads the data. A character found on the keyboard can be typed; a
special character not found on the keyboard is specified by ASCII code. For more
details, see Example 2 on page 212.

Format — A string containing the C- or FORTRAN-like format statement that will
be used to read the data. The format string must contain at least one format code

< 0 Indicates an error, such as an invalid filename or an I/O error.

0 Indicates a successful read.

DC_READ_FIXED Function 205

that transfers data; FORTRAN formats must be enclosed in parentheses. If not
provided, a C format of %1f is assumed.

Ignore — An array of strings; if any of these strings are encountered, PV-WAVE
skips the entire record and starts reading data from the next line. Any string is
allowed, but the following three strings have special meanings:

For an example showing how to use the Ignore keyword, see Example 7 on page
216.

Miss_Str — An array of strings that may be present in the data file to represent
missing data. If not provided, PV-WAVE does not check for missing data as it reads
the file. For an example showing how to use the Miss_Str keyword, see
DC_READ_FREE, Example 3 on page 227.

Miss_Vals — An array of integer or floating-point values, each of which
corresponds to a string in Miss_Str. As PV-WAVE reads the input data file,
occurrences of strings that match those in Miss_Str are replaced by the
corresponding element of Miss_Vals.

Nrecs — Number of records to read. If not provided or if set equal to zero (0), the
entire file is read. For more information about records, see Physical Records vs.
Logical Records on page 208.

Nskip — Number of physical records in the file to skip before data is read. If not
provided, or set equal to zero (0), no records are skipped.

Resize — An array of integers indicating the variables in var_list that can be
resized based on the number of records detected in the input data file. Values in
Resize should be in the range:

1 ≤ Resizen ≤ #_of_vars_in_var_list

For an example showing how to use the Resize keyword, see Example 4 on page
213.

Row — A flag that signifies filename is a row-organized file. If neither Row nor
Column is present, Row is the default.

$BLANK_LINES Skip all blank lines; this prevents those lines from
being interpreted as a series of zeroes.

$TEXT_IN_NUMERIC Skip any line where text is found in a numeric field.

$BAD_DATE_TIME Skip any line where invalid date/time data is found.

206 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

DC_READ_FIXED is capable of interpreting either FORTRAN-or C-style
formats, and is very adept at reading column-oriented data files. Also,
DC_READ_FIXED handles many steps that you have to do yourself when using
other PV-WAVE functions and procedures. These steps include: 1) opening the
file, 2) assigning it a logical unit number (LUN), and 3) closing the file when you
are done reading the data.

If neither the Row or Column keywords are provided, the file is assumed to be
organized by rows. If both keywords are used, the Row keyword is assumed.

NOTE This function can be used to read data into date/time structures, but not into
any other kind of structures.

String Resources Used By This Function

Upon execution, the DC_READ_FIXED function examines two strings in a string
resource file. These strings, described below, allow you to control how the function
handles binary files.

The string resource file is:

(UNIX) <wavedir>/xres/!Lang/kernel/dc.ads

(OpenVMS) <wavedir>:[XRES.!Lang.KERNEL]DC.ADS

(Windows) <wavedir>\xres\!Lang\kernel\dc.ads

Where <wavedir> is the main PV-WAVE directory.

The strings that are examined areDC_binary_check andDC_allow_chars.

DC_binary_check — This string can be set to the values True or False. If
set to True, the data file is checked for the presence of binary characters before
the file is read. If binary characters are found, the file is not read. If this string is set
to False, no binary character checking is performed. (Default: True)

For example, to turn off binary checking, set the string as follows in the dc.ads
file:

DC_binary_check: False

DC_allow_chars — This string lets you specify additional characters to allow
in the check for binary files. Before a file is read, the first several lines are checked
for the presence of non-printable characters. If non-printable characters are found,
the file is considered to be a binary file and the file is not read. By default, all

DC_READ_FIXED Function 207

printable characters in the system locale are allowed. Characters may be specified
either by entering them directly or numerically by three digit decimal values by
preceding them with a “\” (backslash).

For example, to allow characters 165 and 220, set the string as follows in the
dc.ads file:

DC_allow_chars: \165\220

How the Data is Transferred into Variables

As many as 2048 variables can be included in the input argument var_list. You can
use the continuation character ($) to continue the function call onto additional
lines, if needed. Any undeclared variables in var_list are assumed to have a data
type of float (single-precision floating-point).

As data is being transferred into multi-dimensional variables, those variables are
treated as collections of scalar variables, meaning the first subscript of the import
variable varies the fastest. For two-dimensional import variables, this implies that
the column index varies faster than the row index. In other words, data is
transferred into a two-dimensional import variable one row at a time. For more
details about reading column-oriented data into multi-dimensional variables, see
Example 4 on page 227 (in the DC_READ_FREE function description).

The format string is processed from left to right. Record terminators and format
codes are processed until no variables are left in the variable list or until an error
occurs. In a FORTRAN format string, when a slash record terminator (/) is
encountered, the rest of the current input record is ignored, and the next input
record is read.

Format codes that transfer data are matched with the next available variable (or
element of a multi-dimensional variable) in the variable list var_list. Data is read
from the file and formatted according to the format code. If the data from the file
does not agree with the format code, or the format code does not agree with the type
of the variable, a type conversion is performed. If no type conversion is possible,
an error results and a nonzero status is returned.

Once all variables in the variable list have been filled with data,
DC_READ_FIXED stops reading data, and returns a status code of zero (0). This
is true even if there are format codes in Format that did not get used. Even if an
error occurs, and status is nonzero, the data that has been read successfully (prior
to the error) is returned in the var_list variables.

208 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

TIP If an error does occur, use the PRINT command to view the contents of the
variables to see where the last successfully read value occurs. This will enable you
to isolate the portion of the file in which the error occurred.

If the format string does not contain any format codes that transfer data, an error
occurs and a nonzero status is returned. The format codes that PV-WAVE
recognizes are listed in Appendix A of the PV-WAVE Programmer’s Guide. If a
format code that does not transfer data is encountered, it is processed as discussed
in that appendix.

Format Reversion when Reading Data

If the last closing parenthesis of the format string is reached and there are still
unfilled variables remaining, format reversion occurs. In format reversion, the
current record is terminated, a new one is read, and format string processing reverts
to the first group repeat specification that does not have an explicit repeat count. If
the format does not contain a group repeat specification, format processing reverts
to the initial opening parenthesis of the format string.

For more information about format reversion and group repeat specifications, see
the PV-WAVE Programmer’s Guide.

Physical Records vs. Logical Records

In an ASCII text file, the end-of-line is signified by the presence of either a CTRL-
J or a CTRL-M character, and a record extends from one end-of-line character to
the next. However, there are actually two kinds of records:

✔ physical records

✔ logical records

For column-oriented files, the amount of data in a physical record is often sufficient
to provide exactly one value for each variable in var_list, and then it is a logical
record, as well. For row-oriented files, the concept of logical records is not relevant,
since data is merely read as contiguous values separated by delimiters, and the end-
of-line is merely interpreted as another delimiter.

NOTE The Nrecs keyword counts by logical records, if they have been defined.
The Nskip keyword, on the other hand, counts by physical records, regardless of
any logical record size that has been defined.

DC_READ_FIXED Function 209

Changing the Logical Record Size

You can use the Bytes_Per_Rec keyword to explicitly define a different logical
record size, if you wish. However, in most cases, you do not need to provide this
keyword. For an example of when to use the Bytes_Per_Rec keyword, see Example
5 on page 214.

NOTE By default, DC_READ_FIXED considers the physical record to be one
line in the file, and the concept of a logical record is not needed. But if you are
using logical records, the physical records in the file must all be the same length.
The Bytes_Per_Rec keyword can be used only with column-oriented data files.

Filtering and Substitution While Reading Data

If you want certain characters filtered out of the data as it is read, use the Filters
keyword to specify these characters. Each character (or sequence of digits that
represents the ASCII code for a character) must be enclosed with single quotes. For
example, either of the following is a valid specification:

',' or '44'

Furthermore, the two specifications shown above are equivalent to one another. For
more examples of using the Filters keyword, see Example 2 on page 212, or
DC_READ_FREE, Example 4 on page 227.

Characters that match one of the values in Filters are treated as if they aren’t even
there; in other words, these characters are not treated as data and do not contribute
to the size of the logical record, if one has been defined using the Bytes_Per_Rec
keyword.

NOTE If you want to supply multi-character strings instead of individual charac-
ters, you can do this with the Ignore keyword. However, keep in mind that a
character that matches Filters is simply discarded, and filtering resumes from that
point, while a string that matches Ignore causes that entire line to be skipped.

So if you are reading a data file that contains a value such as #$*10.00**, but you
don’t want the entire line to be skipped, filter the characters individually with
Filters = ['#', '$', '*'], instead of collectively with Ignore = ['#$*', '**'].

210 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Missing Data Substitution

PV-WAVE expects to substitute a value from Miss_Vals whenever it encounters a
string from Miss_Str in the data. Consequently, if the number of elements in
Miss_Str does not match the number of elements in Miss_Vals, a nonzero status is
returned and no data is read. The maximum number of values permitted in Miss_Str
and Miss_Vals is 10.

If the end of the file is reached before all variables are filled with data, the
remainder of each variable is set to Miss_Vals(0) if it was specified, or 0 (zero) if
Miss_Vals was not specified. In this case, status is returned with a value less than
zero to signify an unexpected end-of-file condition.

Reading Row-Oriented Files

If you include the Row keyword, each variable in var_list is completely filled
before any data is transferred to the next variable.

The dimensionality of the last variable in var_list can be unknown; a variable of
length n is created, where n is the number of values remaining in the file. All other
variables in var_list must be pre-dimensioned.

If you include the Resize keyword with the call to DC_READ_FIXED, the last
variable can be redimensioned to match the actual number of values that were
transferred to the variable during the read operation.

If you are interested in an illustration showing what row-oriented data can look like
inside a file, see the PV-WAVE Programmer’s Guide.

Reading Column-Oriented Files

If you include the Column keyword, DC_READ_FIXED views the data files as a
series of columns, with a one-to-one correspondence between columns in the file
and variables in the variable list. In other words, one value from the first record of
the file is transferred into each variable in var_list, then another value from the next
record of the file is transferred into each variable in var_list, and so forth, until all
the data in the file has been read, or until the variables are completely filled with
data.

If a variable in var_list is undefined, a floating-point variable of length n is created,
where n is the number of records read from the file. To get a similar effect in an
existing variable, include the Resize keyword with the function call.

All variables specified with the Resize keyword are redimensioned to the same
length — the length of the longest column of data in the file. The variables that

DC_READ_FIXED Function 211

correspond to the shortest columns in the file will have one or more values added
to the end; either Miss_Vals(0) if it was specified, or 0 (zero) if Miss_Vals was not
specified.

If you are interested in an illustration demonstrating what column-oriented data can
look like inside a file, see the PV-WAVE Programmer’s Guide.

Multi-dimensional Variables

The following table shows how column-oriented data in a file is read into multi-
dimensional variables:

You can combine one- and two-dimensional variables in var_list, as long as the
second dimension of the two-dimensional variable matches the dimension of the
one-dimensional variable. For example, with two variables, var1(50) and
var2(2,50), one column of data will be transferred to var1 and two columns
of data will be transferred to var2.

NOTE If you want to intermingle multi-dimensional variables in var_list, you
must be sure that the product of all dimensions (excluding the first dimension) of
each variable is equal. For example, you can combine two-, three-, and four-dimen-
sional variables in var_list if the variables have dimensions like these:

Dimensions
of Variable

How Data is Read From the File
(If Variable is Pre-dimensioned)

One-dimensional
(1 x n)

One value read from each record of file
(repeated n times)

Two-dimensional
(m columns by n rows)

m values read from each record of file
(repeated n times)

Three-dimensional
(m x n x p)

m values read from each record of file
(repeated n times)
(entire process repeated p times)

q-dimensional
(m x n x p x q)

m values read from each record of file
(repeated n times)
(above process repeated p times)
(entire process repeated q times)

Var1 2-by-30

Var2 2-by-15-by-2

212 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Example 1

The function call:

status=DC_READ_FIXED(’results.wp’, /Column, $
unit1, unit2, unit3, run_total, Ignore= $
["Total", "------", "$TEXT_IN_NUMERIC", $
"$BLANK_LINES"], Format="(F7.2,5X)")

reads the data from file results.wp and places the data into four variables:
unit1, unit2, unit3, and run_total.

Because the variables were not predefined, all data is interpreted as single-
precision floating-point data, and all variables are treated as resizable one-
dimensional arrays. Any blank lines or strings specified with the Ignore keyword
(in this example, “Total” and “------”) are ignored. Also, any line with non-
numeric characters in a numeric field is ignored.

Example 2

The function call:

status = DC_READ_FIXED(’yields.doc’, intake, $
chute, conveyor, crusher, /Column, $
Filter=[’/’, ’:’, ’,’], $
Format="(F7.2, 8X, F6.4, 3X)", $
Ignore=["$BLANK_LINES"])

reads data from the file yields.doc and places the data into four variables:
intake, chute, conveyor, and crusher.

Because the variables were not predefined, all data is interpreted as single-
precision floating-point data, and all variables are treated as resizable one-
dimensional arrays. Any extraneous characters (in this example, “/”, “:”, and “,”)
are discarded because the Filter keyword is provided. Also, all totally blank lines
in the file are ignored.

Example 3

Var3 2-by-10-by-3

Var4 2-by-3-by-2-by-5

DC_READ_FIXED Function 213

The data file shown below is a fixed-formatted ASCII file named simple.dat.
The ‘.’ characters in simple.dat represent blank spaces:

...1...2...3...4...5

...6...7...8...9..10

..11..12..13..14..15

..16..17..18..19..20

The function call:

status = DC_READ_FIXED(’simple.dat’, var1, $
Format=’(I4)’, /Column)

results in var1=[1.0, 6.0, 11.0, 16.0]. Because var1 was not
predefined, DC_READ_FIXED creates it as a one-dimensional floating-point
array.

On the other hand, the commands:

Var1 = INTARR(2)

Var2 = INTARR(2)

status = DC_READ_FIXED(’simple.dat’, var1, $
var2, Format=’(2(4X, I4))’, Nskip=2)

skip the first two records in the file and result in var1=[12, 14] and
var2=[17, 19]. Because neither the Row or Column keyword was supplied,
the file is assumed to use row organization.

Example 4

The data file shown below is a fixed-formatted ASCII file; this file is named
nimrod.dat. The ‘.’ characters in nimrod.dat represent blank spaces.
nimrod.dat is very much like the data file in Example 3 on page 212, except that
it has a missing value where you would expect to see the numeral “8”:

...1...2...3...4...5

...6...7.......9..10

..11..12..13..14..15

..16..17..18..19..20

When reading this file as column-oriented data, the results vary, depending on
whether a C or FORTRAN format string is being used, and whether the Resize
keyword has been included in the function call to DC_READ_FIXED.

For example, the commands:

A = INTARR(20) & B = INTARR(20)

C = INTARR(20) & D = INTARR(20)

214 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

E = INTARR(20)

status = DC_READ_FIXED(’nimrod.dat’, $
A, B, C, D, E, Format=’(2X, I2)’, $
Resize=[1, 2, 3, 4, 5], /Column)

result in A=[1, 6, 11, 16], B=[2, 7, 12, 17], C=[3, 0, 13, 18],
D=[4, 9, 14, 19], and E=[5, 10, 15, 20]. The missing value is
interpreted as a zero (0). All variables are resized to a length of 4.

On the other hand, the commands:

A = INTARR(20) & B = INTARR(20)

C = INTARR(20) & D = INTARR(20)

E = INTARR(20)

status = DC_READ_FIXED(’nimrod.dat’, $
A, B, C, D, E, Format=’%d’, $
Resize=[1, 2, 3, 4, 5], /Column)

result in A=[1, 6, 11, 16], B=[2, 7, 12, 17],
C = [3, 9, 13, 18], D = [4, 10, 14, 19], and
E = [5, 15, 20]. The missing value is skipped altogether, and E is resized to
a length of 3 to reflect the number of values that were transferred into the variable.
The other variables are resized to 4.

Any variable that is not resizable (because it was omitted from the Resize vector),
will be padded to the end with extra values. For the latter of the two calls to
DC_READ_FIXED shown in this example, A, B, C, and D would be padded with
an additional 16 zeroes, while E would be padded with an additional 17 zeroes.
(Zeroes are used for the padding because Miss_Vals was not specified.)

If the file nimrod.dat had used some other character as a delimiter, such as
commas or slashes, both the C and FORTRAN format strings would have yielded
the same result, namely, C = [3, 0, 13, 18]. It is only because of the way
a C format skips over blank space that the C format was unable to detect the
presence of a missing value.

Example 5

The data file shown below contains 18 pairs of XY data that could be used to create
a scatter plot:

5.992E+04,7.121E–01,8.348E+04,7.562E–01,5.672E+04,9.451E–01,
5.459E+04,8.659E–01,7.088E+04,8.659E–01,8.541E+04,3.437E–01,
4.981E+04,4.679E–01,8.438E+04,5.019E–01,6.902E+04,7.340E–01,
6.239E+04,8.023E–01,7.865E+04,6.643E–01,5.870E+04,9.992E–01,
7.439E+04,9.456E–01,4.672E+04,9.801E–01,6.872E+04,4.325E–01,

DC_READ_FIXED Function 215

6.362E+04,5.894E–01,8.992E+04,7.509E–01,2.785E+04,4.796E–01,

For data organized like this, you use the Bytes_Per_Rec keyword to specify the
exact length of the record. In this example, all X values are single-precision
floating-point numbers with an exponent of E+04, and all Y values are single-
precision floating-point numbers with an exponent of E–01. Therefore, each XY
pair uses 18 ASCII characters (bytes) apiece. Thus, you would specify 20 bytes per
record (9 times 2, plus 2 more bytes for the comma delimiters separating values).

status=DC_READ_FIXED(/Column, "xy5.dat", Xa, $
Ya, Format="(E9.3, 1X)", Bytes_Per_Rec=20)

If you omit the Bytes_Per_Rec keyword, but still read the file as a column-oriented
file, only the first pair of data values on each line would actually be transferred into
the variables Xa and Ya. Nor can the file be read as row-oriented data, because Xa
would be filled completely before any data was transferred to Ya.

TIP Only include the Bytes_Per_Rec keyword when you have a logical record that
is longer or shorter than one line in the file. For the majority of column-oriented
data files, one and only one value from each variable is on a single line, and the
Bytes_Per_Rec keyword is completely unnecessary.

Example 6

Assume that you have a file, chrono.dat, that contains some data values and
also some chronological information about when those data values were recorded:

01/01/92 10:30:35 10.00 04-30-92 32767

02/01/92 23:22:15 15.89 06-15-91 99999

05/15/91 03:03:03 14.22 12-25-92 87654

The date/time templates that will be used to transfer this data have the following
definitions:

To read the date and time from the first two columns into one date/time variable
and read the third column of floating point data into another variable, use the
following commands:

date1 = REPLICATE({!DT},3)

Number Template Description

1 MM*DD*YY (* = any delimiter)

–1 HH*MM*SS (* = any delimiter)

216 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

date2 = REPLICATE({!DT},3)

; The system structure definition of date/time is !DT. Date/time
; variables must be defined as !DT structure arrays before being
; used if the date/time data is to be read as such.

status = DC_READ_FIXED("chrono.dat", date1, date1, decibels,
Dt_Template=[1,-1], $

Format="(2(A8, 1X), F5.2)", /Column)

; The variable date1 is listed twice; this way, both the date data
; and the time data can be stored in the same variable, date1.

To read all columns, change the call to DC_READ_FIXED and define a new
variable:

calib = INTARR(3)

status = DC_READ_FIXED("chrono.dat", date1, $
date1, decibels, date2, calib, /Column, $
Format="%8s %8s %f %8s %d", Ignore= $
["$BAD_DATE_TIME"], Dt_Template=[1,-1])

Notice how the date/time templates are reused. For each new record, Template 1 is
used first to read the date data into date1. Next, Template –1 is used to read the
time data into date1. Finally, since there is another date/time variable to be read
(date2) and there are no more templates left, the template list is reset and
Template 1 is used again. The template list is reset for each record.

NOTE Because of the internal conversion that DC_READ_FIXED performs to
convert the date strings to PV-WAVE’s date/time internal structure, the date and
time data must be read with the A8 (FORTRAN) or %8s (C) format string.

Normally an error would be reported if the input text to be read as date/time is
invalid and cannot be converted. But because the Ignore=["$BAD_DATE_TIME"]
keyword was provided, any record containing this type of error is ignored and no
error is reported.

Example 7

The data file shown below is a fixed-formatted ASCII file named wages.wp. All
floating-point data in the file has been decimal-point-aligned by a word-processing
application:

1070.00 9007.97 1100.00 1250.00 850.50 2010.00

5000.00 3050.00 1044.12 3500.00 6031.00 905.00

DC_READ_FIXED Function 217

The following commands:

Maria = Fltarr(12) & Naomi = Fltarr(12)

Klaus = Fltarr(12) & Carlos = Fltarr(12)

status = DC_READ_FIXED(’wages.wp’, Maria, $
Carlos, Klaus, Naomi, Format="(F7.2,5X)", $
Ignore=["$BLANK_LINES"])

read the data from file wages.wp and places the data into four variables: Maria,
Carlos, Klaus, and Naomi. By default, row organization is assumed in the file,
with five spaces separating the values in the file.

With row organization, each variable is “filled up” before any data is transferred to
the next variable in the variable list. This means that the first two lines of the file
are transferred into the variable Maria, the new two lines of the file are transferred
into the variable Carlos, the next two lines of the file are transferred into the
variable Klaus, and the last two lines of the file are transferred into the variable
Naomi. The blank lines in the file are skipped entirely, preventing those lines from
being interpreted as a series of zeroes.

See Also

DC_ERROR_MSG, DC_READ_FREE, DC_WRITE_FIXED

For more information about fixed format I/O in PV-WAVE, see the PV-WAVE
Programmer’s Guide.

415.00 5200.00 1300.10 350.00 745.00 3000.00

200.00 3100.00 8100.00 7050.00 6780.00 2310.25

950.00 1050.00 1350.00 410.00 797.00 200.36

2600.00 2000.00 1500.00 2000.00 1000.00 400.00

1000.00 9000.00 1100.00 2091.00 3440.10 2000.37

5000.00 3000.00 1000.01 3500.00 6000.00 900.12

218 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DC_READ_FREE Function
Reads freely-formatted ASCII files.

Usage

status = DC_READ_FREE(filename, var_list)

Input Parameters

filename — A string containing the pathname and filename of the file containing
the data.

Output Parameters

var_list — The list of variables into which the data is read. Include as many
variables names in var_list as you want to be filled with data, up to a maximum of
2048. Note that variables of type structure are not supported. An exception to this
is the !DT, or date/time, structure. It is possible to transfer date/time data using this
routine.

NOTE The variables in the var_list do not need to be predefined unless multiple
data types exist in the data file. An example of a file with multiple data types is:

08/04/1994 10:00:00 23.00 -94.00 11.00

Since the above example contains date/time and float data types, all of the variables
holding this data will need to be declared before the DC_READ_FIXED function
is called.

Returned Value

status — The value returned by DC_READ_FREE; expected values are:

< 0 Indicates an error, such as an invalid filename or an I/O
error.

0 Indicates a successful read.

DC_READ_FREE Function 219

Keywords

Column — A flag that signifies filename is a column-organized file.

Delim — An array of single-character strings that are the field separators used in
the data file. If not provided, a comma- or space- delimited file is assumed.

Dt_Template — An array of integers indicating the date/time templates that are to
be used for interpreting date/time data. Positive numbers refer to date templates;
negative numbers refer to time templates. For more details, see Example 5 on page
229. To see a complete list of date/time templates, see the PV-WAVE Programmer’s
Guide.

Filters — An array of one-character strings that PV-WAVE should check for and
filter out as it reads the data. A character found on the keyboard can be typed; a
special character not found on the keyboard is specified by ASCII code. For more
details about the Filters keyword, see Filtering and Substitution While Reading
Data on page 223.

Get_Columns — An array of integers indicating column numbers to read in the
file. If not provided or if set equal to zero (0), all columns are read. Ignored if the
Row keyword is supplied.

Ignore — An array of strings; if any of these strings are encountered, PV-WAVE
skips the entire line and starts reading data from the next line. Any string is
allowed, but the following three strings have special meanings:

For an example showing how to use the Ignore keyword, see Example 2 on page
226.

Miss_Str — A string array that specifies strings that may be present in the data file
to represent missing data. If not present, PV-WAVE does not check for missing
data as it reads the file.

Miss_Vals — An array of floating-point values, each of which corresponds to a
string in Miss_Str. As PV-WAVE reads the input data file, occurrences of strings

$BLANK_LINES Skip all blank lines; this prevents those
lines from being interpreted as a series of
zeroes.

$TEXT_IN_NUMERIC Skip any line where text is found in a
numeric field.

$BAD_DATE_TIME Skip any line where invalid date/time data
is found.

220 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

that match those in Miss_Str are replaced by the corresponding element of
Miss_Vals.

Nrecs — Number of records to read. If not provided or if set equal to zero (0), the
entire file is read. For more information about records, see Physical Records vs.
Logical Records on page 222.

Nskip — Number of physical records in the file to skip before data is read. If not
provided or if set equal to zero (0), no records are skipped.

Resize — An array of integers indicating the variables in var_list that can be
resized based on the number of records detected in the input data file. Values in
Resize should be in the range:

1 ≤ Resizen ≤ #_of_vars_in_var_list

For an example showing how to use the Resize keyword, see DC_READ_FIXED,
Example 4 on page 213, or DC_READ_FREE, Example 4 on page 227.

Row — A flag that signifies filename is a row-organized file. If neither Row nor
Column is present, Row is the default.

Vals_Per_Rec — A long integer that specifies how many values comprise a single
record in the input data file; use only with column-oriented files. If not provided,
each line of data in the file is treated as a new record. For more details about when
to use the Vals_Per_Rec keyword, see Example 4 on page 227.

Discussion

DC_READ_FREE is very adept at reading column-oriented data files. Also,
DC_READ_FREE handles many steps that you have to do yourself when using
other PV-WAVE functions and procedures. These steps include: 1) opening the
file, 2) assigning it a logical unit number (LUN), and 3) closing the file when you
are done reading the data.

DC_READ_FREE relieves you of the task of composing a format string that
describes the organization of the data in the input file. All you do is tell
DC_READ_FREE which delimiters to expect in the file; comma and space are the
default delimiters expected. In other words, DC_READ_FREE easily reads data
values separated by any combination of commas and spaces, or any other
delimiters that you explicitly define using the Delim keyword.

If neither the Row or Column keywords are provided, the file is assumed to be
organized by rows. If both keywords are used, the Row keyword is assumed.

DC_READ_FREE Function 221

NOTE This function can be used to read data into date/time structures, but not into
any other kind of structures.

String Resources Used By This Function

Upon execution, the DC_READ_FREE function examines two strings in a string
resource file. These strings, described below, allow you to control how the function
handles binary files.

The string resource file is:

(UNIX) <wavedir>/xres/!Lang/kernel/dc.ads

(OpenVMS) <wavedir>:[XRES.!Lang.KERNEL]DC.ADS

(Windows) <wavedir>\xres\!Lang\kernel\dc.ads

Where <wavedir> is the main PV-WAVE directory.

The strings that are examined areDC_binary_check andDC_allow_chars.

DC_binary_check — This string can be set to the values True or False. If
set to True, the data file is checked for the presence of binary characters before
the file is read. If binary characters are found, the file is not read. If this string is set
to False, no binary character checking is performed. (Default: True)

For example, to turn off binary checking, set the string as follows in the dc.ads
file:

DC_binary_check: False

DC_allow_chars — This string lets you specify additional characters to allow
in the check for binary files. Before a file is read, the first several lines are checked
for the presence of non-printable characters. If non-printable characters are found,
the file is considered to be a binary file and the file is not read. By default, all
printable characters in the system locale are allowed. Characters may be specified
either by entering them directly or numerically by three digit decimal values by
preceding them with a “\” (backslash).

For example, to allow characters 165 and 220, set the string as follows in the
dc.ads file:

DC_allow_chars: \165\220

222 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

How the Data is Transferred into Variables

As many as 2048 variables can be included in the input argument var_list. You can
use the continuation character ($) to continue the function call onto additional
lines, if needed. Any undeclared variables in var_list are assumed to have a data
type of float (single-precision floating-point).

As data is being transferred into multi-dimensional variables, those variables are
treated as collections of scalar variables, meaning the first subscript of the import
variable varies the fastest. For two-dimensional import variables, this implies that
the column index varies faster than the row index. In other words, data is
transferred into a two-dimensional import variable one row at a time. For more
details about reading column-oriented data into multi-dimensional variables, see
Example 4 on page 227.

If the current input line is empty or DC_READ_FREE has reached the end of the
line and there are still unused variables in var_list, the next line is read. When there
are no unused variables left in var_list, the remainder of the line is ignored.

When reading into numeric variables, PV-WAVE attempts to convert the input into
a value of the expected type. Decimal points are optional and scientific notation is
allowed. If a real value is provided for an integer variable, the value is truncated at
the decimal point.

NOTE If the file contains string data, make sure the strings do not contain delim-
iter characters. Otherwise, the string will be interpreted as more than one string,
and the data in the file will not match the variable list.

Once all variables in the variable list have been filled with data, DC_READ_FREE
stops reading data, and returns a status code of zero (0). Even if an error occurs,
and status is nonzero, the data that has been read successfully (prior to the error) is
returned in the var_list variables.

TIP If an error does occur, use the PRINT command to view the contents of the
variables to see where the last successfully read value occurs. This will enable you
to isolate the portion of the file in which the error occurred.

Physical Records vs. Logical Records

In an ASCII text file, the end-of-line is signified by the presence of either a CTRL-
J or a CTRL-M character, and a record extends from one end-of-line character to
the next. However, there are actually two kinds of records:

DC_READ_FREE Function 223

✔ physical records

✔ logical records

For column-oriented files, the amount of data in a physical record is often sufficient
to provide exactly one value for each variable in var_list, and then it is a logical
record, as well. For row-oriented files, the concept of logical records is not relevant,
since data is merely read as contiguous values separated by delimiters, and the end-
of-line is merely interpreted as another delimiter.

NOTE The Nrecs keyword counts by logical records, if they have been defined.
The Nskip keyword, on the other hand, counts by physical records, regardless of
any logical record size that has been defined.

Changing the Logical Record Size

You can use the Vals_Per_Rec keyword to explicitly define a different logical
record size, if you wish. However, in most cases, you do not need to provide this
keyword. For an example of when to use the Vals_Per_Rec keyword, see Example
4 on page 227.

NOTE By default, DC_READ_FREE considers the physical record to be one line
in the file, and the concept of a logical record is not needed. But if you are using
logical records, the physical records in the file must all contain the same number of
values. The Vals_Per_Rec keyword can be used only with column-oriented data
files.

Filtering and Substitution While Reading Data

If you want certain characters filtered out of the data as it is read, use the Filters
keyword to specify these characters. Each character (or sequence of digits that
represents the ASCII code for a character) must be enclosed with single quotes. For
example, either of the following is a valid specification:

',' or '44'

Furthermore, the two specifications shown above are equivalent to one another. For
another example of using the Filters keyword, see Example 4 on page 227.

224 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

TIP Be sure not to filter characters that were used in the file as delimiters. The
delimiters enable DC_READ_FREE to discern where one data value ends and
another one begins.

Characters that match one of the values in Filters are treated as if they aren’t even
there; in other words, these characters are not treated as data and do not contribute
to the size of the logical record, if one has been defined using the Vals_Per_Rec
keyword.

NOTE If you want to supply multi-character strings instead of individual charac-
ters, you can do this with the Ignore keyword. However, keep in mind that a
character that matches Filters is simply discarded, and filtering resumes from that
point, while a string that matches Ignore causes that entire line to be skipped.

So if you are reading a data file that contains a value such as #$*10.00**, but you
don’t want the entire line to be skipped, filter the characters individually with
Filters = ['#', '$', '*'] instead of collectively with Ignore = ['#$*', '**'].

Missing Data Substitution

PV-WAVE expects to substitute a value from Miss_Vals whenever it encounters a
string from Miss_Str in the data. Consequently, if the number of elements in
Miss_Str does not match the number of elements in Miss_Vals, a nonzero status is
returned and no data is read. The maximum number of values permitted in Miss_Str
and Miss_Vals is 10.

If the end of the file is reached before all variables are filled with data, the
remainder of each variable is set to Miss_Vals(0) if it was specified, or 0 (zero) if
Miss_Vals was not specified. In this case, status is returned with a value less than
zero to signify an unexpected end-of-file condition.

Delimiters in the Input File

Values in the file can be separated by commas, spaces, and any other delimiter
characters specified with the Delim keyword. If you use any other delimiter, the
delimiter character is treated as data and type conversion is attempted. If type
conversion is not possible, status is set to less than zero to signify an error
condition.

NOTE Use a different delimiter to separate data values in the file than you use to
separate the different fields of dates and times, such as months, days, hours, and

DC_READ_FREE Function 225

minutes. Otherwise, your date/time data may not be interpreted correctly. The only
delimiters that can be used inside date/time data are: slash (/), colon (:), hyphen
(–), and comma (,).

Reading Row-Oriented Files

If you include the Row keyword, each variable in var_list is completely filled
before any data is transferred to the next variable.

When reading row-oriented data, only the dimensionality of the last variable in
var_list can be unknown; a variable of length n is created, where n is the number
of values remaining in the file. All other variables in var_list must be pre-
dimensioned.

If you include the Resize keyword with the call to the function DC_READ_FREE,
the last variable can be redimensioned to match the actual number of values that
were transferred to the variable during the read operation.

If you are interested in an illustration showing what row-oriented data can look like
inside a file, see the PV-WAVE Programmer’s Guide.

Reading Column-Oriented Files

If you include the Column keyword, DC_READ_FREE views the data files as a
series of columns, with a one-to-one correspondence between columns in the file
and variables in the variable list. In other words, one value from the first record of
the file is transferred into each variable in var_list, then another value from the next
record of the file is transferred into each variable in var_list, and so forth, until all
the data in the file has been read, or until the variables are completely filled with
data.

If a variable in var_list is undefined, a floating-point variable of length n is created,
where n is the number of records read from the file. To get a similar effect in an
existing variable, include the Resize keyword with the function call.

All variables specified with the Resize keyword are redimensioned to the same
length — the length of the longest column of data in the file. The variables that
correspond to the shortest columns in the file will have one or more values added
to the end; either Miss_Vals(0) if it was specified, or 0 (zero) if Miss_Vals was not
specified.

If you are interested in an illustration demonstrating what column-oriented data can
look like inside a file, see the PV-WAVE Programmer’s Guide.

226 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

For more information about how column-oriented data in a file is read into multi-
dimensional variables, see Multi-dimensional Variables on page 211.

Example 1

The data file shown below is a freely-formatted ASCII file named
monotonic.dat:

1 2 3 4 5
 6 7 8 9 10
11 12 13 14 15
 16 17 18 19 20

The function call:

status = DC_READ_FREE(’monotonic.dat’, var1, $
/Column, Get_Columns=[3])

results in var1=[3.0, 8.0, 13.0, 18.0]. Because var1 was not
predefined, DC_READ_FREE creates it as a resizable one-dimensional floating-
point array.

On the other hand, the commands:

var1 = INTARR(2)

var2 = INTARR(2)

status = DC_READ_FREE(’monotonic.dat’, var1, $
var2, /Column, Get_Columns=[2, 4], Nskip=2)

result in var1=[12, 17] and var2=[14, 19].

Example 2

The data file shown below is a freely-formatted ASCII file named measure.dat:
0 5 10 15 20 25 30 35 40 45 50 56 61 66 71

76 81 86 91

96 101 107 112 117 122 127 132 137 142 147 152 158 163 168 173
178 183 188

193 198 203 209 214 219 224 229 234 239 244 249 255 255 255 255
255 255 255

 255 255 255 255 255

The commands:

var1 = INTARR(5)

var2 = INTARR(5)

DC_READ_FREE Function 227

status = DC_READ_FREE(’measure.dat’, $
var1, var2, Ignore=["$BLANK_LINES"])

result in var1 = [0, 5, 10, 15, 20] and var2 = [25, 30, 35,
40, 45]. Note that the file was interpreted as row-oriented data, since neither the
Row or Column keyword was specified. All totally blank lines are ignored

NOTE If the Resize = [2] keyword had been provided, var2 would have been
resizable and would have ended up having many more elements. Specifically,
var2 would have ended up with 57 elements instead of just 5.

Example 3

The data file shown below is a freely-formatted ASCII file named intake.dat:
151-182-BADY-214-515

316-197-BADX-199-206

The commands:

valve = INTARR(30)

status = DC_READ_FREE(’intake.dat’, $
valve, Miss_Str=["BADX","BADY"], $
Miss_Vals=[9999, –9999], Resize=[1], $
Delim=[’-’])

results in valve=[151, 182, –9999, 214, 515, 316, 197, 9999,
199, 206]. The hyphens in the data are filtered out. Because valve is
resizable, it ends up with 10 elements instead of 30. The two values from Miss_Vals
are substituted for the two strings in the file, "BADX" and "BADY".

Example 4

The data file shown below is a freely-formatted ASCII file named level.dat.
This data file uses the semi-colon (;) and the slash (/) as delimiters, and the comma
(,) to separate the thousands digit from the hundreds digit. This file has three logical
records on every line; at the end of each logical record is a slash:

5,992;17,121/8,348;17,562/5,672;19,451/
5,459;18,659/7,088;17,052/8,541;13,437/
6,362;15,894/8,992;17,509/7,785;14,796/

The commands:

gap = INTARR(20)

bar = INTARR(20)

status = DC_READ_FREE(’level.dat’, gap, bar, $

228 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

/Column, Delim=[’;’, ’/’], Filter=[’,’], $
Resize=[1, 2], Vals_Per_Rec=2)

result in:

gap = [5992, 8348, 5672, 5459, 7088, 8541,

6362, 8992, 7785] and bar = [17121, 17562,

19451, 18659, 17052, 13437, 15894, 17509,

14796].

The commas have been filtered out of the data because of the value of the string
that was provided with the Filter keyword.

Suppose you wanted gap and bar to be dimensioned as 3-by-3 arrays instead of
1-by-9 vectors. The best way to do this is by reading the data with the commands
shown above, and then using the REFORM command to redimension the variables:

gaparr = REFORM(gap, 3, 3)

bararr = REFORM(bar, 3, 3)

By approaching the data transfer in this way, DC_READ_FREE does not expect to
transfer two columns of data into the same multi-dimensional variable.

For example, the following commands demonstrate the problem:

gap = INTARR(3, 3)

bar = INTARR(3, 3)

status = DC_READ_FREE(’level.dat’, gap, bar, $
/Column, Delim=[’;’, ’/’], Filter=[’,’], $
Resize=[1, 2], Vals_Per_Rec=2)

results in:

gap

5992 17121 0

8348 17562 0

5672 19451 0

5459 18659 0

7088 17052 0

8541 13437 0

6362 15894 0

8992 17509 0

7785 14796 0

=

DC_READ_FREE Function 229

and

The data is transferred into gap using the rule, “The first subscript varies fastest.”
With Vals_Per_Rec set to “2”, no value is available for the third column—hence,
every element in the third column is set equal to “0” (zero). Furthermore, notice
that gap gets all the data (it is resizable) and bar gets none of the data.

Example 5

Assume that you have a file, events.dat, that contains some data values and
also some chronological information about when those data values were recorded:

01/01/92 5:45:12 10 01-01-92 3276

02/01/92 10:10:10 15.89 06-15-91 99

05/15/91 2:02:02 14.2 12-25-92 876

The date/time templates that will be used to transfer this data have the following
definitions:

To read the date and time from the first two columns into one date/time variable
and read the third column of floating point data into another variable, use the
following commands:

date1 = REPLICATE({!DT},3)

; The system structure definition of date/time is !DT. Date/time
; variables must be defined as !DT structure arrays before being
; used if the date/time data is to be read as such.

status = DC_READ_FREE("events.dat", date1, $
date1, float1, /Column, $
Dt_Template=[1,-1], Delim=[’ ’])

; The variable date1 is listed twice; this way, both the date data
; and the time data can be stored in the same variable, date1.

To see the values of the two variables, you can use the PRINT command:

Number Template Description

1 MM*DD*YY (* = any delimiter)

–1 HH*MM*SS (* = any delimiter)

bar
0 0 0

0 0 0

0 0 0

=

230 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FOR I = 0,2 DO BEGIN

PRINT, date1(I), float1(I)

; Print one row at a time.
ENDFOR

Executing these statements results in the following output:
{ 1992 01 01 05 45 12.00 87402.240 0}

10.0000 { 1992 02 01 10 10 10.00 87433.424
0} 15.8900 { 1992 05 15 02 02 02.00
87537.035 0} 14.2000

Because date1 is a structure, curly braces, “{” and “}”, are placed around the
output. When displaying the value of date1 and float1, PV-WAVE uses
default formats for formatting the values, and attempts to place as many items as
possible onto each line.

TIP Another alternative to view the contents of date1 and float1 is to use the
DT_PRINT command instead of PRINT.

For more information about the internal organization of the !DT system structure,
see the PV-WAVE Programmer’s Guide.

To read the first, second, fourth, and fifth columns, define an integer array and
another date/time variable, and change the call to DC_READ_FREE as shown
below:

calib = INTARR(3)

date2 = REPLICATE({!DT},3)

status = DC_READ_FREE("events.dat", date1, $
date1, date2, calib, /Column, Delim=[’ ’], $
Get_Columns= [1, 2, 4, 5], Dt_Template = $
[1, -1], Ignore=["$BAD_DATE_TIME"])

Notice how the date/time templates are reused. For each new record, Template 1 is
used first to read the date data into date1. Next, Template –1 is used to read the
time data into date1. Finally, since there is another date/time variable to be read
(date2) and there are no more templates left, the template list is reset and
Template 1 is used again. The template list is reset for each record.

NOTE Because of the internal conversion that DC_READ_FIXED performs to
convert the date strings to PV-WAVE’s date/time internal structure, the date and
time data must be read with the A8 (FORTRAN) or %8s (C) format string.

Normally an error would be reported if the input text to be read as date/time is
invalid and cannot be converted. But because the Ignore=["$BAD_DATE_TIME"]

DC_READ_TIFF Function 231

keyword was provided, any record containing this type of error is ignored and no
error is reported.

See Also

DC_ERROR_MSG, DC_READ_FIXED, DC_WRITE_FREE

See the PV-WAVE Programmer’s Guide for more information about free format
I/O in PV-WAVE.

DC_READ_TIFF Function
Reads a Tag Image File Format (TIFF) file.

NOTE This function was retired with version 6.1, because the new
IMAGE_READ function provides the same capability. Although
DC_READ_TIFF is still available for backward compatibility, we strongly recom-
mend that you use IMAGE_READ instead.

Usage

status = DC_READ_TIFF(filename, imgarr)

Input Parameters

filename — A string containing the pathname and filename of the TIFF file.

Output Parameters

imgarr — The variable into which the TIFF image data is read. May be an array of
any dimension and type; imgarr’s data type is changed to byte and then imgarr is
re-dimensioned using information in the TIFF file. Variables of type structure are
not supported.

Returned Value

status — Value returned by DC_READ_TIFF; expected values are:

< 0 Indicates an error, such as an invalid filename or image number.

0 Indicates a successful read.

232 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

BitsPerSample — The number of bits that comprise each sample in the TIFF image
is returned; a pixel consists of one or more “samples”. BitsPerSample is returned
as an integer; typical values are 2, 4, and 8.

Colormap — The TIFF image colormap. If present, the colormap associated with
the TIFF image is returned. Colormap is returned as a 2-dimensional array of long
integers.

Compression — The compression style used in the TIFF image. Compression is
returned as an integer; expected values are:

Imagelength — The TIFF image length. If present, the TIFF image length is
returned. Imagelength is returned as a long integer value.

Imagewidth — The TIFF image width. If present, the TIFF image width is
returned. Imagewidth is returned as a long integer value.

Imgnum — The number of the image to read from the file. If not provided, the first
image (image number 0) is read.

Order — If nonzero, Order reverses the y-axis direction of the original image. In
other words, if the original image is stored from top to bottom, the returned image
is stored from bottom to top.

PhotometricInterpretation — The class of the TIFF image. If present, retrieves
photometric information from the TIFF image header. PhotometricInterpretation
is returned as an integer; expected values are:

† Transparency mask indicates the image is used to define an irregularly shaped
region of another image in the same TIFF file. PhotometricInterpretation=4 is not
supported by PV-WAVE.

1 None (no compression)

2 CCITT Group 3

5 LZW

32733 PackBits

0 Bilevel/Grayscale

2 Full RGB color

3 Palette color

4 Transparency mask†

DC_READ_TIFF Function 233

The first four classes of TIFF images are explained in more detail in the PV-WAVE
Programmer’s Guide.

PlanarConfig — The arrangement of the RGB information. If present, retrieves
RGB configuration information from the TIFF image header. PlanarConfig is
returned as an integer; expected values are:

The methods for interleaving image data are explained more fully in the PV-WAVE
Programmer’s Guide.

ResolutionUnit — The type of resolution units specified in the TIFF image header.
If present, retrieves unit information from the TIFF image. ResolutionUnit is
returned as an integer; expected values are:

SamplesPerPixel — The number of samples associated with each pixel in the TIFF
image is returned. SamplesPerSample is returned as an integer; expected values
are:

XResolution — The number of pixels per ResolutionUnit in the X direction. If
present, retrieves information about the number of X pixels from the TIFF image
header. XResolution is returned as a floating-point value.

YResolution — The number of pixels per ResolutionUnit in the Y direction. If
present, retrieves information about the number of Y pixels from the TIFF image
header. YResolution is returned as a floating-point value.

For more information about the output keywords described in this section, see the
Technical Memorandum, Tag Image File Format Specification, Revision 5.0
(FINAL), published jointly by Aldus Corporation and Microsoft® Corporation.

1 RGB triplets (pixel interleaving)

2 Separate planes (image interleaving)

1 None (no absolute units)

2 Inches

3 Centimeters

1 Bilevel, Grayscale, Palette color

3 RGB images

234 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

DC_READ_TIFF enables you to import TIFF images into PV-WAVE. It also
handles many steps that you have to do yourself when using other PV-WAVE
functions and procedures. These steps include: 1) opening the file, 2) assigning it
a logical unit number (LUN), and 3) closing the file when you are done reading the
data.

DC_READ_TIFF sets the dimension and type (byte array) of imgarr
automatically, depending on the width and height of the image. For 24-bit images,
the interleaving method (see description of PlanarConfig keyword) is considered,
as well. PV-WAVE uses the following guidelines to dimension imgarr:

The difference between pixel-interleaved and image-interleaved image data is
discussed in the PV-WAVE Programmer’s Guide.

NOTE Compressed TIFF images are uncompressed before being transferred to the
named variable.

Example 1

The function call:

status = DC_READ_TIFF(’oxford.tif’, oximage)

reads the file oxford.tif and returns the TIFF image data contained in the first
image of that file. The data is transferred to the variable oximage.

Example 2

The function call:

status = DC_READ_TIFF(’shamu.tif’, shamu, $
Imagewidth=xsz, Imagelength=ysz, $
PlanarConfig=planar, Photometric=photo)

reads a complete description of the first TIFF image in the file shamu.tif. The
width and length of the image are returned in xsz and ysz, respectively.

Interleaving Method Dimensions of Image Variable

Pixel (RGB triplets) Dimension imgarr as 3 x w x h, where w and h are the
width and length of the image in pixels.

Image (separate
planes)

Dimension imgarr as w x h x 3, where w and h are the
width and length of the image in pixels.

DC_SCAN_CONTAINER Function 235

PlanarConfig and PhotometricInterpretation are returned in planar and photo,
respectively.

The fact that the PlanarConfig keyword is being returned with the function call
suggests that the image in shamu.tif is a full-color RGB (24-bit) image. The
PlanarConfig keyword is used to return the image interleaving method for 24-bit
images.

See Also

DC_ERROR_MSG, DC_WRITE_TIFF, IMAGE_READ

See the PV-WAVE Programmer’s Guide for more information about TIFF image
I/O.

DC_SCAN_CONTAINER Function
Determines the number and location of defined variables in an HP VEE Container
by scanning the file.

Usage

status = DC_SCAN_CONTAINER(filename, num_variables, start_records,
end_records)

Input Parameters

filename — A string containing the path name and filename of the Container file.

Output Parameters

num_variables — The number of variables described within the specified
Container file.

start_records — A long array containing the starting position of each variable
within the Container file. This information can be used as input to the
DC_READ_CONTAINER function to extract a given variable.

end_records — A long array containing the ending position of each variable within
the Container file. This information can be used as input to
DC_READ_CONTAINER to extract a given variable.

236 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value

status — The value returned by DC_READ_CONTAINER indicating the validity
of the returned output parameter information.

Keywords

None.

Discussion

HP VEE is Hewlett-Packard’s Visual Engineering Environment, a graphical
programing language for creating test systems and solving engineering problems.

The Container file format is a proprietary HP ASCII file format which contains a
header description of the enclosed data. PV-WAVE reads this header information
and creates a PV-WAVE variable of the appropriate type and dimension to hold the
enclosed data.

DC_SCAN_CONTAINER enables you to determine the number of variables
described within an HP VEE Container file. The returned parameter arrays
start_records and end_records can be used as inputs to the
DC_READ_CONTAINER function to extract individual variables.

An HP VEE Container file is created in HP VEE by using the Write Container
transaction in the To File object. Please refer to your HP VEE documentation for
more details.

Example

This example shows how to scan a Container file for multiple containers. Then, a
loop is created that reads each container found in the file.

status = DC_SCAN_CONTAINER(!Data_dir+’hpvee_multi.con’, $
num_vars, start_recs, end_recs)

; Scan the container file for multiple containers. Next, loop for every
; container in the file. At this point, you could check num_vars.
; The DC_READ_CONTAINER function can only read 1 container at a time.

FOR I=0, num_vars-1 DO BEGIN

; Make a new name for each variable. There are other ways to do this as well.

 var = ’var’+STRCOMPRESS(STRING(I), /Remove_All)

< 0 Indicates an error, such as an invalid filename or incorrect file format.

0 Indicates a successful read.

DC_WRITE_8_BIT Function 237

 rc= EXECUTE(”status = $
DC_READ_CONTAINER(!Data_dir+’hpvee_multi.con’, ” + $
var+ ”,Start_Record=start_recs(I), End_Record=end_recs(I))”)

ENDFOR

; At the WAVE> prompt, use INFO to show the new variables.

INFO

VAR0 FLOAT = 18.0000

VAR1 COMPLEX = Array(4)

VAR2 FLOAT = Array(10)

See Also

DC_READ_CONTAINER

DC_WRITE_8_BIT Function
Writes 8-bit image data to a file.

Usage

status = DC_WRITE_8_BIT(filename, imgarr)

Input Parameters

filename — A string containing the pathname and filename of the file where the 8-
bit image data is to be stored.

imgarr — The 2D byte array variable from which the 8-bit image data is
transferred.

Returned Value

status — The value returned by DC_WRITE_8_BIT; expected values are:

Keywords

None.

< 0 Indicates an error, such as an invalid filename.

0 Indicates a successful write.

238 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

DC_WRITE_8_BIT handles many steps that you have to do yourself when using
other PV-WAVE functions and procedures. These steps include: 1) opening the
file, 2) assigning it a logical unit number (LUN), and 3) closing the file when you
are done writing the data.

NOTE Only one 8-bit image can be stored at a time when using the
DC_WRITE_8_BIT function.

If imgarr is not a 2D byte array, DC_WRITE_8_BIT returns an error status and no
data is written to the output file.

Example

If fft_flow is a 600-by-800 byte array containing image data, the function call:

status = DC_WRITE_8_BIT(’fft_flow1.img’, fft_flow)

creates the file fft_flow1.img and uses it to store the image data contained in
the variable fft_flow. The file that is created contains raw binary data, and is
easily read with DC_READ_8_BIT.

See Also

DC_ERROR_MSG, DC_READ_8_BIT, DC_WRITE_24_BIT

See the PV-WAVE Programmer’s Guide for more information about 8-bit (binary)
data.

DC_WRITE_24_BIT Function
Writes 24-bit image data to a file.

Usage

status = DC_WRITE_24_BIT(filename, imgarr)

Input Parameters

filename — A string containing the pathname and filename of the file where the
24-bit image data is to be stored.

DC_WRITE_24_BIT Function 239

imgarr — The 3D byte array from which the 24-bit image data is transferred.
Either the first or last dimension of imgarr must be 3; see the Discussion section
for more details.

Returned Value

status — The value returned by DC_WRITE_24_BIT; expected values are:

Keywords

Org — Organization of the 24-bit image data. Allowed values are:

If not provided, 0 (pixel interleaving) is assumed.

Discussion

DC_WRITE_24_BIT handles many steps that you have to do yourself when using
other PV-WAVE functions and procedures. These steps include: 1) opening the
file, 2) assigning it a logical unit number (LUN), and 3) closing the file when you
are done writing the data.

NOTE Only one 24-bit image can be stored at a time when using the
DC_WRITE_24_BIT function.

If imgarr is not a 3D byte array, DC_WRITE_24_BIT returns an error status and
no data is written to the output file. Either the first or last dimension of imgarr must
be equal to 3, as shown in the following table:

< 0 Indicates an error, such as an invalid filename.

0 Indicates a successful write.

0 Pixel interleaving (RGB triplets).

1 Image interleaving (separate planes).

Interleaving Method Dimensions of Image Variable

Pixel (RGB triplets) Dimension imgarr as 3 x w x h, where w and h are the
width and length of the image in pixels.

Image (separate
planes)

Dimension imgarr as w x h x 3, where w and h are the
width and length of the image in pixels.

240 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

The difference between pixel-interleaved and image-interleaved data is discussed
in the PV-WAVE Programmer’s Guide.

Example

If hi_glow is a 400-by-400-by-3 byte array containing 24-bit image data, the
function call:

status = DC_WRITE_24_BIT(’hi_glow.img’, hi_glow, Org=1)

creates the file hi_glow.img and uses it to store the image data contained in the
variable hi_glow, using image interleaving. The file that is created contains raw
binary data, and is easily read with the function DC_READ_24_BIT.

See Also

DC_ERROR_MSG, DC_READ_24_BIT, DC_WRITE_8_BIT

See the PV-WAVE Programmer’s Guide for or more information about 24-bit
(binary) data.

Windows USERS For an example showing how to use DC_WRITE_FREE to
export data from PV-WAVE into a Microsoft® Excel spreadsheet, see the
PV-WAVE Programmer’s Guide.

DC_WRITE_DIB Function (Windows)
Writes image data from a variable to a Device Independent Bitmap (DIB) format
file.

Usage

status = DC_WRITE_DIB(filename, imgarr)

Input Parameters

filename — A string containing the pathname and filename of the DIB file.

imgarr — The variable containing the image data to be saved as a DIB file.

DC_WRITE_DIB Function (Windows) 241

Returned Value

status — Value returned by DC_WRITE_DIB; expected values are:

Keywords

ColorClass — An integer specifying the DIB color class level. If not provided,
ColorClass=2 is assumed. Valid values are 2, 16, and 256.

ColorsUsed — The number of colors that the bitmap image uses. If this keyword
is not provided, it is set to the number of elements in SystemPalette or Palette if one
of them is provided; otherwise, ColorsUsed defaults to 2.

Compression — A string that specifies the kind of image data compression to use
as the data is written to the file. This keyword is valid only if ColorClass is
specified as 16 or 256. If this keyword is not provided, no compression is
performed. Valid values are:

’None’ — None (no compression)

’RLE4’ — Run-length encoded format for bitmaps with 4 bits per pixel

’RLE8’ — Run-length encoded format for bitmaps with 8 bits per pixel

ImportantColors — The number of important colors that the bitmap image needs
to display. If not provided, ImportantColors defaults to 0.

Palette — Specifies a color table to be saved with the DIB file. Palette must be a 3-
by-n array of integers, where n is either 1, 16, or 256. n specifies the number of
colors associated with the bitmap. If the ColorClass keyword is set to 2, then the
Palette keyword is ignored and a monochrome color table is saved.

SystemPalette — If set to a nonzero value, this keyword causes the system color
table to be saved with the DIB file. SystemPalette always takes precedence over the
Palette keyword.

Discussion

Device Independent Bitmap (DIB) is a bitmap format that is useful for transporting
graphics and color table information between different devices and applications in
the Windows environment. DIB files can be produced by graphics applications
such as Microsoft Image Editor, Microsoft Paintbrush, and PV-WAVE.

< 0 Indicates an error, such as an invalid filename.

0 Indicates a successful write.

242 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

You must specify a color table to be saved with the DIB file, or an error is returned.
The Palette and SystemPalette keywords let you specify a color table.

DC_WRITE_DIB exports DIB images from PV-WAVE. It handles: 1) opening the
file, 2) assigning it a logical unit number (LUN), and 3) closing the file when you
are done writing the data.

If imgarr is not a 2- or 3-dimensional byte array, the function DC_WRITE_DIB
returns an error status and no data is written to the output file.

Example

If the variable maverick is a 512-by-512 byte array, the function call:

status = DC_WRITE_DIB(’mav.bmp’, maverick, $
ColorClass = 256, Compression = None’, $
/SystemPalette)

creates the file mav.bmp and uses it to store the system color table and the image
data contained in the variable maverick. The created DIB file is not compressed
and has a color class of 256.

See Also

DC_READ_DIB, WREAD_DIB, WWRITE_DIB

For more information, see the PV-WAVE Programmer’s Guide.

DC_WRITE_FIXED Function
Writes the contents of one or more variables (in ASCII fixed format) to a file using
a format that you specify.

Usage

status = DC_WRITE_FIXED(filename, var_list)

Input Parameters

filename — A string containing the pathname and filename of the file where the
data will be stored.

var_list — The list of variables containing the values to be written. Note that
variables of type structure are not supported. An exception to this is the !DT, or
date/time, structure. It is possible to transfer date/time data using this routine.

DC_WRITE_FIXED Function 243

Returned Value

status — The value returned by DC_WRITE_FIXED; expected values are:

Keywords

Column — A flag that signifies filename is to be written as a column-organized file.

Dt_Template — An array of integers indicating the data/time templates that are to
be used for interpreting date/time data. Positive numbers refer to date templates;
negative numbers refer to time templates. For more details, see
DC_WRITE_FREE, Example 4 on page 254. To see a complete list of date/time
templates, see the PV-WAVE Programmer’s Guide.

Format — A string containing the C- or FORTRAN-like format statement that will
be used to write the data. The format string must contain at least one format code
that transfers data; FORTRAN formats must be enclosed in parentheses. If not
provided, C format(s) that match the data type(s) of the variables in var_list are
assumed; for example %lf for float, %i for integer, and %s for string.

Miss_Str — An array of strings that specifies strings that are substituted in the
output file (to represent missing data) for each value in Miss_Vals. If not provided,
no strings are substituted for missing data.

Miss_Vals — An array of integer or floating-point values, each of which
corresponds to a string in Miss_Str. As PV-WAVE writes the data, it checks for
values that match Miss_Vals; whenever it encounters one, it substitutes the
corresponding value from Miss_Str.

Row — A flag that signifies filename is to be written as a row-organized file. If
neither Row nor Column is present, Row is the default.

Discussion

DC_WRITE_FIXED is capable of interpreting either FORTRAN-or C-style
formats, and is very adept at storing data in a column-oriented manner. Also,
DC_WRITE_FIXED handles many steps that you have to do yourself when using
other PV-WAVE functions and procedures. These steps include: 1) opening the
file, 2) assigning it a logical unit number (LUN), and 3) closing the file when you
are done writing the data.

If neither the Row or Column keywords are provided, the data is stored in rows. If
both keywords are used, the Row keyword is assumed.

< 0 Indicates an error, such as an invalid filename or an I/O error.

0 Indicates a successful write.

244 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

NOTE This function can be used to write data from date/time structures, but not
from any other kind of structures.

How the Data is Written to the File

As many as 2048 variables can be included in the output argument var_list. You
can use the continuation character ($) to continue the function call onto additional
lines, if needed. The entire contents of each variable in var_list is written to the
specified file. If an error occurs, a nonzero status is returned.

NOTE Any variable you include in var_list must have been previously created;
otherwise, an error occurs.

As data is being transferred from multi-dimensional variables, those variables are
treated as collections of scalar variables, meaning the first subscript of the export
variable varies the fastest. For two-dimensional export variables, this implies that
the column index varies faster than the row index. In other words, data transfer is
row major; it occurs one row at a time. For more details about storing multi-
dimensional variables in a column-oriented manner, see Writing Column-Oriented
Data on page 245.

The format string is processed from left to right. Record terminators and format
codes are processed until no variables are left in var_list or until an error occurs. In
a FORTRAN format string, when a slash record terminator (/) is encountered, a
new output record is started.

Format codes that transfer data are matched with the next available variable (or
element of a multi-dimensional variable) in the variable list var_list. Data is written
to the file and formatted according to the format code. If the data in the variable
does not agree with the format code, or the format code does not agree with the type
of the variable, a type conversion is performed. If no type conversion is possible,
an error results and a nonzero status is returned.

Once all variables in the variable list have been stored in the file,
DC_WRITE_FIXED stops writing data, and returns a status code of zero (0). This
is true even if there are format codes in Format that did not get used. Even if an
error occurs, and status is nonzero, the data that was written successfully (prior to
the error) is left intact in the file.

DC_WRITE_FIXED Function 245

TIP If an error does occur, view the contents of the file (using an operating system
command) to see how much data was transferred. This will enable you to isolate
the portion of the variable list in which the error occurred.

If the format string does not contain any format codes that transfer data, an error
occurs and a nonzero status is returned. The format codes that PV-WAVE
recognizes are listed in the PV-WAVE Programmer’s Guide. If a format code that
does not transfer data is encountered, it is processed as discussed in that appendix.

Format Reversion when Writing Data

If the last closing parenthesis of the format string is reached and there are still
variables in var_list whose contents have not been written to the file, format
reversion occurs. In format reversion, the current output record is terminated, a new
one is started, and format string processing reverts to the first group repeat
specification that does not have an explicit repeat count. If the format does not
contain a group repeat specification, format processing reverts to the initial opening
parenthesis of the format string.

For more information about format reversion and group repeat specifications, see
the PV-WAVE Programmer’s Guide.

Missing Data String Substitution while Writing Data

PV-WAVE expects to substitute a string from Miss_Str whenever it encounters a
value from Miss_Vals in the data. Conse-quently, if the number of elements in
Miss_Str does not match the number of elements in Miss_Vals, a nonzero status is
returned and no data is written to the file. The maximum number of values
permitted in Miss_Str and Miss_Vals is 10.

Writing Row-Oriented Data

If the Row keyword has been provided, each variable in var_list is written to the
file in its entirety before any data is transferred from the next variable.

If you are interested in an illustration showing what row-oriented data can look like
inside a file, see the PV-WAVE Programmer’s Guide.

Writing Column-Oriented Data

The following table shows how variables of any dimensions are stored in a
columnar format:

246 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

If you are interested in an illustration demonstrating what column-oriented data can
look like inside a file, see the PV-WAVE Programmer’s Guide.

Example 1

If variable sara is a floating-point array with 10 elements all equal to 1.0, tana
is a floating-point array with 5 elements all equal to 2.0, and cora is a floating-
point array with 8 elements all equal to 3.0, the function call:

status = DC_WRITE_FIXED(’outfile.dat’, sara, $
tana, cora, Format="(5(1X, F7.4))")

creates outfile.dat containing the following values:

..1.0000..1.0000..1.0000..1.0000..1.0000

..1.0000..1.0000..1.0000..1.0000..1.0000

..2.0000..2.0000..2.0000..2.0000..2.0000

..3.0000..3.0000..3.0000..3.0000..3.0000

..3.0000..3.0000..3.0000

The periods are used to represent blank spaces in the file.

Example 2

If variable bogus is a 2-by-4 integer array with values 1 through 4 in the first
column and values 5 through 8 in the second column, the following function call:

status=DC_WRITE_FIXED(’intfile.dat’,/Column, bogus, Format=’(I5)’)

replicates that structure in the created file intfile.dat, as shown below:

Dimensions
of Variable

Organization of Saved File

One-dimensional
(1 x n)

One value from each variable written to each record
(repeated n times)

Two-dimensional
(m columns by n rows)

m values from each variable written to each record
(repeated n times)

Three-dimensional
(m x n x p)

m values from each variable written to each of n
records (entire process repeated p times)

q-dimensional
(m x n x p x q)

m values from each variable written to each of n
records (above process repeated p times)
(entire process repeated q times)

DC_WRITE_FIXED Function 247

....1....5
....2....6
....3....7
....4....8

The periods are used to represent blank spaces in the file.

On the other hand, the following function call:

status = DC_WRITE_FIXED(’intfile.dat’, $
bogus(1,*), Format=’(4I5)’)

with a slightly different format string, results in four values all being written in the
same record, using a row orientation:

....5....6....7....8

Because of the array subscripting notation used in the function call, only the second
column of data values is written to the file. Without the “4” inside the parentheses
of the format string, each value would have been written on a separate line in the
file.

Example 3

If variable foo is a floating-point array with 6 elements all equal to 1.0, hoo is a
floating-point array with 6 elements all equal to 2.0, doo is a floating-point array
with 6 elements all equal to 3.0, and boo is a floating-point array with 6 elements
all equal to 4.0, the function call:

status = DC_WRITE_FIXED(’omni.dat’, foo, $
hoo, doo, boo, Format="%f, %f, %f, %f", $
/Column)

creates an output file omni.dat that is organized as shown below:
1.0000, 2.0000, 3.0000, 4.0000

1.0000, 2.0000, 3.0000, 4.0000

1.0000, 2.0000, 3.0000, 4.0000

1.0000, 2.0000, 3.0000, 4.0000

1.0000, 2.0000, 3.0000, 4.0000

1.0000, 2.0000, 3.0000, 4.0000

The data is arranged in columns. The C format code "%f, " causes a comma
followed by a space to be inserted after every value written to the file.

TIP An even easier way to write this data is to use another “DC” function,
DC_WRITE_FREE. The DC_WRITE_FREE function writes CSV (Comma Sep-

248 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

arated Values) data by default, or you can use the Delim keyword to specify some
other delimiter besides the comma.

Example 4

Assume that you have two variables, float and date, that contain some data
values and also some chronological information about when those data values were
recorded:

date = STR_TO_DT([’10/10/92’, ’11/11/92’, ’12/12/92’]

float = [1.2, 3.4, 5.6]

The STR_TO_DT function creates a date/time variable date. For more
information on the internal structure of date/time structure variables, see the
PV-WAVE Programmer’s Guide.

In this example, date/time Template 1 (MM/DD/YY) is used to transfer this data,
which means the month, day, and year will be written as adjacent values separated
by a slash (/).

If you enter the following command:

status = DC_WRITE_FIXED("thymus.dat", $
date, float, /Column, Dt_Template=[1], $

Format="(A10, 1X, F4.2)")

you create a file that looks like this:

10/10/1992 1.20

11/11/1992 3.40

12/12/1992 5.60

Notice that date data is written into the file thymus.dat as a series of strings. In
each new output record, Template 1 is used to write the data from date, using the
A10 character format, and a value from float is written, using the F4.2 format.

NOTE If you have date and time data stored in the same variable, the variable must
be listed twice in the variable list in order to extract both the date and time data. For
more details, see DC_READ_FREE, Example 4 on page 254.

Example 5

Suppose you have a number of variables that contain data about recent phone
activity. The names of these variables are date, time, mins, type, ext, cost,

DC_WRITE_FIXED Function 249

and num_called. The following command writes this information to a file and
organizes the values by columns:

status = DC_WRITE_FIXED(’phonedata.dat’, $
date, time, mins, type, ext, cost, $
num_called, /Column, $
Format="%s %s %5.2f %i %i %5.2f %s")

In this example, date and time are variables with a data type of string. Because
they are not defined as a date/time structure, such as the variable date that was
part of the previous example, date and time are not stored using any of the date
or time templates. Thus, there is no need to include the Dt_Template keyword as
part of the function call.

The result is a file phonedata.dat that is organized as shown below:

901002 093200 21.40 1 311 5.78 2158597430

901002 093600 51.56 1 379 13.92 2149583711

901002 093700 61.39 2 435 16.58 9137485920

The following function call could be used instead of the one shown above if you
prefer to use a FORTRAN-style format string:

status = DC_WRITE_FIXED(’phonedata.dat’, $
date, time, mins, type, ext, cost, $
num_called, /Column, Format="(A6,1X,A6,"+ $
"2X,F5.2,4X,I2,4X,I3,2X,F5.2,1X,A12)")

NOTE If you wish to enter a format string similar to the FORTRAN one shown
above, try to get the entire format string on the same line. Otherwise, use the string
concatenation operator (+), as shown in the above example, to split the format
string into two shorter strings.

See Also

DC_ERROR_MSG, DC_READ_FIXED, DC_WRITE_FREE

See the PV-WAVE Programmer’s Guide for more information about fixed format
I/O in PV-WAVE.

250 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DC_WRITE_FREE Function
Writes the contents of one or more variables to a file in ASCII free format.

Usage

status = DC_WRITE_FREE(filename, var_list)

Input Parameters

filename — A string containing the pathname and filename of the file where the
data will be stored.

var_list — The list of variables containing the values to be written. Note that
variables of type structure are not supported. An exception to this is the !DT, or
date/time, structure. It is possible to transfer date/time data using this routine.

Returned Value

status — The value returned by DC_WRITE_FREE; expected values are:

Keywords

Column — A flag that signifies filename is to be written as a column-organized file.

Delim — A single-character string that will be placed between values in the output
data file. If you provide an array of strings, only the first string in the array will be
used. If not provided, commas are used as delimiters in the file.

Dt_Template — An array of integers indicating the data/time templates that are to
be used for interpreting date/time data. Positive numbers refer to date templates;
negative numbers refer to time templates. For more details, see Example 4 on page
254. To see a complete list of date/time templates, see the PV-WAVE Programmer’s
Guide.

Miss_Str — An array of strings that are substituted in the output file (to represent
missing data) for each value in Miss_Vals. If not provided, no strings are
substituted for missing data.

Miss_Vals — An array of integer or floating-point values, each of which
corresponds to a string in Miss_Str. As PV-WAVE writes the data, it checks for

< 0 Indicates an error, such as an invalid filename or an I/O error.

0 Indicates a successful write.

DC_WRITE_FREE Function 251

values that match Miss_Vals; whenever it encounters one, it substitutes the
corresponding value from Miss_Str.

Row — A flag that signifies filename is to be written as a row-organized file. If
neither Row nor Column is present, Row is the default.

Discussion

DC_WRITE_FREE is very adept at storing data in a column-oriented manner.
Also, DC_WRITE_FREE handles many steps that you have to do yourself when
using other PV-WAVE functions and procedures. These steps include: 1) opening
the file, 2) assigning it a logical unit number (LUN), and 3) closing the file when
you are done writing the data.

DC_WRITE_FREE relieves you of the task of composing a format string to
describe the organization of the data in the output file. By default,
DC_WRITE_FREE generates CSV (Comma Separated Values) files. However,
you can override this default by using the Delim keyword to provide a different
delimiter, if you wish.

If neither the Row or Column keywords are provided, the data is stored in rows. If
both keywords are used, the Row keyword is assumed.

NOTE This function can be used to write data from date/time structures, but not
from any other kind of structures.

How the Data is Written to the File

As many as 2048 variables can be included in the output argument var_list. You
can use the continuation character ($) to continue the function call onto additional
lines, if needed. The entire contents of each variable in var_list is written to the
specified file. If an error occurs, a nonzero status is returned.

NOTE Any variable you include in var_list must have been previously created;
otherwise, an error occurs.

The values in the output file are separated with the character specified with the
Delim keyword. If no Delim keyword is provided, a comma delimiter is used by
default.

As data is being transferred from multi-dimensional variables, those variables are
treated as collections of scalar variables, meaning the first subscript of the export
variable varies the fastest. For two-dimensional export variables, this implies that

252 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

the column index varies faster than the row index. In other words, data transfer is
row major; it occurs one row at a time. For more details about storing multi-
dimensional variables in a column-oriented manner, see Writing Column-Oriented
Data on page 245.

Once all variables in the variable list have been stored in the file,
DC_WRITE_FREE stops writing data, and returns a status code of zero (0). Even
if an error occurs, and status is nonzero, the data that has been written successfully
(prior to the error) is left intact in the file.

TIP If an error does occur, view the contents of the file (using an operating system
command) to see how much data was transferred. This will enable you to isolate
the portion of the variable list in which the error occurred.

Formatting in the Output File

When writing row-organized files, output lines are formatted to be no more than 80
characters. When writing column-organized files, the output line length depends on
the number, type, and dimensions of the variables in var_list.

The various data types are stored using the default formats shown in the following
table:

NOTE When writing data of type string, each string is written to the file, flanked
with a delimiter on each side. This implies that the strings should not contain
delimiter characters if you intend to read the file later with the DC_READ_FREE
function.

Data Type Output Formats used by DC_WRITE_FREE

Byte I4

Integer I8

Long Integer I12

Float G13.6

Double G16.8

Complex '(', G13.6, ',', G13.6, ')'

Double Complex '(', G16.8, ',', G16.8, ')'

String A (character data)

DC_WRITE_FREE Function 253

Writing Row-Oriented Data

If the Row keyword has been provided, each variable in var_list is written to the
file in its entirety before any data is transferred from the next variable.

If you are interested in an illustration showing what row-oriented data can look like
inside a file, see the PV-WAVE Programmer’s Guide.

Writing Column-Oriented Files

PV-WAVE Programmer’s GuideFor more information about how data from multi-
dimensional export variables is stored in a columns in the output file, see Writing
Column-Oriented Data on page 245.

If you are interested in an illustration demonstrating what column-oriented data can
look like inside a file, see the PV-WAVE Programmer’s Guide.

Example 1

If variable sara is a floating-point array with 10 elements all equal to 1.0, tana
is a floating-point array with 5 elements all equal to 2.0, and cora is a floating-
point array with 8 elements all equal to 3.0, the function call:

status = DC_WRITE_FREE(’outfile.dat’, sara, tana, cora, /Row)

creates outfile.dat containing the following values:

1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
2.0000, 2.0000, 2.0000, 2.0000, 2.0000,
3.0000, 3.0000, 3.0000, 3.0000, 3.0000,
3.0000, 3.0000, 3.0000,

A comma is used by default to separate the values in the output file.

Example 2

If variable bogus is a 4-by-4 integer array with values 1 through 4 in the first
column, values 5 through 8 in the second column, values 9 through 12 in the third
column, and values 13 through 16 in the fourth column, the following function call:

status = DC_WRITE_FREE(’intfile.dat’, bogus, Delim=[’,’], /Column)

creates a file intfile.dat, as shown below:
1, 5, 9, 13
2, 6, 10, 14
3, 7, 11, 15
4, 8, 12, 16

254 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Notice that the organization of values in the output file mimics that of the variable,
bogus.

On the other hand, the function call:

status = DC_WRITE_FREE(’intfile.dat’, $
bogus(1,*), /Row, Delim=’*’)

results in the following organization in intfile.dat, as shown below:
5* 6* 7* 8

Because of the array subscripting notation used in the function call, only the second
column of data values is written to the file.

Example 3

Suppose you have three variables that contain data taken from an electronic sensor.
The names of these variables are date, time, and phase_shift. date and
time are long integer vectors, and phase_shift is a vector of complex
(floating-point) values. The function call:

status = DC_WRITE_FREE(’day539.dat’, date, $
time, phase_shift, Delim=’/’, /Column)

results in a file day539.dat that is organized as shown below:

921002/ 091200/(–0.139528, 0.983407)

921002/ 091205/(-0.149962, 0.407378)

921002/ 091210/(1.002340, -0.039187)

921002/ 091215/(1.130523, 0.983482)

921002/ 091220/(-0.947966, 0.171492)

921002/ 091225/(1.275390, 0.789446)

The complex numbers are stored as two floating-point values, separated with a
comma and enclosed in parentheses.

Example 4

Assume that you have two variables, float and date, that contain some data
values and also some chronological information about when those data values were
recorded:

date = [10/10/92 05:45:12,
11/11/92 10:10:51,
12/12/92 23:03:19]

float = [1.2, 3.4, 5.6]

DC_WRITE_FREE Function 255

NOTE The variable date is shown above as a series of strings, even though it is
actually stored in a date/time structure as a series of integer and floating-point
values.

The variable date is a date/time structure, and holds both date and time data. For
more information on the internal structure of date/time structure variables, see the
PV-WAVE Programmer’s Guide.

When you have date and time data stored in the same variable, the variable must be
listed twice in the variable list in order to extract both the date and time data. The
date/time templates that will be used to transfer this data have the following
definitions:

If you enter the following command:

status = DC_WRITE_FREE("thymus.dat", date, $
float, date, /Column, Dt_Template=[1,-1])

you create a file that looks like this:

10/10/92 1.2 5:45:12
11/11/92 3.4 10:10:51
12/12/92 5.6 23:03:19

Notice that data is written from date two different times. In each new output
record, Template 1 is used first to write the date data from date. Next, a value
from float is written, and finally, Template –1 is used to write the time data from
date.

See Also

DC_ERROR_MSG, DC_READ_FREE, DC_WRITE_FIXED

See the PV-WAVE Programmer’s Guide for more information about free format
I/O in PV-WAVE.

Number Template Description

1 MM/DD/YY (/ = delimiter)

–1 HH:MM:SS (: = delimiter)

256 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DC_WRITE_TIFF Function
Writes image data to a file using the Tag Image File Format (TIFF) format.

NOTE This function was retired with version 6.1, since the new IMAGE_WRITE
function provides the same capability. Although DC_READ_TIFF is still available
for backward compatibility, we strongly recommend that you use IMAGE_WRITE
instead.

Usage

status = DC_WRITE_TIFF(filename, imgarr)

Input Parameters

filename — A string containing the pathname and filename of the TIFF file.

imgarr — The 2 or 3-D byte array from which the image data is transferred. Note
that variables of type structure are not supported.

Returned Value

status — The value returned by DC_WRITE_TIFF; expected values are:

Keywords

Class — TIFF class conformance level; supplied as a string. If not provided,
Class='Bilevel' is assumed. Valid values are:

’Bilevel’

’Grayscale’

’Palette Color’

’RGB Full Color’

The strings can be abbreviated to one letter, if you wish.

< 0 Indicates an error, such as an invalid filename or image number.

0 Indicates a successful write.

DC_WRITE_TIFF Function 257

The four classes of TIFF image conformance are explained in more detail in the
PV-WAVE Programmer’s Guide.

Compress — A string that signifies the kind of image data compression to use as
the data is written to the file (if TIFF class 'B' (Bilevel) is specified). If not provided,
no compression is performed. Valid values at this time are:

’None’

’PackBits’

Negative — If set, the dithering function is reversed so that all pixels in the image
that are less than or equal to the threshold are set to 255. All other pixels are set to
0. This keyword is only valid when the Class keyword is set to Bilevel. The
default threshold is 128.

Order — If nonzero, returns the image mirrored in the y-direction. (Default: Do not
mirror the image.)

Palette — The color table to store with the image data if TIFF class P (Palette
Color) is specified. Palette must be a 3-by-256 array of integers.

Threshold — An integer specifying the threshold value for dithering a grayscale
image to a binary image. When the Class keyword is set to Bilevel, the image
is converted to a binary image before being stored to disk. Pixels in the image that
are greater than the threshold level are set to 255. All other pixels are set to 0. This
keyword is only valid when the Class keyword is set to Bilevel. If Bilevel is
specified and no threshold is given, the threshold value defaults to 128.

Discussion

DC_WRITE_TIFF facilitates the exporting of TIFF images from PV-WAVE. It
also handles many steps that you have to do yourself when using other PV-WAVE
functions and procedures. These steps include: 1) opening the file, 2) assigning it
a logical unit number (LUN), and 3) closing the file when you are done writing the
data.

If imgarr is not a 2 or 3-D byte array, DC_WRITE_TIFF returns an error status and
no data is written to the output file.

Requirements of the Various TIFF Classes

If TIFF class 'B' (Bilevel) is specified, you can use the Compress keyword to create
compressed TIFF image files.

258 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

If TIFF class 'P' (Palette Color) is specified, you must use the Palette keyword to
specify a palette array.

If TIFF class 'RGB' (RGB Full Color) is specified, imgarr must be a 3-D byte array
with the last dimension equal to 3. In other words, imgarr must be an image-
interleaved image; pixel-interleaved images cannot be stored in a TIFF file when
using the DC_WRITE_TIFF function. The difference between pixel-interleaved
and image-interleaved data is discussed in the PV-WAVE Programmer’s Guide.

Example 1

If the variable maverick is a 512-by-512 byte array, the function call:

status = DC_WRITE_TIFF(’mav.tif’, maverick, $
Class=’Bi’, Compress=’Pack’)

creates the file mav.tif and uses it to store the image data contained in the
variable maverick. The created TIFF file is compressed and conforms to the
TIFF 'Bilevel' classification.

Example 2

If the variable true is a 400-by-400-by-3 true-color 24-bit image (byte array), the
function call:

status = DC_WRITE_TIFF(’true_c.tif’, true, $
Class=’RGB’)

creates the file true_c.tif and uses it to store the RGB color image data
contained in the variable true; image interleaving is used because the variable is
400-by-400-by-3. The created TIFF file conforms to the TIFF RGB Full Color
classification.

See Also

DC_ERROR_MSG, DC_READ_TIFF, IMAGE_WRITE

See the PV-WAVE Programmer’s Guide for more information about TIFF image
I/O.

DEFINE_KEY Procedure 259

DEFINE_KEY Procedure
Programs a function key with a string value or with an action. Also programs a con-
trol key with an action (UNIX only).

Usage

DEFINE_KEY, key [, value]

Input Parameters

key — The name of a function key to be programmed. Must be a scalar string.
PV-WAVE maintains an internal list of function key names and the escape
sequences they send.

UNIX USERS Under UNIX, if key is not already on PV-WAVE’s internal list, you
must use the Escape keyword to specify the escape sequence; otherwise, key alone
will suffice. The section Standard Function Keys Under UNIX on page 262
describes the standard key definitions; however, available function keys and the
escape sequences they send vary from keyboard to keyboard.

OpenVMS USERS Under OpenVMS, key names are defined by the Screen
Management utility (SMG). The section Standard OpenVMS Function Keys on
page 263 describes some of these keys. For a complete description, see the Open-
VMS RTL Screen Management (SMG$) Manual.

value — (optional) The scalar string that key will be programmed with. Afterwards,
pressing the programmed key results in value being entered as if it had been typed
manually at the keyboard. If value is not present, and no function is specified for
the key with one of the keywords, the key is cleared, and nothing will happen when
it is pressed.

Keywords

NOTE Most of the following keywords work under UNIX only.

Back_Character — (UNIX only) Programs key to move the current cursor position
left one character.

Back_Word — (UNIX only) Programs key to move the current cursor position left
one word.

260 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Delete_Character — (UNIX only) Programs key to delete the character to the left
of the current cursor.

Delete_Forward_Char — (UNIX only) — Programs key to delete the character to
the right of the cursor.

Delete_Line — (UNIX only) Programs key to delete all characters to the left of the
current cursor.

Delete_To_EOL — (UNIX only) Programs key to delete all characters to the right
of the cursor.

Delete_Word — (UNIX only) Programs key to delete the word to the left of the
current cursor.

End_of_Line — (UNIX only) Programs key to move the current cursor to the end
of the line.

Enter_Line — (UNIX only) Programs key to enter the current line. This is the
action normally performed by the <Return> key.

Escape — (UNIX only) Specifies the escape sequence that corresponds to key.
Escape must be a scalar string. See Defining New UNIX Function Keys on page 262
for further details.

Forward_Character — (UNIX only) Programs key to move the current cursor
position right one character.

Forward_Word — (UNIX only) Programs key to move the current cursor position
right one word.

Insert_Overstrike_Toggle — (UNIX only) Programs key to toggle between insert
and overstrike mode. When characters are typed into the middle of a line, insert
mode causes the trailing characters to be moved to the right to make room for the
new ones, while overstrike mode causes the new characters to overwrite the
existing ones.

Match_Previous — Programs key to prompt the user for a string, and then search
the saved command buffer for the most recently issued command that contains that
string. If a match is found, the matching command becomes the current command;
otherwise the last command entered is used.

UNIX USERS Under UNIX, the default match key is the up caret “^” key when
pressed in column 1.

OpenVMS USERS Under OpenVMS, the default match key is <PF1>.

DEFINE_KEY Procedure 261

Next_Line — (UNIX only) Programs key to move forward one command in the
saved command buffer and make it the current command.

Noecho — If nonzero, and value is present, Noecho specifies that when key is
pressed, its value should be entered without being echoed. This is useful for
defining keys that perform actions such as erasing the screen. If Noecho is
specified, the Terminate keyword is assumed to be present and nonzero also.

Previous_Line — (UNIX only) Programs key to move back one command in the
saved command buffer and make it the current command.

Redraw — (UNIX only) Programs key to redraw the current line.

Start_of_Line — (UNIX only) Programs key to move the current cursor to the start
of the line.

Terminate — If nonzero, and value is present, Terminate specifies that pressing key
terminates the current input operation after its value is entered. It acts as an implicit
<Return> added to the end of value.

Discussion

The SETUP_KEYS procedure should be used once at the beginning of the session
to enter the keys for the current keyboard.

It is convenient to include commonly used key definitions in a startup file so that
they will always be available.

NOTE For a discussion of startup files, see the PV-WAVE User’s Guide.

To see information on the currently defined keys, enter:

INFO, /Keys

Defining Control Keys

To define a control key, use the circumflex character (^) before any character A
through Z, either upper or lowercase. For example:

DEFINE_KEY, ’^F’, /Forward_key

This command defines <Control>-F to move the cursor one character to the right.

You cannot bind a control key to a string, and some control keys are used for
process management. For example, <Control>-C is usually used to interrupt a
UNIX process and <Control>-Z is used to suspend a UNIX process. These special
characters are listed in Chapter 2, Getting Started, in the PV-WAVE User’s Guide.

262 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

UNIX USERS The UNIX stty command can be used to rebind tty control
characters or to eliminate them altogether. Refer to the stty man page for more
information.

Defining New UNIX Function Keys

To add a definition for a function key that is not built into PV-WAVE’s default list
of recognized keys, use the Escape keyword to specify the escape sequence it
sends. For example, to add a function key named <HELP> which sends the escape
sequence <Escape> [28~, use the command:

DEFINE_KEY, ’HELP’, Escape = ’\033[28~’

This command adds the <HELP> key to the list of keys understood by PV-WAVE.
Since only the key name and escape sequence were specified, pressing the
<HELP> key will do nothing. The value parameter, or one of the keywords
provided to specify command line editing functions, could have been included in
the above statement to program it with an action.

Once a key is defined using the Escape keyword, it is contained in the internal list
of function keys. It can then be subsequently re-defined without specifying the
escape sequence.

However, if the SETUP_KEYS procedure is used to define the function keys found
on the keyboard, it is not necessary to specify the Escape keyword. For example,
the following statements program the <F2> key on a Sun keyboard to redraw the
current line:
SETUP_KEYS

DEFINE_KEY, ’F2’, /Redraw

Standard Function Keys Under UNIX

Under UNIX, PV-WAVE can handle arbitrary function keys. Standard UNIX key
definitions are listed in the following table.

NOTE SunOS users, the function keys R8, R10, R12, and R14 (the arrow buttons)
are reserved and cannot be set with DEFINE_KEY. Also, the L1—L10 keys are
reserved for use by the window manager and cannot be set with DEFINE_KEY.

DEFINE_KEY Procedure 263

Standard OpenVMS Function Keys

Under OpenVMS, PV-WAVE uses the SMG screen-management package, which
ensures that PV-WAVE command editing will behave in the standard OpenVMS
way. Therefore, it is not possible to use a key SMG does not understand. Some of
the most commonly used SMG-defined keys are listed in the following table:

UNIX Line Editing Keys

Editing Key Function

<Control> <A> Move cursor to start of line.

<Control> Move cursor left one word.

<Control> <D> EOF if current line is empty, EOL otherwise.

<Control> <E> Move to end of line.

<Control> <F> Move cursor right one word.

<Control> <N> Move back one line in recall buffer.

<Control> <R> Redraw current line.

<Control> <U> Delete from current position to start of line.

<Control> <W> Delete previous word.

<Backspace>,
<Delete>

Delete previous character.

<Escape> <I> Overstrike/Insert mode toggle.

<Escape> <Delete> Delete previous word.

Up Arrow Move back one line in recall buffer.

Down Arrow Move forward one line in recall buffer.

Left Arrow Move left one character.

Right Arrow Move right one character.

<R13> Move cursor left one word (Sun keyboard).

<R15> Move cursor right one word (Sun keyboard).

text If first character, recall first line containing text; if text
is blank, recall previous line.

other characters Insert the character at the current cursor position.

264 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Standard Function Keys Under Windows

Standard key definitions for PV-WAVE running under Windows are listed in the
following table:

OpenVMS Line Editing Keys

Key Name Comment

<DELETE>

<PF1> Recall most recent command that matches supplied
string.

<PF2> — <PF4> Top row of keypad.

<KP0> — <KP9> Keypad 0-9 keys.

<ENTER> Keypad ENTER key.

<MINUS> Keypad “–” key.

<COMMA> Keypad “,”key.

<PERIOD> Keypad “.” key.

<FIND> Editing keypad FIND key.

<INSERT_HERE> Editing keypad INSERT_HERE key.

<REMOVE> Editing keypad REMOVE key.

<SELECT> Editing keypad SELECT key.

<PREV_SCREEN> Editing keypad PREV_SCREEN key.

<NEXT_SCREEN> Editing keypad NEXT_SCREEN key.

Windows Function Keys

Editing Key Function

<Control> <A> Move cursor to start of line.

<Control> Move cursor left one word.

<Control> <D> EOF if current line is empty, EOL otherwise.

<Control> <E> Move to end of line.

<Control> <F> Move cursor right one word.

DEFINE_KEY Procedure 265

Example

You can define the <F12> key to execute INFO, /Keys with the statement:

DEFINE_KEY, /Terminate, ’F12’, ’INFO, /Keys’

the INFO, /Keys command produces output that includes the line:

F12 <\03[P> = INFO, /Keys <Terminate>

<Control> <N> Move back one line.

<Control> <R> Redraw current line.

<Control> <U> Delete from current position to start of line.

<Control> <W> Delete previous word.

<Backspace>,
<Delete>

Delete previous character.

Escape <Delete> Delete previous word.

<Control>text If the line is empty, find the last command
matching text.

Up Arrow Move back one line.

Down Arrow Move forward one line.

Left Arrow Move left one character.

Right Arrow Move right one character.

Insert/Overstrike Toggle between insert and overstrike mode.

Page Down Move forward one line.

Page Up Move back one line.

End Move to the end of the current line.

Home Move to the start of the current line.

Insert Toggle between insert and overstrike mode.

<F3> Execute the INFO command.

<F2> Run the PV-WAVE Gallery.

<F1> Run the online help system.

Windows Function Keys (Continued)

Editing Key Function

266 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

showing the new key definition.

See Also

SETDEMO, SETUP_KEYS

DEFROI Function
Standard Library function that defines an irregular region of interest within an
image by using the image display system and the mouse.

Usage

result = DEFROI(sizex, sizey [, xverts, yverts])

Input Parameters

sizex — The size of the image, in pixels, in the x direction.

sizey — The size of the image, in pixels, in the y direction.

Output Parameters

xverts — (optional) The x-coordinates of the vertices enclosing the region.

yverts — (optional) The y-coordinates of the vertices enclosing the region.

Returned Value

result — A vector containing the subscripts of the pixels inside the region.

Keywords

Noregion — If nonzero, inhibits the return of the pixel subscripts.

Xo — The x-coordinate of the lower-left corner of the image in the window. Screen
device coordinates are used.

Yo — The y-coordinate of the lower-left corner of the image in the window. Screen
device coordinates are used.

Zoom — The zoom factor to be used for displaying the image. If omitted, 1 is
assumed.

DEFROI Function 267

Discussion

DEFROI lets you interactively select a portion of an image for further processing—
simply point with the mouse to the vertices of an irregular polygon containing the
region of interest inside the image.

The write mask for the display is set so that only bit 0 may be written. Bit 0 is
erased for all pixels and is used to draw the outline of the region. (This may have
to be changed to fit the capabilities and procedures of your device.) The common
block COLORS is used to obtain the current color table, which is modified and then
restored. The color tables are loaded with odd values complemented and even
values unchanged.

A message is printed to assist you in selecting the region with the mouse. The
POLYFILLV function is used to compute the subscripts within the region.

Example

This example uses DEFROI to define a region of interest within an image. The
subscripts of pixels within the region, which are returned by DEFROI, are used to
invert the colors within the region of interest. The pixels outside the region are not
altered.

OPENR, unit, FILEPATH(’whirlpool.img’, $

Subdir = ’data’), /Get_Lun

; Open the whirlpool.img file.

a = ASSOC(unit, BYTARR(512, 512))

; Associate a 512-by-512 byte array with the file unit number
; of whirlpool.img.

g = a(0)

; Read the galaxy image into the variable g.

FREE_LUN, unit

; Free the file unit number in unit.

!Order = 1

LOADCT, 3

; Load the red temperature color table. Scale the array containing
; the image so that the maximum color used is !D.N_Colors.

g = BYTSCL(g, Top = !D.N_Colors)

; Display the image.

WINDOW, 0, Xsize = 512, Ysize = 512

TV, g

268 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

subs = DEFROI(512, 512)

; Define a region of interest using DEFROI.

Figure 2-16 Galaxy image with region of interest defined by DEFROI.

g(subs) = !D.N_Colors - g(subs)

; Invert the colors of pixels that lie within the specified region.

TV, g

; Display the resulting image.

DEFSYSV Procedure 269

Figure 2-17 Galaxy image with region of interest inverted.

See Also

POLYFILLV

DEFSYSV Procedure
Creates a new system variable initialized to the specified value.

Usage

DEFSYSV, name, value [, read_only]

Input Parameters

name — A scalar string containing the name of the system variable to be created.
All system variables must begin with the ! character.

value — An expression from which the type, structure, and initial value of the new
system variable is taken. May be a scalar, array, or structure.

270 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

read_only — (optional) If present and nonzero, causes the resulting system variable
to be read-only. Otherwise, the value for name may be modified.

Keywords

None.

DIscussion

System variables can be defined at any program level (in functions and procedures,
and at the main program level).

Example

This example uses procedure DEFSYSV to create read-only system variables to
hold the constant e, which is the base of the natural logarithm, in both single-
precision and double-precision forms.

DEFSYSV, ’!e’, 2.71828, 1

; Create the single-precision system variable containing e.

DEFSYSV, ’!de’, 2.718218D, 1

; Create the double-precision system variable containing e.

INFO, /System_Variables

; Use the INFO procedure to display all system variables.
.

.

.

!DE = 2.7182180

.

.

.

!E = 2.71828

.

.

.

DELETE_SYMBOL Procedure (OpenVMS) 271

DELETE_SYMBOL Procedure (OpenVMS)
Deletes a DCL (Digital Command Language) interpreter symbol from the current
process.

Usage

DELETE_SYMBOL, name

Input Parameters

name — A scalar string containing the name of the symbol to be deleted.

Keywords

Type — Indicates the OpenVMS table from which name will be deleted:

Example
DCL COMMAND LINE> my_sym :== dev:[mydir]my.exe

DCL COMMAND LINE> wave

. . .

WAVE> DELETE_SYMBOL, ’my_sym’, Type=2

See Also

DELLOG, GET_SYMBOL, SETLOG, SET_SYMBOL, TRNLOG

1 Specifies the local symbol table (the default).

2 Specifies the global symbol table.

272 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DEL_FILE Procedure
Deletes a specified file on your system.

Usage

DEL_FILE, filename

Input Parameters

filename — A string containing the full pathname of the file to be deleted.

Keywords

None.

Discussion

This function uses SPAWN to execute a platform-specific command to delete the
specified file.

OpenVMS USERS On OpenVMS systems this function deletes all versions of
the specified file.

UNIX Example 1
full_name = FILEPATH(’myproc.pro’, Subdirectory=’lib/user’)

PRINT, full_name

/usr/local/vni/wave/lib/usr/myproc.pro

DEL_FILE, full_name

UNIX Example 2
DEL_FILE, FILEPATH(’scratch10’,/Tmp)

OpenVMS Example 1
full_name = FILEPATH(’myproc.pro’, Subdirectory=’lib.user’)

PRINT, full_name

WAVE_DIR:[lib.user]myproc.pro

DEL_FILE, full_name

DELFUNC Procedure 273

OpenVMS Example 2
DEL_FILE, FILEPATH(’scratch10’,/Tmp)

Windows Example 1
full_name = FILEPATH(’myproc.pro’, Subdirectory=’lib\user’)

PRINT, full_name

d:\vni\wave\lib\user\myproc.pro

DEL_FILE, full_name

Windows Example 2
DEL_FILE, FILEPATH(’scratch10’,/Tmp)

See Also

FINDFILE, SPAWN (UNIX/OpenVMS), SPAWN (Windows)

DELFUNC Procedure
Deletes one or more compiled functions from memory.

Usage

DELFUNC, function1 ,..., functionn

Input Parameters

functioni — (string) The name of a compiled function to delete.

Keywords

All — When present and nonzero, deletes all currently compiled functions. When
this keyword is used, all other parameters are ignored.

Discussion

Use this procedure to free the memory taken by compiled functions. You can obtain
a list of compiled functions by entering: INFO, /Routines.

274 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Example
INFO, /Routines

Saved Procedures:

LOADCT table_number "SILENT"

Saved Functions:

DIST n

FILEPATH filename "SUBDIRECTORY"

DELFUNC, "Filepath", "Dist"

; Deletes compiled FILEPATH and DIST functions from memory.

See Also

DELPROC, DELSTRUCT, DELVAR

DELLOG Procedure (OpenVMS)
Deletes a logical name.

Usage

DELLOG, logname

Input Parameters

logname — A scalar string containing the name of the logical to be deleted.

Keywords

Table — A scalar string giving the name of the logical table from which to delete
logname. If Table is not specified, the system LNM$PROCESS_TABLE is used.

See Also

DELETE_SYMBOL, GET_SYMBOL, SETLOG, SET_SYMBOL, TRNLOG

DELPROC Procedure 275

DELPROC Procedure
Deletes one or more compiled procedures from memory.

Usage

DELPROC, procedure1 ,..., proceduren

Input Parameters

procedurei — A string containing the name of a compiled procedure to be deleted.

Keywords

All — When present and nonzero, deletes all currently compiled procedures. When
this keyword is used, all other parameters are ignored.

Discussion

Use this procedure to free the memory taken by compiled procedures. You can
obtain a list of compiled procedures by entering: INFO, /Routines.

Example
INFO, /Routines

Saved Procedures:

LOADCT table_number "SILENT"

Saved Functions:

DIST n

FILEPATH filename "SUBDIRECTORY"

DELPROC, "Loadct"

; Deletes the compiled LOADCT procedure from memory.

See Also

DELFUNC, DELSTRUCT, DELVAR

276 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DELSTRUCT Procedure
Deletes one or more named structure definitions from memory.

Usageh

DELSTRUCT, {structure1} ,..., {structuren}

Input Parameters

structurei — The name of the structure definition to be deleted. The name can be
specified as {structure}, "structure", or x, where x is a variable of type structure.

Keywords

All — If nonzero, deletes all named structure definitions not currently being
referenced by a variable.

Rename — If present and nonzero, this keyword causes the structure definition to
be re-named. DELSTRUCT cannot delete a structure definition if it is currently
being used (referenced) by a variable, common block, or other structure definition.
If a structure is being used and Rename is given, then the structure definition will
be renamed. If the structure is not being used, it will be deleted.

Unnall — If nonzero, deletes all unnamed structure definitions not currently being
referenced by a variable.

Discussion

DELSTRUCT is useful for freeing memory that is currently taken by unused
structure definitions. In addition, this procedure can be used if you need to correct
an existing structure definition. To do this, delete the incorrect definition and then
create a new, correct structure definition.

If the structure definition is not currently referenced by any variables, other
structure definitions, or common blocks, then the structure is deleted. If any
references to structure exist, then, by default, you receive an error message and the
structure is not deleted. The Rename keyword overrides this default, and renames
the existing structure so that the structure name can be reused. When the Rename
keyword is used, the original variables remain valid (continue to reference the
renamed structure definition); however, no memory is freed.

Use the STRUCTREF function to determine if a structure is currently referenced
by any variables, common blocks, or other structure definitions.

DELVAR Procedure 277

TIP You cannot delete structure definitions that are system structure definitions,
such as !Axis and !Plot, or any structures that begin with an exclamation mark (!).
Therefore, if you want to create a new structure that cannot be deleted, begin its
name with an exclamation mark (!).

Example
x = {struct1, a:float(0)}

; Create a structure.
DELVAR, x

; Delete the variable.
DELSTRUCT, {struct1}

x = {struct1, a:double(0)}

; Now delete and recreate the structure, changing the data
; type of x.a.

See Also

DELFUNC, DELPROC, DELVAR, STRUCTREF

For more information on structures, see the PV-WAVE Programmer’s Guide.

DELVAR Procedure
Deletes variables and their symbols from $MAIN$, the main program level of
PV-WAVE.

Usage

DELVAR, var1, ... ,varn

Input Parameters

vari — One or more named variables to be deleted.

Keywords

All — If specified, deletes all variables and their symbols on the main program
level.

278 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

DELVAR may be called from any program level to delete a variable from the main
program level. If DELVAR is called from the main program level, the variable is
directly deleted.

When DELVAR is used to delete a local variable, the variable is also deleted from
the main program level. If DELVAR is called from a procedure, one of the two
following requirements applies:

• UPVAR must be used to bind the local variable on the procedure level to the
variable on the main program level.

• The variable on the main program level must be passed as a parameter to the
procedure or function from which DELVAR is called.

Example

This example creates three variables of differing type and structure, then deletes
them using DELVAR.

a = FINDGEN(3)

; Create a single-precision, floating-point vector, a.

b = {structb, field1:1.0, field2:[5, 6, 7], $

field3:"pv-wave"}

; Create an anonymous structure, b.

c = 6L

; Create a longword scalar, c.

INFO, a, b, c

A FLOAT = Array(3)

B STRUCT = -> STRUCTB Array(1)

C LONG = 6

DELVAR, a, c

; Delete variables a and c.

INFO, a, b, c

A UNDEFINED = <Undefined>

B STRUCT = -> STRUCTB Array(1)

C UNDEFINED = <Undefined>

DELVAR, b

; Delete variable b.

INFO, a, b, c

A UNDEFINED = <Undefined>

DERIV Function 279

B UNDEFINED = <Undefined>

C UNDEFINED = <Undefined>

See Also

DELFUNC, DELPROC, DELSTRUCT

For more information on releasing memory to the operating system, see the
PV-WAVE Programmer’s Guide.

DERIV Function
Standard Library function that calculates the first derivative of a function in x and y.

Usage

result = DERIV([x,] y)

Input Parameters

x — (optional) The vector of independent x-coordinates of the data (i.e., the
variable with respect to which the function should be differentiated). Must be a
one-dimensional array (a vector).

y — The vector of dependent y-coordinates at which the derivative of function f is
evaluated. Must be a one-dimensional array (a vector).

Returned Value

result — The first derivative of the vector y, with respect to the independent
variable x. The result has the same size as y.

Keywords

None.

Discussion

NOTE DERIV does not support complex numbers.

280 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

The numerical differentiation algorithm for DERIV uses a three-point Lagrangian
interpolation.

The vector of x-coordinates, x, is optional. The conditions set on this vector are
given below:

• If you specify x, then both x and y must be one-dimensional and have the same
number of elements. Selecting this option allows you to define the spacing
along the x-axis, for the case where the independent data is not monotonically
increasing.

• If you don’t specify x, then it is automatically provided with even spacing,
using a unit of one, along the x-axis. (In other words,
x(i) = i, where i = 0, 1, 2, 3, ... n.)

Example 1
x = FINDGEN(10)

xx = x^2

d = DERIV(xx)

PRINT, d

PLOT, xx

OPLOT, d, Linestyle=2

Example 2
x = FINDGEN(100) * 10 * !Dtor

; Create an array that contains values 0, 10, 20 ... and multiply these
; by !Dtor (which equals 0.0174533) to convert the values from
; degrees to radians.

sin_x = SIN(x)

d_sin_x = DERIV(x, sin_x)

PLOT, sin_x

OPLOT, d_sin_x, Linestyle=2

See Also

DERIVN

For an example of the three-point Lagrangian interpolation used in DERIV, see the
Introduction to Numerical Analysis by F. B. Hildebrand, Dover Publishing, New
York, 1987.

DERIVN Function 281

DERIVN Function
Standard Library function that differentiates a function represented by an array.

Usage

result = DERIVN(a, n)

Input Parameters

a — An array of values of the dependent variable.

n — An integer (≥ 0) designating which dimension to differentiate.

Returned Value

result — An array of the same dimensions as a, representing the derivative with
respect to the n'th independent variable.

Keywords

x — A vector defining the independent variable of differentiation. x defaults to the
indices into dimension n of a.

Examples
pm, derivn([0,2,1,0,1], 0)

pm, derivn([[0,2,1,0,1],[2,1,0,2,0],[1,0,2,1,2]], 0)

pm, derivn([[0,2,1,0,1],[2,1,0,2,0],[1,0,2,1,2]], 1)

See Also

DERIV, JACOBIAN

282 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DETERM Function
Standard Library function that calculates the determinant of a square, two-dimen-
sional input variable.

Usage

result = DETERM(array)

Input Parameters

array — An array with two equal dimensions. Can be any data type except string.

Returned Value

result — The determinant of the square matrix of array. The result is a scalar value,
of either single- or double-precision floating-point data type.

Keywords

None.

Discussion

Determinants can be used to evaluate systems of linear equations.

Example
a = INTARR(4,4)

FOR i=0,3 DO a(i,*)=[1,i+2,(i+2)^2,(i+2)^3]

PRINT, a

PRINT, DETERM(a)

12.0000

DEVICE Procedure 283

DEVICE Procedure
Provides device-dependent control over the current graphics device (as specified by
the SET_PLOT procedure).

Usage

DEVICE

Parameters

None.

Keywords

Each type of device uses its own unique set of keywords. For a description of these
keywords, see Appendix B, Output Devices and Window Systems.

Discussion

CAUTION Do not use the DEVICE command when VDA Tools or the Navigator
are running. To do so can cause PV-WAVE to crash. VDA Tools and the Navigator
expect to be running under the X Window system or Microsoft Windows. Using
DEVICE to switch to another device is not supported. VDA Tools set the device
internally, e.g., when printing. If you are on a 24-bit display, but are not using the
VDA Tools for real 24 bit applications, then set your display to 8-bit before starting
any VDA Tools. Issuing the command DEVICE, Pseudo=8 can cause
PV-WAVE to crash under these circumstances.

The graphics procedures and functions are device-independent. This means that
PV-WAVE presents you with a consistent interface to all devices.

However, most devices have extra abilities that are not directly available through
this interface. Use DEVICE with the appropriate keywords to control these
additional capabilities.

See Also

SET_PLOT

System Variables: !D

284 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DIAG Function
Makes a diagonal array or extracts the diagonal of an array.

Usage

d = DIAG(a)

Input Parameters

a — An array.

Returned Value

d — If a is one-dimensional then d is the n-dimensional diagonal array with
diagonal a; otherwise, d is the diagonal of a.

Keywords

n — The dimensionality of d when a is one-dimensional. (Default: 2)

Example
a = DIAG([1,1,1]) & PM, a

 1 0 0

 0 1 0

 0 0 1

 PM, DIAG(a)

 1

 1

 1

DICM_TAG_INFO Function 285

DICM_TAG_INFO Function
Extracts Digital Imaging and Communications in Medicine (DICOM) tags infor-
mation from an image associative array.

Usage

result = DICM_TAG_INFO (filename, image)

Input Parameters

filename On input, a string containing the name of the file which contains the
descriptions for the DICOM tags.

image An associative array in image format.

Returned Value

result An associative array containing DICOM tags information.

Discussion

The DICM_TAG_INFO function extracts the tag information from an image
associative array that contains a DICOM image. The tag information is returned
as an associative array. The following table describes each key of the associative
array:

The DICM_TAG_INFO function needs a file containing the tag description as
input. This file contains a tag followed by a description for this tag. The tags in
this file must be in ascending order. For example:

Array Key Name Variable Type Description

tag STRING A 1-dimensional array containing
the DICOM tags

description STRING A 1-dimensional array containing
the DICOM tag descriptions

value STRING A 1-dimensional array containing
the DICOMtag values

286 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

(0002,0000) Group Length UL 1

(0002,0001) File Meta Information Version OB 1

Example

This example uses IMAGE_READ to read a DICOM image file. Then it extracts
the DICOM tags and displays the information of the result variable.
image = IMAGE_READ('test.dicm', File_type='dicm')

tags = DICM_TAG_INFO('dict.txt',image)

INFO, tags, /Full

TAGS AS. ARR = Associative Array(3)

 tag STRING = Array(36)

 description STRING = Array(36)

 value STRING = Array(36)

See Also

IMAGE_READ, IMAGE_WRITE

DIGITAL_FILTER Function
Standard Library function that constructs finite impulse response digital filters for
signal processing.

Usage

result = DIGITAL_FILTER(flow, fhigh, gibbs, nterm)

Input Parameters

flow — The value of the lower frequency of the filter, expressed as a fraction of the
Nyquist frequency. Must be between 0 and 1.

fhigh — The value of the upper frequency of the filter, expressed as a fraction of
the Nyquist frequency. Must be between 0 and 1.

gibbs — The size of the Gibbs Phenomenon variations. Expressed in units of –db
(decibels).

nterm — The number of terms in the filter formula used. Determines the order of
the filter.

DIGITAL_FILTER Function 287

Returned Value

result — The coefficients of a convolution mask to be used in the filtering of digital
signals.

Keywords

None.

Discussion

The coefficients returned by DIGITAL_FILTER form the convolution mask or
kernel that can be used with the CONVOL function to apply the filter to a signal.
The size of this vector is equal to:

(2 * nterm) – 1

Highpass, lowpass, bandpass, and bandstop filters can be constructed with
DIGITAL_FILTER. Use the following values for fhigh and flow to specify the type
of filter you want to obtain:

These non-recursive filters require evenly spaced data points. Frequencies are
expressed in terms of the Nyquist frequency, 1/2T, where T is the time elapsed
between data samples.

The Gibbs Phenomenon variations are oscillations which result from the abrupt
truncation of the infinite FFT series. Setting the gibbs parameter either too high or
too low may yield unacceptable results.

TIP A value of 50 for gibbs is a good choice for most filters.

Sample Usage

DIGITAL_FILTER is used extensively in image and signal processing applications
to build image or signal filters. It provides a convenient way of creating convolution

Desired Effect Value

No filtering flow = 0, fhigh = 1

Lowpass filter flow = 0, 0 < fhigh < 1

Highpass filter 0 < flow < 1, fhigh = 1

Bandpass filter 0 < flow < fhigh < 1

Bandstop filter 0 < fhigh < flow < 1

288 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

kernels (containing the filter coefficients)—all you need do is specify the desired
filter with respect to the high and low cutoff frequencies, the Gibb’s variations, and
the number of terms. You can then use the constructed kernels with the CONVOL
function to perform the actual filtering operation upon a signal or image.

To evaluate the coefficients of a digital filter and then apply them to a signal, use
the following sequence of equations:

Coeff = DIGITAL_FILTER(flow, fhigh, gibbs, nterm)

Filtered_Signal = CONVOL(input_signal, coeff)

The end result is an image or signal that has certain frequencies or bands of
frequencies filtered out of it. For example, an electrical engineer may want to filter
out high frequency harmonics or low frequency flutter from a signal. This can
easily be achieved by using the high and low pass filters constructed with
DIGITAL_FILTER as the coefficients in the CONVOL function.

NOTE Two or more filters created by DIGITAL_FILTER can be combined by
addition, subtraction, or averaging to create multiple filtering effects with one filter.

Example 1

A digital signal processing example follows:

av_temp = FLTARR(140)

OPENR, unit, !Data_dir + ’example_air_q.dat’, /Get_lun

READF, unit, av_temp, Format=’(5X,F9.4)’

; Read the average temperature field from the air quality test dataset.

FREE_LUN, unit

PLOT, av_temp

; Display the original data.

filter = DIGITAL_FILTER(0.0, 0.1, 50, 10)

; Create the convolution kernel for a lowpass filter.

filt_temp = CONVOL(av_temp, filter)

; Filter the data by convolving it with the kernel.

OPLOT, filt_temp, Linestyle=2

; Display the filtered data using a dashed line.

Example 2

An image processing example follows:

DILATE Function 289

mandril = BYTARR(512,512)

OPENR, unit, !Data_dir + ’mandril.img’, /Get_lun

READU, unit, mandril

; Read the mandril demo image.

FREE_LUN, unit

WINDOW, XSize=512, YSize=512

TV, mandril

; Display the original image.

mandril = FLOAT(mandril)

; Convert the byte data to floating-point for filtering.

filter = DIGITAL_FILTER(0.0, 0.1, 50, 10)

; Create the convolution kernel for a lowpass filter.

filt_image = CONVOL(mandril, filter)

; Filter the image by convolving it with the kernel.

TV, filt_image

; Display the filtered image.

See Also

CONVOL

DIGITAL_FILTER is adapted from the article “Digital Filters,” by Robert
Walraven, in Proceedings of the Digital Equipment User’s Society, Fall 1984,
Department of Applied Science, University of California, Davis, CA 95616.

DILATE Function
Implements the morphologic dilation operator for shape processing.

Usage

result = DILATE(image, structure [, x0, y0])

Input Parameters

image — The array to be dilated.

structure — The structuring element. May be a one- or two-dimensional array.
Elements are interpreted as binary (values are either zero or nonzero), unless the
Gray keyword is used.

290 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

x
0
— (optional) The x-coordinates of structure’s origin.

y
0
— (optional) The y-coordinates of structure’s origin.

Returned Value

result — The dilated image.

Keywords

Gray — A flag which, if present, indicates that gray scale, rather than binary
dilation, is to be used.

Values — An array providing the values of the structuring element. Must have the
same dimensions and number of elements as structure.

Discussion

If image is not of the byte type, PV-WAVE makes a temporary byte copy of image
before using it for the processing.

The optional parameters x0 and y0 specify the row and column coordinates of the
structuring element’s origin. If omitted, the origin is set to the center, (Nx / 2,
Ny / 2), where Nx and Ny are the dimensions of the structuring element array.
However, the origin need not be within the structuring element.

Nonzero elements of the structure parameter determine the shape of the structuring
element (neighborhood).

If the Values keyword is not used, all elements of the structuring element are 0,
yielding the neighborhood maximum operator.

You can choose whether you want to use gray scale or binary dilation:

• If you select binary dilation type, the image is considered to be a binary image
with all nonzero pixels considered as 1. (You will automatically select binary
dilation if you don’t use either the Gray or Values keyword.)

• If you select gray scale dilation type, each pixel of the result is the maximum
of the sum of the corresponding elements of values overlaid with image. (You
will automatically select gray scale dilation if you use either the Gray or Values
keyword.)

Background Information

The DILATE function implements the morphologic dilation operator on both
binary and gray scale images. Mathematical morphology provides an approach to

DILATE Function 291

the processing of digital images on the basis of shape. This approach is
summarized below.

DILATE returns the dilation of image by the structuring element, structure. This
operation is also commonly known as filling, expanding, or growing. It can be used
to fill holes that are equal in size or smaller than the structuring element, or to grow
features contained within an image. The result is an image that contains items that
may touch each other and become one. Sharp-edged items and harsh angles
typically become dull as they expand and grow.

NOTE Dilation can be used to change the morphological structure of objects or
features in an image to see what would happen if they were to actually expand over
time.

Used with gray scale images, which are always converted to a byte type, the
DILATE function is accomplished by taking the maximum of a set of sums. It may
be conveniently used to implement the neighborhood maximum operator, with the
shape of the neighborhood given by the structuring element.

Used with binary images, where each pixel is either 1 or 0, dilation is similar to
convolution. On each pixel of the image, the origin of the structuring element is
overlaid. If the image pixel is nonzero, each pixel of the structuring element is
added to the result using the logical OR operator.

Letting A ⊕ B represent the dilation of an image A by structuring element B,
dilation may be defined as:

C = A ⊕ B =

where (A)b represents the translation of A by b. Intuitively, for each nonzero
element bij of B, A is translated by i,j and summed into C using the OR operator.

Openings and Closings

The opening of image B by structuring element K is defined as:

The closing of image B by K is defined as:

A()b
b B∈
∪

B θK() K⊕

292 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

where the erosion operator is denoted by θ and is implemented by the ERODE
function.

As stated by Haralick et al:

“The result of iteratively applied dilations and erosions is an elimination of specific
image detail smaller than the structuring element without the global geometric
distortion of unsuppressed features. For example, opening an image with a disk
structuring element smooths the contour, breaks narrow isthmuses, and eliminates
small islands and sharp peaks or capes.

Closing an image with a disk structuring element smooths the contours, fuses
narrow breaks and long thin gulfs, eliminates small holes, and fills gaps on the
contours.”

Example 1

In the example below, the origin of the structuring element is at (0,0):

0100 0110
0100 0110
0110 ⊕ 11 = 0111
1000 1100
0000 0000

Example 2

Here is what an aerial image looks like before and after applying the DILATE
function three different times. For this example, the following parameters were
used each time:

img = DILATE(aerial_img, struct, /Gray)

where struct has a value of [1 0 1].
Because the DILATE function was applied to the image three times, the “blurring”
is more pronounced than it would have been with only one dilation.

B K⊕()θ K

DINDGEN Function 293

Figure 2-18 The DILATE function has been used to fuse the visual elements of this 512-by-
512 aerial image.

See Also

ERODE

For details on the approach used in the DILATE function, refer to the source
document: Haralick, Sternberg, and Zhuang, “Image Analysis Using Mathematical
Morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-9, No. 4, pp. 532-550, July 1987.

DINDGEN Function
Returns a double-precision floating-point array with the specified dimensions.

Usage

result = DINDGEN(dim1, ..., dimn)

Input Parameters

dimi — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value

result — An initialized double-precision, floating-point array. If the resulting array
is treated as a one-dimensional array, then its initialization is given by the
following:

294 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

None.

Example

This example creates a 4-by-2 double-precision, floating-point array.

a = DINDGEN(4, 2)

; Create double-precision, floating-point array.

INFO, a

A DOUBLE = array(4, 2)

PRINT, a

0.0000000 1.0000000 2.0000000 3.0000000

4.0000000 5.0000000 6.0000000 7.0000000

See Also

BINDGEN, CINDGEN, DBLARR, FINDGEN, INDGEN,
LINDGEN, SINDGEN

DIST Function
Standard Library function that generates a square array in which each element
equals the euclidean distance from the nearest corner.

Usage

result = DIST(n, [m])

Input Parameters

n — The size of the resulting array.

m — If this parameter is supplied, the function generates a rectangular Euclidean
distance array.

Returned Value

result — The resulting floating-point array.

array i() DOUBLE i(), for i 0 1 … D j 1–
j 1=

n

∏

, , ,= =

DIST Function 295

Keywords

None.

Discussion

DIST generates a square array in which each element is proportional to its
frequency. A three-dimensional plot of this function displays a surface where each
quadrant is a curved quadrilateral forming a common cusp at the center.

The result of the DIST function is an n-by-n single-precision floating-point array,
as defined by:

where

F(x) = x if 0 ≤ x < n/2
or

F(x) = n – 1 – x if x ≥ n/2

The DIST function is particularly useful for creating arrays that can be used for
frequency domain filtering in image and signal processing applications.

TIP DIST is an excellent choice when you need a two-dimensional array of any
size for a fast test display.

If the optional parameter m is supplied, the result is an n-by-m rectangular
Euclidean distance array.

Example 1
mandril = BYTARR(512,512)

OPENR, unit, !Data_dir + ’mandril.img’, /Get_lun

READU, unit, mandril

FREE_LUN, unit

; Read the demo image.

WINDOW, XSize=512, YSize=512

TV, mandril

; Display the original image.

d = DIST(512)

result i j,() F i()2
F j()2

+=

296 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

; Use the DIST function to create a frequency image of the same
; size as the demo image.

n = 1.0

d0 = 10.0

; Set n, the order (steepness) of the Butterworth filter to use, and
; d0, the cutoff frequency.

filter = 1.0 / (1.0 + (d/d0)^(2.0 * n))

; Create a Butterworth low-pass filter to be applied to the image.
; (For other common filters that could be substituted here, see the
; reference listed in the See Also section.)

filt_image = FFT(FFT(mandril, -1) * filter, 1)

; Filter the image by transforming it to the frequency domain,
; multiplying by the filter, and then transforming back to the
; spatial domain. (Note that this operation may take a while.)

TVSCL, filt_image

; Display the resulting image.

Example 2

Use these commands:
testarr = DIST(40)

CONTOUR, testarr

SURFACE, testarr

LOADCT, 7

SHADE_SURF, testarr

testimg = DIST(200)

TVSCL, testimg

to create the a surface of an array:

DOC_LIBRARY Procedure (UNIX/OpenVMS) 297

Figure 2-19 Surface view of an array.

See Also

For more information, see on frequency domain techniques, see the PV-WAVE
User’s Guide.

DOC_LIBRARY Procedure (UNIX/OpenVMS)
Standard Library procedure that extracts header documentation for user-written
procedures and functions.

Usage

DOC_LIBRARY [, name]

Input Parameters

name — A string containing the name of the user-written module for which
documentation is desired. The search for the file follows the current path in the
system variable !Path.

298 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

Directory — (UNIX only) The name of the directory to search. If this keyword is
omitted, the current directory and !Path are used.

File — (OpenVMS only) If present and nonzero, sends the output to the file
userlib.doc in the current directory.

Multi — (UNIX only) A flag that allows for the printing of more than one file. To
do this, Multi must be nonzero and the named file must exist in more than one
directory in the path.

Path — (OpenVMS only) The directory/library search path. It has the same format
and semantics as the system variable !Path. If this keyword is omitted, !Path is
used.

Print — A flag to direct the output:

• A value of 1 specifies the output from the procedure is to be sent to the default
printer.

• A string value specifies a command to redirect the standard output.

• If the Print keyword is not used, documentation is sent to the standard output.

Discussion

The first line of the header documentation must begin with the characters ; + and
the last line of the header documentation must begin with the characters ; –.
DOC_LIBRARY extracts all the information between the + and – characters.
(Each line of the header must begin with the semicolon character to denote a
comment line.)

DOC_LIBRARY is a useful tool for finding out what is available in the
undocumented Users’ Library. This procedure can be used to search each routine
in the Users’ Library and extract all the text that is bracketed by the + and the –
characters. This includes the routine’s name, purpose, category, calling sequence,
inputs, outputs, and modification history.

DOC_LIBRARY checks to see what operating system you are using, and then calls
the appropriate version DOC_LIB_UNIX or DOC_LIB_VMS.

Keywords allow you to have the output sent to a printer or displayed on the screen.
If the procedure is called without keywords, you are prompted for specific
information about the search.

When creating your own PV-WAVE routines, it is helpful to include a ; + as the
second line in the file and a ; – as the last informational line so that

DOC_LIBRARY Procedure (UNIX/OpenVMS) 299

DOC_LIBRARY can then be used to create documentation for the routine. An
example of a file set up to use DOC_LIBRARY in this way is shown below. (All
the information shown in bold will be extracted by DOC_LIBRARY.)
FUNCTION COSINES, x, m

;+

; NAME:

; COSINES

; PURPOSE:

; Example of a function to be used by SVDFIT. ;

; Returns COS(i*COS(x(j)).

; CATEGORY:

; Curve fitting.

; CALLING SEQUENCE:

; r = COSINES(x, m)

; INPUTS:

; x = vector of data values. n elements.

; m = order, or number of terms.

; OUTPUTS:

; Function result = (n,m) array,

; where n is the number of points in x,

; and m is the order. r(i,j) = COS(j * x(i))

; MODIFICATION HISTORY:

; DMS, Nov, 1987.

;-

ON_ERROR, 2

;Return to caller if an error occurs.

RETURN, COS(x # FINDGEN(m))

;Couldn’t be much simpler.

END

UNIX Examples
DOC_LIBRARY, ’gamma’

; On the screen, display the header for the gamma.pro procedure
; using the default search path.

DOC_LIBRARY, ’gamma’, Print=’cat > gamma_header’

; Print the header for gamma.pro to the file gamma_header.

DOC_LIBRARY, ’*’,directory= $
’$VNI_DIR/wave/lib/std’, $
Print=’cat > user_lib_headers’

; Print the headers for all the files located in the Users’ Library.

300 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

OpenVMS Examples
DOC_LIBRARY, ’gamma’

; On the screen, display the header for the gamma.pro procedure
; using the default search path.

DOC_LIBRARY, ’gamma’, /File

; Print the header for gamma.pro to the file userlib.doc.

See Also

INFO

System Variables: !Path

DOUBLE Function
Converts an expression to double-precision floating-point data type.

Extracts data from an expression and places it in a double-precision floating-point
scalar or array.

Usage

result = DOUBLE(expr)
This form is used to convert data.

result = DOUBLE(expr, offset, [dim1, ..., dimn])
This form is used to extract data.

Input Parameters

To convert data:

expr — The expression to be converted.

To extract data:

expr — The expression from which to extract data.

offset — The offset, in bytes, from the beginning of expr to where the
extraction is to begin.

dimi — (optional) The dimensions of the result. May be any scalar expres-
sion. Up to eight dimensions may be specified.

DOUBLE Function 301

Returned Value

For data conversion:

result — A copy of expr converted to double-precision floating-point data
type.

For data extraction:

result — If offset is used, DOUBLE does not convert result, but allows
fields of data extracted from expr to be treated as double-precision float-
ing-point data. If no dimensions are specified, the result is scalar.

Keywords

None.

Example

In this example, DOUBLE is used in two ways. First, DOUBLE is used to convert
an integer array to double precision, floating point. Next, DOUBLE is used to
extract a subarray from the double precision array created in the first step.

a = INDGEN(6)

PRINT, a

 0 1 2 3 4 5

; Create an integer vector of length 6 that is initialized to the
; a = INDGEN(6) value of its one-dimensional subscript.

b = DOUBLE(a)

; Convert a to double precision, floating point.

INFO, b

B DOUBLE = Array(6)

PRINT, b

0.0000000 1.0000000 2.0000000 3.0000000

4.0000000 5.0000000

c = DOUBLE(b, 16, 2, 2)

; Extract the last four elements of b, and place them in a 2-by-2
; double-precision, floating-point array.

INFO, c

C DOUBLE = Array(2, 2)

PRINT, c

2.0000000 3.0000000

4.0000000 5.0000000

302 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

NOTE If you want to place the double-precision value of a constant into a variable,
it is more efficient to use the d or D constant notation rather than the double func-
tion. For example:

x = .0705230784D

See Also

BYTE, COMPLEX, DBLARR, DCOMPLEX, FIX, FLOAT, LONG

For more information on using this function to extract data, see the PV-WAVE
Programmer’s Guide.

DROP_EXEC_ON_SELECT Procedure (UNIX)
Drops a single item from the EXEC_ON_SELECT list.

Usage

DROP_EXEC_ON_SELECT, lun

Input Parameters

lun — Logical unit number.

Keywords

None.

Description

A logical unit number and associated command is dropped from the
EXEC_ON_SELECT list. This procedure is designed to be called from an
EXEC_ON_SELECT callback procedure. When the logical unit number and
associated command are dropped from the EXEC_ON_SELECT list, the
EXEC_ON_SELECT procedure returns to the calling routine.

See Also

ADD_EXEC_ON_SELECT, EXEC_ON_SELECT, SELECT_READ_LUN

DT_ADD Function 303

DT_ADD Function
Increments the values in a date/time variable by a specified amount.

Usage

result = DT_ADD(dt_var)

Input Parameters

dt_var — The original date/time variable or array of variables.

Returned Value

result — A date/time variable incremented by the specified amount.

Keywords

Compress — If present and nonzero, excludes predefined weekends and holidays
from the result. The default is no compression (0).

Day — Specifies an offset value in days.

Hour — Specifies an offset value in hours.

Minute — Specifies an offset value in minutes.

Month — Specifies an offset value in months.

Second — Specifies an offset value in seconds.

Year — Specifies an offset value in years.

NOTE Only one keyword can be specified at a time. You cannot, for example,
specify both years and months in a single DT_ADD call. But if you need to add,
for example, one day and one hour, you can simply add 25 hours.

Discussion

The DT_ADD function returns a date/time variable containing one or more dates/
times that have been offset a specified amount.

The keywords specify how the dates and/or times are incremented (added to). If no
keyword is specified, the default increment is one day.

304 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Only positive whole numbers (including zero) can be used with the keywords to
specify an increment. Therefore, the smallest unit that can be added to dt_var is one
second.

Example

This example shows how to add one day to a date/time variable containing two
date/time values.

dtarray = STR_TO_DT([’17-03-92’, $

’8-04-93’], Date_Fmt=2)

; Convert two date strings to a date/time variable.

DT_PRINT, dtarray

03/17/1992

04/18/1993

; The date/time variable dtarray contains two dates.

dtarray1 = DT_ADD(dtarray, /Day)

; Create a new date/time variable dtarray1 that contains two
; dates with one day added to each date.

DT_PRINT, dtarray1

03/18/1992

04/19/1993

See Also

DT_SUBTRACT, DT_DURATION

For more information on date/time, see the PV-WAVE User’s Guide.

DT_COMPRESS Function
Removes previously defined holidays and weekends from the Julian day portion of
!DT structures in a date/time variable.

Usage

result = DT_COMPRESS(dt_array)

Input Parameters

dt_array — A date/time variable containing an array of date/time structures.

DT_COMPRESS Function 305

Returned Value

result — An array of double-precision values containing the compressed Julian
days; that is, all days representing holidays and weekends are removed from each
value of the array. In addition, the fractional time component of each Julian value
is removed.

Keywords

None.

Discussion

This function is primarily used to generate compressed date/time data for
specialized, user-written plotting applications, such as bar charts. If the XType
keyword is set to 2, the compressed data can be used with the PLOT and OPLOT
procedures.

NOTE Avoid using DT_COMPRESS for normal XY plotting with the PLOT and
OPLOT commands. Use the Compress keyword with PLOT and OPLOT to create
compressed date/time results.

The value of the system variables !PDT.Exclude_Holiday and/or
!PDT.Exclude_Weekend must be set to one (the default) before DT_COMPRESS
is called. In addition, the functions CREATE_WEEKENDS and
CREATE_HOLIDAYS must be run before you use DT_COMPRESS.

Note that the result of DT_COMPRESS is a double array of Julian days, not
another array of !DT structures.

Example 1

This example demonstrates how DT_COMPRESS can be used to compress the
weekend days from a date/time variable containing the days in the month of March,
1992. The resulting array of compressed Julian numbers is then processed so that
it can be used to create a date/time plot in a specialized plotting application.

march1 = VAR_TO_DT(1992, 3, 1, 11, 30, 0)

PRINT, march1

{ 1992 3 1 11 30 0.00000 87462.479, 0}

; Creates and prints out a variable march1 which is a date/time
; variable. Note the Julian Day carefully, 87462. After
; compression, this value will be smaller. This is because all the

306 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

; weekends from Julian day 1 (September 14, 1752) are
; compressed.

marray = DTGEN(march1,31, /Day)

; Generates a date/time array containing the 31 days of the month of
; March, 1992.

PRINT, marray

{ 1992 3 1 0 0 0.00000 87462.479 0}

.

.

{ 1992 3 31 0 0 0.00000 87492.479 0}

CREATE_WEEKENDS, [’Saturday’, ’Sunday’]

; Defines Saturday and Sunday as weekend days.
cmarray = DT_COMPRESS(marray)

PRINT, cmarray

62472.5 62473.0 62474.0 62475.0

62476.0 62477.0 62477.5 62477.5

62478.0 62479.0 62480.0 62481.0

62482.0 62482.5 62482.5 62483.0

62484.0 62485.0 62486.0 62487.0

62487.5 62487.5 62488.0 62489.0

62490.0 62491.0 62492.0 62492.5

62492.5 62493.0 62494.0

; Creates and prints out a compressed array for the month of
; March, 1992. Weekend (compressed) days can be identified
; by fraction .5. Note that the values of the weekend days fall
; between the end and beginning of the week. Also note that the
; Julian numbers are smaller than in the original array. This is
; because all of the weekends from Julian day 1 are
; compressed.

The following block of code must be run before you can use this array of Julian
numbers to generate a date/time axis. The DT_COMPRESS function removed the
fractional Time portion of each Julian day, leaving date values with .0 or .5
appended to them. A .0 value indicates that the day is a weekday. A .5 value
indicates a compressed day (a weekend). To generate a meaningful plot with this
data, two things must be done.

First, the compressed days (the ones ending in .5) must be incremented to the value
of the next whole day. Second, the Time portion of the Julian numbers representing
weekdays must be restored.

The following code accomplishes both of these objectives:

FOR i=0, 30 DO BEGIN $

whole_day = DOUBLE(FIX(cmarray(i))) $

DT_COMPRESS Function 307

delta_day = cmarray(i) - whole_day $

IF (delta_day GE 0.4) AND $

(delta_day LE 0.6) THEN BEGIN $

; Determine if a date value is a weekend day. If it is, then
; increment its value to the value of the next whole day.

marray(i) = whole_day + 1.0d $

ENDIF $

ELSE BEGIN $

fract_day = marray(i).julian - $

DOUBLE(FIX(marray(i).julian)) $

cmarray(i) = whole_day + fract_day $

; Restore the fractional portion of weekday Julian values
; from the original date/time array variable.

ENDELSE $

ENDFOR

After this code is run, cmarray can be used to generate a date/time plot for a
specialized plotting application—one where the regular PLOT routine is not
sufficient. For example, this data could be used to generate a bar chart.

Before using this date data, however, you must first call PLOT or OPLOT with the
XType keyword set to 2. This establishes the plot axis and coordinate system, and
allows the date/time axis to be generated from an array of Julian numbers.

Example 2

This example defines some holidays for the year 1992 with the
CREATE_HOLIDAYS procedure, creates an array with all the days of the year,
and then excludes these holidays using the DT_COMPRESS function.

christmas = VAR_TO_DT(1992, 12, 25)

PRINT, christmas

{ 1992 12 31 0 0 0.00000 87761.000 0}

; Create and print out a date/time variable for Christmas.
; The purpose is to show the Julian day before using
; DT_COMPRESS. Note the Julian Day is 87761.

day1 = VAR_TO_DT(1992, 1, 1)

yarray = DTGEN(day1, 366)

; Create a variable day1 which is used to generate an array that
; contains all the days of the year (where 366 is used because
; 1992 is a leap year).

x = [’1-1-92’, ’5-31-92’,’7-4-92’, $

’-1-92’, ’11-24-92’, ’12-25-92’]

; Create an array containing date information for the following

308 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

; holidays: New Years, Memorial day, Fourth of July, Labor Day,
; Thanksgiving, and Christmas.

holidays = STR_TO_DT(x, Date_Fmt=1)

; Create a date/time variable for the holidays.

CREATE_HOLIDAYS, holidays

; Define the holidays by setting the !Holiday_List system variable.

cyarray = DT_COMPRESS(yarray)

; Creates an array that excludes the holidays for 1992. The
; compressed array cyarray appends the .5 decimal to all of the
; holidays. Non-holidays end in .0. When you print out cyarray,
; note the Julian day for Christmas is 87755.5. This is six days
; less than for the yarray, because six holidays were defined
; and compressed out of the result.

See Also

CREATE_HOLIDAYS, CREATE_WEEKENDS

For more information on date/time, see the PV-WAVE User’s Guide.

DT_DURATION Function
Standard Library function that determines the elapsed time between the values in
two date/time variables.

Usage

result = DT_DURATION(dt_var_1, dt_var_2)

Input Parameters
dt_var_1 — The date/time variable to be subtracted from. Can be a scalar or array
variable.
dt_var_2 — The date/time variable to subtract. Can be a scalar or array variable.

Returned Value

result — A double-precision array containing the difference between dt_var_1 and
dt_var_2 in days and fractions of days.

DTGEN Function 309

Keywords
Compress — If present and nonzero, excludes predefined weekends and holidays
from the calculation of duration. The default is no compression (0).

Discussion
If the input arrays are not of the same dimension, the output will be the size of the
smallest input array.

Example
DT1 = str_to_dt(’01-02-92’, Date_Fmt=2)

DT2 = str_to_dt(’01-03-92’, Date_Fmt=2)

; Create two date/time variables containing February 1, 1992
; and March 1, 1992.

diff = DT_DURATION(DT2, DT1)

PRINT, diff

29.000000

; The difference between these dates is 29 days.

See Also
DT_ADD, DT_SUBTRACT

For more information on date/time, see the PV-WAVE User’s Guide.

DTGEN Function
Returns a date/time array variable beginning with a specified date and incremented
by a specified amount.

Usage
result = DTGEN(dt_start, dimension)

Input Parameters
dt_start — A date/time variable containing a value representing the first date and
time in the new data set.

dimension — Specifies the number of date/time values to generate.

Returned Value
result — A date/time array variable containing the specified number of date/time
values.

310 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords
Compress — If present and nonzero, excludes predefined weekends and holidays
from the result. The default is no compression (0).

Day — Specifies an offset value in days.

Hour — Specifies an offset value in hours.

Minute — Specifies an offset value in minutes.

Month — Specifies an offset value in months.

Second — Specifies an offset value in seconds.

Year — Specifies an offset value in years.

NOTE Only one keyword can be specified at a time. You cannot, for example,
specify both years and months in a single DTGEN call. But if you need to add, for
example, one day and one hour, you can simply add 25 hours.

Discussion
Each value in the result is offset from the previous value by the amount specified
with a keyword.

DTGEN lets you generate date and time data that match a particular dataset. For
example, if you have gathered data at regular intervals, but do not have time stamps
in your dataset, you can use DTGEN to generate date and time data that
corresponds to your data-gathering intervals.

Only whole numbers (including zero) can be used with the keywords to specify the
offset between dates and times. Therefore, the smallest unit by which generated
dates can be offset is one second. If no keyword is specified, the default offset is
one day.

Example 1
This example shows how to generate an array of date/time structures for
consecutive years.
date1 = TODAY()

; Create a date/time variable containing the current date.

date2 = DTGEN(date1, 4, /Year)

; Use DTGEN to create a new date/time variable containing four
; date/time values. The four date/time values represent four
; consecutive years with identical months, days, and times.

PRINT, date2

{ 1992 3 26 6 28 50.0000 87487.270 0}

{ 1993 3 26 6 28 50.0000 87852.270 0}

DT_PRINT Procedure 311

{ 1994 3 26 6 28 50.0000 88217.270 0}

{ 1995 3 26 6 28 50.0000 88582.270 0}

Example 2

The second example shows how to create an array containing date/time structures
for every other month of a year.
date = VAR_TO_DT(1992, 1, 1)

; Create a date/time variable for January, 1992.

date1 = DTGEN(date, 6, Month=2)

; Create an array variable containing date/time data for every other
; month of the year 1992.

PRINT, date1

{ 1992 1 1 0 0 0.00000 87402.000 0}

{ 1992 3 1 0 0 0.00000 87462.000 0}

{ 1992 5 1 0 0 0.00000 87523.000 0}

{ 1992 7 1 0 0 0.00000 87584.000 0}

{ 1992 9 1 0 0 0.00000 87646.000 0}

{ 1992 11 1 0 0 0.00000 87707.000 0}

See Also
DT_ADD

For more information on date/time, see the PV-WAVE User’s Guide.

DT_PRINT Procedure
Standard Library procedure that prints the value in date/time variables in a readable
format.

Usage

DT_PRINT, dt_var

Input Parameters
dt_var — A date/time variable containing one or more date/time structures.

Keywords

None.

312 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion
The system variables !Date_Separator and !Time_Separator determine which
characters are used to separate the date and time elements in the output. The default
delimiter for dates is a slash (/), and the default delimiter for printing times is a
colon (:). For example:

4/2/1992 7:7:51

You can change these separators by changing the values of !Date_Separator and
!Time_Separator.

Examples
x = TODAY()

DT_PRINT, x

05/06/1992 14:34:54

PRINT, x

{ 1992 5 6 14 34 54.0000 87528.608 0}

dtarray = DTGEN(x,4)

DT_PRINT, dtarray

4/2/1992 7:7:51.000

4/3/1992 7:7:51.000

4/4/1992 7:7:51.000

4/5/1992 7:7:51.000

See Also
System Variables: !Date_Separator, !Time_Separator

For more information on date/time, see the PV-WAVE User’s Guide.

DT_SUBTRACT Function
Decrements the values in a date/time variable by a specified amount.

Usage

result = DT_SUBTRACT(dt_var)

Input Parameters

dt_var — The original date/time variable or array of variables.

Returned Value

result — A date/time variable decremented by the specified amount.

DT_SUBTRACT Function 313

Keywords

Compress — If present and nonzero, excludes predefined weekends and holidays
from the result. The default is no compression (0).

Day — Specifies an offset value in days.

Hour — Specifies an offset value in hours.

Minute — Specifies an offset value in minutes.

Month — Specifies an offset value in months.

Second — Specifies an offset value in seconds.

Year — Specifies an offset value in years.

NOTE Only one keyword can be specified at a time. You cannot, for example,
specify both years and months in a single DT_SUBTRACT call. But if you need to
subtract, for example, one day and one hour, you can simply subtract 25 hours.

Discussion

The DT_SUBTRACT function returns a date/time variable containing one or more
dates/times that have been offset by the specified amount.

The keywords specify how the dates and/or times are decremented (subtracted
from). If no keyword is specified, the default decrement is one day.

Only positive whole numbers (including zero) can be used with the keywords to
specify a decrement. Therefore, the smallest unit that can be subtracted from
dt_var is one second.

Example 1
dtvar = VAR_TO_DT(1992, 03, 17, 09, 30, 54)

; Create a date/time variable containing a date/time.

dtvar1= DT_SUBTRACT(dtvar, Year=4)
; Create a new date/time variable by subtracting 4 years from dtvar.

PRINT, dtvar1
{ 1988 3 17 9 30 54.0000 86017.396 0}

; Display the new date/time variable.

Example 2
This example shows how to add one day to a date/time variable containing two
date/time values.
dtarray = STR_TO_DT([’17-03-92’, $

’8-04-93’], Date_Fmt=2)
; Convert two date strings to a date/time variable.

314 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DT_PRINT, dtarray
03/17/1992

04/18/1993

; The date/time variable dtarray contains two dates.

dtarray1 = DT_SUBTRACT(dtarray, /Day)
; Create a new date/time variable dtarray1 that contains two
; dates with one day subtracted from each date.

DT_PRINT, dtarray1

03/16/1992

04/17/1993

Example 3
This example shows the effect of using the Compress keyword with
DT_SUBTRACT. Assume that you have defined Christmas (December 25, 1992)
to be a holiday with the procedure CREATE_HOLIDAYS.
x = VAR_TO_DT(1992, 12, 26)

; Begin with a date variable containing December 26, 1992.

y = DT_SUBTRACT(x, /Day, /Compress)
; Subtract one day from the variable.

DT_PRINT, y
12/24/1992

; The result is December 24. Normally, the result would be
; 12/25/92, but because December 25 is defined as a holiday,
; the Compress keyword causes the 25th to be skipped.

See Also
DT_ADD, DT_DURATION

For more information on date/time, see the PV-WAVE User’s Guide.

DT_TO_SEC Function
Standard Library function that converts a date/time variable to a double-precision
variable containing the number of seconds elapsed from a base date.

Usage

result = DT_TO_SEC(dt_var)

Input Parameters

dt_var — A date/time variable.

DT_TO_SEC Function 315

Returned Value

result — A double-precision variable containing the number of seconds elapsed
between the base date and the date(s) contained in dt_var. The value of the base
date is maintained in the system variable !DT_Base.

Keywords

Base — A string containing a date, such as “3-27-92”. This is the base date from
which the number of elapsed seconds is calculated. Base can be used to override
the default value in the system variable !DT_Base.

Date_Fmt — Specifies the format of the base date, if passed into the function.
Possible values are 1, 2, 3, 4, or 5, as summarized in the following table:

where the asterisk (*) represents one of the following separators: dash (–),
slash (/), comma (,), period (.), or colon (:).

For a detailed description of these formats, see the PV-WAVE User’s Guide.

Discussion

This function is useful for converting date/time values to relative time. The default
base date is September 14, 1752.

Example1

Assume that you have created the array date1 that contains the following date/
time data:

date1=[{!dt, $ 1992,3,27,7,18,57.0000,87488.305,0},$

{!dt, 1993,3,27,7,18,57.0000,87853.305,0}, $

{!dt, 1994,3,27,7,18,57.0000,87218.305,0}]

Value Format Description Examples for May 1, 1992

1 MM*DD*[YY]YY 05/01/92

2 DD*MM*[YY]YY 01-05-92

3 ddd*[YY]YY] 122,1992

4 DD*mmm[mmmmmm]*[YY]YY 01/May/92

5 [YY]YY*MM*DD 1992-05-01

316 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

To find out the number of seconds for each date from the default base, September
14, 1752, use:

seconds = DT_TO_SEC(date1)

PRINT, seconds

7.5589031e+09 7.5904391e+09 7.5355751e+09

Example 2

Assume that you have created the array date1 that contains the following date/
time data:

date1=[{!dt, $ 1992,4,15,7,29,19.0000,87507.312,0},$

{!dt, 1993,4,15,7,29,19.0000,87872.312,0}, $

{!dt, 1994,4,15,7,29,19.0000,88237.312,0}]

To find out the number of seconds for each date from January 1, 1970, use:

seconds = DT_TO_SEC(date1, $

Base=’1-1-70’, Date_Fmt=1)

PRINT, seconds

7.0332296e+08 7.3485896e+08 7.6639496e+08

See Also

DT_TO_STR, DT_TO_VAR, SEC_TO_DT

System Variables: !DT_Base

For more information, see the PV-WAVE User’s Guide.

DT_TO_STR Procedure
Converts date/time variables to string data.

Usage

 DT_TO_STR, dt_var, [, dates] [, times]

Input Parameters

dt_var — A date/time variable containing one or more date/time structures.

DT_TO_STR Procedure 317

Output Parameters

dates — (optional) A variable containing the date strings extracted from the date/
time variable.

times — (optional) A variable containing the time strings extracted from date/time
variable.

Keywords

Date_Fmt — Specifies the format of the date data in the input variable. Possible
values are 1, 2, 3, 4, or 5, as summarized in the following table:

where the asterisk (*) represents one of the following separators: dash (–), slash
(/), comma (,), period (.), or colon (:).

Time_Fmt — Specifies the format of the time portion of the data in the input
variable. Possible values are –1 or –2, as summarized in the following table:

where the asterisk (*) represents one of the following separators: dash (–), slash
(/), comma (,), or colon (:). No separators are allowed between hours and minutes
for the –2 format. Both hours and minutes must occupy two spaces.

Date and time separators are specified with the !Date_Separator and
!Time_Separator system variables. It is possible to use any character or string as a
separator with the DT_TO_STR function; however, if you use a non-standard
separator (one other than dash (–), slash (/), comma (,), period (.), or colon (:)), you
will be unable to convert the data back to a date/time variable with STR_TO_DT.
If Either of these system variables is set to an empty string, then you receive a
default separator.

Value Format Description Examples for May 1, 1992

1 MM*DD*YYYY 05/01/1992

2 DD*MM*YYYY 01-05-1992

3 ddd*YYYY 122,1992

4 DD*mmm[mmmmmm]*YYYY 01/May/1992

5 YYYY*MM*DD 1992-05-01

Value Format Description Examples for 1:30 p.m.

–1 HH*Mn*SS.sss 13:30:35.25

–2 HHMn 1330

318 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

You must specify a date and/or time format if the dates and/or times parameters are
specified.

Examples

Assume you have a date/time variable named date1 that contains the following
date/time structures:

date1=[{!dt, $
1992,3,13,1,10,34.0000,87474.049,0}, $

{!dt, 1983,4,20,16,18,30.0000,84224.680,0}, $

{!dt, 1964,4,24,5,7,25.0000,77289.213,0}]

To convert to string data, use the DT_TO_STR procedure:

DT_TO_STR, date1, d, t, Date_Fmt=1, $
Time_Fmt=-1

; Convert date/time data. Store the date data in d and the time
; data in t.

PRINT, d

3/13/1992 4/20/1983 4/24/1964

PRINT, t

01:10:34 16:18:30 05:07:25

See Also

DT_TO_SEC, DT_TO_VAR, STR_TO_DT

System Variables: !Date_Separator, !Time_Separator

For more information on date/time, see the PV-WAVE User’s Guide.

DT_TO_VAR Procedure 319

DT_TO_VAR Procedure
Standard Library procedure that converts a date/time variable to regular numerical
data.

Usage

DT_TO_VAR, dt_var

Input Parameters

dt_var — A date/time variable.

Keywords

Year — Specifies an integer variable to contain the years.

Month — Specifies a byte variable to contain the months.

Day — Specifies a byte variable to contain the days of the month.

Hour — Specifies a byte variable to contain the hours.

Minute — Specifies a byte variable contain the minutes.

Second — Specifies a floating-point variable to contain the seconds and fractional
seconds.

Discussion

Use one or more keywords to specify the kind of output produced by this
pr1ocedure. For example, to create a new variable containing the years in the date/
time variable mydtvar, use:

DT_TO_VAR, mydtvar, year=myyear

The result is a new variable called myyear that contains integer values.

Example

Assume that you have created a date/time variable named date1 that contains the
following date/time data:

date1=[{!dt, $
1992,3,13,10,34,15.000,87474.440,0}, $

{!dt, 1983,4,20,12,30,19.000,84224.521,0}, $

320 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

{!dt, 1964,4,24,16,25,14.000,77350.684,0}]

To extract each date/time element into a separate variable:

DT_TO_VAR, date1, Year=years, Month=months, Day=days

; This procedure creates several variables containing the date time data.

PRINT, "Years = ", years

Years = 1992 1983 1964

PRINT, "Months = ", months

Months = 3 4 6

PRINT, "Days = ", days

Days = 13 20 24

See Also

DT_TO_SEC, DT_TO_STR, VAR_TO_DT

For more information on date/time, see the PV-WAVE User’s Guide.

EMPTY Procedure 321

2di
Procedure and Function Reference

EMPTY Procedure
Causes all buffered output for the current graphics device to be written.

Usage

EMPTY

Parameters

None.

Keywords

None.

Discussion

PV-WAVE uses buffered output on many image devices for reasons of efficiency.
This leads to rare occasions where a program needs to be certain that data are not
waiting in a buffer, but have actually been output. This procedure is handy for such
occasions.

EMPTY is a low-level graphics routine. PV-WAVE graphics routines generally
handle the flushing of buffered data transparently to you, so the need for EMPTY
is extremely rare.

See Also

FLUSH

322 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

ENVIRONMENT Function (UNIX/Windows)
Returns a string array containing all the environment strings for the PV-WAVE
process.

Usage

result = ENVIRONMENT()

Parameters

None.

Returned Value

result — A string array containing all the environment strings for the PV-WAVE
process. Each element of the result contains one environment string.

Keywords

None.

Discussion

PV-WAVE inherits its environment from its parent process, which is usually the
shell (UNIX) or Command Window (Windows) from which it was started.

Example
p = ENVIRONMENT()

PRINT, p

; This statement prints a list of the environment variables defined for
; the shell in which PV-WAVE was started.

See Also

GETENV, SETENV

EOF Function 323

EOF Function
Tests the specified file unit for the end-of-file condition.

Usage

result = EOF(unit)

Input Parameters

unit — The logical unit number (LUN) of the file to be tested.

Returned Value

result — Returns 1 if the file is positioned at the end of the file. Otherwise, returns
0.

Keywords

None.

Discussion

OpenVMS USERS Under OpenVMS, the EOF function has the following
limitations:

• It does not work with files accessed via DECNET.

• It is meaningless when used with files having an indexed organization
structure.

In such cases, we recommend using the ON_IOERROR procedure to handle end-
of-file.

Example

In this example, a file of test data is created. That file is then read and printed until
the end-of-file condition is detected by EOF.

OPENW, unit, ’eoffile.dat’, /Get_Lun

; Open the file eoffile.dat for writing.

324 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

PRINTF, unit, ’This is’

PRINTF, unit, ’some sample’

PRINTF, unit, ’data.’

; Write some text to the file.

FREE_LUN, unit

; Close the file and free the associated unit number.

OPENR, unit, ’eoffile.dat’, /Get_Lun

; Open the file eoffile.dat for reading.

a = ’ ’

; Define a string variable.

WHILE NOT eof(unit) DO BEGIN &$

 READF, unit, a &$

 PRINT, a &$

; Read data and print it until end-of-file.

ENDWHILE

This is

some sample

data.

FREE_LUN, unit

See Also

ON_IOERROR, RETALL, RETURN

For information on opening files and choosing LUNs, see .

ERASE Procedure
Erases the display surface of the currently active window.

Usage

ERASE [, background_color]

Input Parameters

background_color — (optional) The background color index.

ERASE Procedure 325

NOTE Not all devices support this parameter. Workstations and display terminals,
such as X workstations and Tektronix terminals, generally do, while some hard-
copy devices, such as HPGL plotters, do not.

Keywords

Channel — The destination channel index or mask for the operation. Use only with
devices with multiple display channels. If Channel is omitted, the system variable
!P.Channel is used.

Color — The background color index. If specified (and the parameter
background_color is not specified), Color overrides the value of the system
variable !P.Background.

Discussion

ERASE is a low-level graphics routine. It resets the display surface to the default
background color (normally 0), which is indexed from the current color translation
tables by the system variable !P.Background. You can override the default by
specifying background_color.

ERASE affects the current window only; to switch windows, use the WINDOW
command.

A side effect of ERASE is that the device is reset to alphanumeric mode if it has
such a mode (e.g., Tektronix terminals).

Example 1
ERASE

; Erase the display surface for the current window and use the value
; in !P.Background to set the background color.

Example 2
COLOR_PALETTE

; Create a color palette so the color table can be easily viewed.

LOADCT, 2

; Load in color table 2, GRN-RED-BLU-WHT, as it has distinctive colors.

WINDOW, 1

; Create window 1.

ERASE

326 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

; Erase it using !P.Background.

WINDOW, 2

; Create window 2.

ERASE, 22

; Erase it, setting the background color to 22 (lime green).

WINDOW, 1

; Switch back to window 1.

ERASE, 64

; Reset the background color to 64 (bright red).

WINDOW, 2

; Switch back to window 2.

!P.Background=180

; Explicitly set the background color to 180 (lavender).

ERASE

; Set the background color based on !P.Background.

See Also

!P.Background, WDELETE, WINDOW

ERODE Function
Implements the morphologic erosion operator for shape processing.

Usage

result = ERODE(image, structure [, x0, y0])

Input Parameters

image — The array to be eroded.

structure — The structuring element. May be a one- or two-dimensional array.
Elements are interpreted as binary (values are either zero or nonzero), unless the
Gray keyword is used.

x
0
— (optional) The x-coordinates of structure’s origin.

y
0
— (optional) The y-coordinates of structure’s origin.

ERODE Function 327

Returned Value

result — The eroded image.

Keywords

Gray — A flag which, if present, indicates that gray scale, rather than binary
erosion, is to be used.

Values — An array providing the values of the structuring element. Must have the
same dimensions and number of elements as structure.

Discussion

If image is not of the byte type, PV-WAVE makes a temporary byte copy of image
before using it for the processing.

The optional parameters x0 and y0 specify the row and column coordinates of the
structuring element’s origin. If omitted, the origin is set to the center,
(Nx / 2, Ny / 2), where Nx and Ny are the dimensions of the structuring element
array. However, the origin need not be within the structuring element.

Nonzero elements of the structure parameter determine the shape of the structuring
element (neighborhood).

If the Values keyword is not used, all elements of the structuring element are 0,
yielding the neighborhood minimum operator.

You can choose whether you want to use gray scale or binary erosion:

• If you select binary erosion type, the image is considered to be a binary image
with all nonzero pixels considered as 1. (You will automatically select binary
erosion if you don’t use either the Gray or Values keyword.)

• If you select gray scale erosion type, each pixel of the result is the minimum of
the difference of the corresponding elements of Values overlaid with image.
(You will automatically select gray scale erosion if you use either the Gray or
Values keyword.)

Background Information

The ERODE function implements the morphologic erosion operator on binary and
gray scale images and vectors. Mathematical morphology provides an approach to
the processing of digital images on the basis of shape. This approach is
summarized in the description of the DILATE function. Erosion is the complement
(dual) of dilation; it does to the background what dilation does to the foreground.

328 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Briefly, ERODE returns the erosion of image by the structuring element, structure.
This operation is also commonly known as contracting or reducing. It can be used
to remove islands smaller than the structuring element.

The result is an image that contains items that now contract away from each other.
Features that either slightly touch or are connected by narrow areas may
disconnect, becoming separate, smaller objects. Any holes or gaps in or between
features become larger as the features in the image shrink away from each other.
Sharp-edged items and harsh angles typically become dull as they are worn away;
however, in some cases areas that were dull may become somewhat sharper as a
feature erodes away.

TIP Erosion can be used to change the morphological structure of objects or fea-
tures in an image to see what would happen if they were to actually shrink over
time.

Used with gray scale images, which are always converted to a byte type, the
ERODE function is accomplished by taking the minimum of a set of differences. It
may be conveniently used to implement the neighborhood minimum operator, with
the shape of the neighborhood given by the structuring element.

Used with binary images, the origin of the structuring element is moved to each
pixel of the image. If each nonzero element of the structuring element is contained
in the image, the output pixel is set to one.

Letting A Θ Β represent the erosion of an image A by structuring element B,
erosion may be defined as:

where (A)–b represents the translation of A by b. The structuring element B may be
visualized as a probe which slides across the image A, testing the spatial nature of
A at each point. Where B translated by i, j can be contained in A (by placing the
origin of B at i, j), then Ai, j belongs to the erosion of A by B.

Example 1

In this example, the origin of the structuring element is at (0, 0):

0100 0000
0100 0000

C A θ B A() b–
b B∈
∩= =

ERODE Function 329

1110 11 =1100
1000 0000
0000 0000

Example 2

This example demonstrates what an aerial image looks like before and after
applying the ERODE function three different times. For this example, the
following parameters were used each time:

img = ERODE(aerial_img, struct, /Gray)

where struct has a value of [1 0 1].
Because the ERODE function was applied to the image three times, the “blurring”
is more pronounced that it would have been with only one erosion.

Figure 2-20 The ERODE function has been used to “wear away” the visual elements of this
512-by-512 aerial image.

See Also

DILATE

θ

330 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

ERRORF Function
Calculates the standard error function of the input variable.

Usage

result = ERRORF(x)

Input Parameters

x — The expression for which the error function will be evaluated.

Returned Value

result — The standard error function of x. It is of floating-point data type, and has
the same dimensions as x.

Keywords

None.

Discussion

The standard error function is central to many calculations in statistics. The
ERRORF function can be used in a variety of applications; one example is to solve
diffusion equations in heat transfer problems.

The error function is a special case of the incomplete gamma function. ERRORF
is defined as:

ERRORF has the following limiting values and symmetries:

erf(0) = 0

erf(∞) = 1

erf(-x) = –erf(x)

2

π

 e t 2– dt

0

∫

ERRPLOT Procedure 331

It is related to the incomplete gamma function by:

erf(x) = Γ(1/2, x2)

where x ≥ 0.

See Also

GAMMA, GAUSSINT

The method used to determine the error function of complex operands is taken
from: W. Gautschi, “Efficient computation of the complex error function,” Siam
Journal of Numerical Analysis, Volume 7, page 187, 1970.

ERRPLOT Procedure
Standard Library procedure that overplots error bars over a previously-drawn plot.

Usage

ERRPLOT [, points], low, high

Input Parameters

points — (optional) A vector containing the independent or abscissae values of the
function. If points is omitted, the abscissae values are taken to be unit distances
along the x-axis, beginning with 0.

low — A vector containing the lower bounds of the error bars. The value of low(i)
is equal to the data value at i minus the lower error bound.

high — A vector containing the upper bounds of the error bars. The value of high(i)
is equal to the data value at i plus the upper error bound.

Keywords

Width — The width of the error bars. If omitted, the width is set to one percent of
the plot width.

Discussion

Error bars are drawn for each element, extending from low to high.

332 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Example

Assume the vector y contains the data values to be plotted, and that err is the
symmetrical error estimate. The commands to plot the data and overplot the error
bars are:

y = [4.0, 5.0, 3.0, 3.0, 2.0]

err = 0.2

PLOT, y, YRange=[1, 6]

ERRPLOT, y–err, y+err

If the error estimates are asymmetrical, they should be placed in the vectors low and
high. For example:

low = [3.5, 4.8, 2.5, 2.7, 1.9]

high = [4.3, 5.1, 3.5, 3.2, 2.1]

PLOT, y, YRange=[1, 6]

ERRPLOT, low, high

This produces the following plot:

Figure 2-21 In this example, asymmetrical error estimates have been constrained by using
ERRPLOT’s low and high parameters.

To plot error bars versus a vector containing specific points along the X axis, use
the following commands:

points = [1.0, 3.0, 4.0, 6.0, 7.0]

PLOT, points, y, YRange=[1, 6]

ERRPLOT, points, low, high

This produces the plot shown below:

EUCLIDEAN Function 333

Figure 2-22 In this example, error bars have been plotted over a vector containing specific
points along the x-axis.

See Also

OPLOT, OPLOTERR, PLOT, PLOTERR

EUCLIDEAN Function
Standard Library function that transforms the Euclidean metric for a Jacobian j =
Jacobian (f)

Usage

e = euclidean (j)

Input Parameters

j — A Jacobian defined by an n-element list of m-element lists of m-dimensional
arrays of dimensions d.

Returned Value

e — The Euclidean metric under a transformation with Jacobian j: an m-element
list of m-element lists of m-dimensional arrays. (e(p))(q) is the m-dimensional
array (of dimensions d) that represents the (p, q) component of the metric.

Keywords

None.

334 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Example

See wave/lib/user/examples/euclidean_ex.pro.

See Also

CURVATURES, JACOBIAN, NORMALS

EXEC_ON_SELECT Procedure (UNIX)
Registers callback procedures on input for a vector of logical unit numbers
(LUNs).

Usage

EXEC_ON_SELECT, luns, commands

Input Parameters

luns — Vector of logical unit numbers.

commands — Vector of procedure names. It must have the same number of entries
as the vector luns.

Keywords

Widget — If present and nonzero, resisters LUNs and commands with the WAVE
Widgets or Widget Toolbox event loop (WwLoop or WtLoop).

Just_reg — If present and nonzero, registers the unit numbers and callback
procedures. Do not wait for any input. This is useful when this procedure is used
with widgets.

Description

This procedure checks for input on all the logical unit numbers specified in the luns
vector. When there is input available on luns (k), the commands (k) procedure is
called with luns (k) as its (only) argument. This procedure never returns; it just
keeps handling callbacks when input is available.

When used with the WAVE Widgets applications (i.e., when the Widget and
Just_reg keywords are used), the callback procedures must have the following
parameters:

EXEC_ON_SELECT Procedure (UNIX) 335

top, data, nparams, id, lun, source

Refer to Example 2 for more information.

Example 1

In this example, three servers are started and their output handled using
EXEC_ON_SELECT. For simplicity, the servers are all the same program, EX1,
with a different command line argument. The servers occasionally output a four-
byte integer. This input is handled by the callback procedures SERVER1,
SERVER2, SERVER3. The server is the following C program:

#include <stdio.h>

#include <string.h>

main(int argc, char *argv[])

{

int tag = atoi(argv[1]);

for (; ;) {

sleep(5);

write(1, &tag, sizeof(tag));

}

}

The following are the PV-WAVE procedures that use the above server:

PRO SERVER1, lun

code = 0L

READU, lun, code

PRINT, ’SERVER1’, code

END

PRO SERVER2, lun

code = 0L

READU, lun, code

PRINT, ’SERVER2’, code

END

PRO SERVER3, lun

code = 0L

READU, lun, code

PRINT, ’SERVER3’, code

END

PRO EX1

; Start servers.
SPAWN, ’EX1 1’, Unit = lun1, /Sh

336 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

SPAWN, ’EX1 2’, Unit = lun2, /Sh

SPAWN, ’EX1 3’, Unit = lun3, /Sh

; Handle servers.
EXEC_ON_SELECT, [lun1, lun2, lun3], $

[’SERVER1’, ’SERVER2’, ’SERVER3’]

END

Example 2

This example is an extension of the previous example. Again, three servers are
started and their output handled using EXEC_ON_SELECT. The input is handled
by the callback procedures SERVER1, SERVER2, SERVER3. Now, a widget
menu also is displayed and serviced. The EXEC_ON_SELECT procedure registers
the LUNs and callback procedures with the WAVE Widgets event loop (WwLoop)
and returns values using the Widget and Just_reg keywords.

When there is input, WwLoop calls the appropriate callback routine to handle the
input and returns to waiting for more input.

PRO SERVER1, top, data, nparams, id, lun, $
source

 code = 0L

 READU, lun, code

 PRINT, ’SERVER1’, code, lun

END

PRO SERVER2, top, data, nparams, id, lun, $
source

 code = 0L

 READU, lun, code

 PRINT, ’SERVER2’, code, lun

END

PRO SERVER3, top, data, nparams, id, lun, source

 code = 0L

 READU, lun, code

 PRINT, ’SERVER3’, code, lun

END

PRO MenuCB, wid, index

; Create a menu.
 PRINT, ’Menu Item’, index, ’ selected.’

 value = WwGetValue(wid)

 PRINT, value

END

EXECUTE Function 337

PRO Ex2

 SPAWN, ’EX1 1’, unit = lun1, /sh

 SPAWN, ’EX1 2’, unit = lun2, /sh

 SPAWN, ’EX1 3’, unit = lun3, /sh

 top = WwInit(’ex2’,’Test’,layout,/Vertical)

 button = WwButtonBox(layout, [’Fonts’, $
’Size’,’Icons’],’MenuCB’)

 status = WwSetValue(top, /Display)

 EXEC_ON_SELECT, [lun1, lun2, lun3], $

[’SERVER1’,’SERVER2’,’SERVER3’], /Widget, $
/Just_reg

 WwLoop

 CLOSE, lun1, lun2, lun3

END

See Also

ADD_EXEC_ON_SELECT, DROP_EXEC_ON_SELECT,
SELECT_READ_LUN

EXECUTE Function
Compiles and executes one or more PV-WAVE statements contained in a string at
run-time.

Usage

result = EXECUTE(string)

Input Parameters

string — A string containing the PV-WAVE command(s) to be compiled and
executed. Cannot contain a command that starts with either a dollar ($), period (.),
or at (@) character; such commands must be entered at the PV-WAVE prompt.

338 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value

result — Returns 1 if the string was successfully compiled and executed; returns 0
if an error occurs during either phase.

Keywords

None.

Discussion

When the EXECUTE function is used inside a procedure or function, the compiler
directive ..LOCALS can be used to allocate memory for local variables created at
compile time (see Using the ..LOCALS Compiler Directive in Chapter 9 of the
PV-WAVE Programmer’s Guide).

Example

This example creates a procedure, TABLE, that prints a table giving the results of
evaluating a user-defined function of two variables at the values in two vectors. A
user-defined printing procedure is used to actually display the table of values.

Function EXECUTE is used to invoke both the user-defined function of two
variables and the user-defined printing procedure. The name of the function is
passed to TABLE using keyword Func, and the name of the printing procedure is
passed using keyword Prt_Pro. The following is a listing of TABLE:

PRO TABLE, x, y, Func = func, Prt_Pro = pp

tab = FLTARR(3, n_elements(x))

tab(0, *) = x

tab(1, *) = y

val = EXECUTE(’tab(2, *) = ’ $
+ func + ’(tab(0, *), tab(1, *))’)

; Use EXECUTE to invoke the function in the string
; variable func. Assign the result to column 2 of tab.

IF val EQ 1 THEN BEGIN

val = EXECUTE(pp + ’, tab’)

; Use EXECUTE to invoke the procedure in the string variable
; pp. This procedure prints the table.

IF val EQ 0 THEN BEGIN

PRINT, "***Error in execution of " + $
"printing procedure! ***"

ENDIF

EXECUTE Function 339

ENDIF ELSE BEGIN

PRINT, "*** Error in execution of " + "function! ***"

ENDELSE

END

If this procedure is placed in the file table.pro in your working directory, it will
be compiled automatically when it is invoked. Note that the string concatenation
operator, along with several string literals, are used to construct the statements to
execute using EXECUTE.

The user-defined function requires two arguments, which are the values of the
independent variables of the function. The function should return the result of the
function evaluation. The user-defined printing procedure requires one argument,
which is the two-dimensional table to be printed. The following commands can be
entered at the interactive prompt to create and compile a function of two variables:

.RUN

- FUNCTION fcn, x, y

- RETURN, x^2 - y^2

- END

The following procedure prints the table:

PRO prt, arr

PRINT, Format = $
’(4x, "x", 13x, "y", 10x, "func(x, y)")’

PRINT, Format = ’(39("-"))’

PRINT, Format = ’(2(f9.4, 5x), f10.4)’, arr

END

If this procedure is placed in the file prt.pro in your working directory, it will
be compiled automatically when it is invoked. The following commands can be
used to create the vectors of values at which to evaluate fcn and to invoke TABLE:

x = [1, 2, 3, 4, 5]

y = REVERSE(x)

TABLE, x, y, Func = ’fcn’, Prt_pro = ’prt’

x y func(x, y)

 1.0000 5.0000 -24.0000

 2.0000 4.0000 -12.0000

 3.0000 3.0000 0.0000

 4.0000 2.0000 12.0000

 5.0000 1.0000 24.0000

340 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

See Also

For more information, see in

EXIT Procedure
Exits PV-WAVE and returns you to the operating system.

Usage

EXIT

Parameters

None.

Keywords

None.

Discussion

All buffers are flushed and open files are closed. The values of all variables that
were not saved are lost.

See Also

QUIT

EXP Function 341

EXP Function
Raises e to the power of the value of the input variable.

Usage

result = EXP(x)

Input Parameters

x — The value to be evaluated.

Returned Value

result — The natural exponential function of x.

Keywords

None.

Discussion

EXP is defined as:

y = e x

If x is of double-precision floating-point or complex data type, EXP yields results
of the same type. All other types yield a single-precision floating-point result.

EXP handles complex values in the following way:

exp(x) = complex(ercos(i), ersin(i))

where r is the real part of x, and i is the imaginary part of x. If x is an array, the result
has the same dimensions as x, with each element containing the result for the
corresponding element of x.

Example
exp_of_1 = EXP(1)

PRINT, exp_of_1

2.71828

exp_of_0 = EXP(0)

342 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

PRINT, exp_of_0

1.00000

exp_of_10 = EXP(10)

PRINT, exp_of_10

22026.5

See Also

For a list of other transcendental functions, see Transcendental Mathematical
Functions on page 32.

EXPAND Function
Standard Library function that expands an array into higher dimensions.

Usage

result = EXPAND(a, d, i)

Input Parameters

a — An array of n dimensions.

d— A vector specifying the dimensions for the new array.

i — A monotonically increasing vector of n indices into d specifying which
of the new dimensions correspond to old dimensions:
d(i) must equal SIZE(a, /Dimensions).

Returned Value

result — An array of dimensions d, the expansion of the input array.

Keywords

None.

Examples
pm, EXPAND([0,1], [2,3], [0])

pm, EXPAND([0,1], [3,2], [1])

EXPON Function 343

pm, EXPAND([[0,1,2],[3,4,5]], [5,3,2], [1,2])

pm, EXPAND([[0,1,2],[3,4,5]], [3,5,2], [0,2])

pm, EXPAND([[0,1,2],[3,4,5]], [3,2,5], [0,1])

See Also

REBIN, REPLV

EXPON Function
Standard Library function that performs general exponentiation.

Usage

result = EXPON(a, b)

Input Parameters

a — An array (scalar) of any numerical data type.

b — An array (scalar) of any numerical data type.

Returned Value

result — A double complex array (scalar) containing the values ab.

Keywords

None.

Example
pm, EXPON([complex(0,1),-1], [complex(2,3),0.5])

344 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

EXTREMA Function
Standard Library function that finds the local extrema in an array.

Usage

result = EXTREMA(array)

Input Parameters

array — The array for which the local extrema will be found.

Returned Value

result — A list containing two vectors of indices into array. result(0) contains the
local minima and result(1) contains the local maxima

Keywords

None.

Examples
e = EXTREMA([0,1,2,2,2,3,2,1,3]) & pm, e(0), ' ' & pm, e(1)

a = bytscl(randomu(s,5,5), top=9) & pm, a

e = EXTREMA(a) & pm, e(0), ' ' & pm, e(1)

See Also

MAX, MIN

FACTOR Function 345

2
Procedure and Function Reference

FACTOR Function
Standard Library function that returns the prime factorization of an integer greater
than 1.

Usage

result = FACTOR(i)

Input Parameters

i — An integer greater than 1.

Returned Value

result — Sorted vector of longs containing the prime factorization of i.

Keywords

a — If set, result contains all factors instead of just prime factors.

Examples
pm, FACTOR(12,/a)

pm, FACTOR(12)

See Also

GCD, LCM, PRIME

346 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FAST_GRID2 Function
Returns a gridded, 1D array containing y values, given random x, y coordinates
(this function works best with dense data points).

Usage

result = FAST_GRID2(points, grid_x)

Input Parameters

points — A (2, n) array containing the random x, y points to be gridded.

grid_x — The x dimension of the grid. The x values are scaled to fit this dimension.

Returned Value

result — A gridded 1D array containing y values.

Keywords

Iter — The number of iterations on the smooth function. The execution time
increases linearly with the number of iterations. The default is 3, but any non-
negative integer (including zero) may be specified.

Nghbr — The size of the neighborhood to smooth. If not supplied, the
neighborhood size is calculated from the distribution of the points. The amount of
memory required increases by the square of the neighborhood size.

No_Avg — Normally, if multiple data points fall in the same cell in the gridded
array, then the value of that cell is the average value of all the data points that fall
in that cell.

If the No_Avg keyword is present and nonzero, however, the value of the cell in the
gridded array is the total of all the points that fall in that cell.

XMax — The x-coordinate of the right edge of the grid. If omitted, maps the
maximum x value found in the points(0, *) array to the right edge of the grid.

XMin — The x-coordinate of the left edge of the grid. If omitted, maps the
minimum x value found in the points(0, *) array to the left edge of the grid.

FAST_GRID2 Function 347

Discussion

FAST_GRID2 uses a neighborhood smoothing technique to interpolate missing
data values for 2D gridding. The gridded array returned by FAST_GRID2 is
suitable for use with the PLOT function.

FAST_GRID2 is similar to GRID_2D. FAST_GRID2, however, works best with
dense data points (more than 1000 points to be gridded) and is considerably faster,
but slightly less accurate, than GRID_2D. (GRID_2D works best with sparse data
points and is stable when extrapolating into large void areas.)

TIP For best results, use a small neighborhood (such as 3) and a large number of
iterations (more than 16).

Examples
PRO f_gridemo2

; This program shows 2D gridding with dense data points.

points = INTARR(2, 10)

points(*, 0) = [1,2]

points(*, 1) = [2,3]

points(*, 2) = [5,5]

points(*, 3) = [8,0]

points(*, 4) = [9,6]

points(*, 5) = [4,9]

points(*, 6) = [7,15]

points(*, 7) = [6,-5]

points(*, 8) = [0,3]

points(*, 9) = [0,-1]

; Set up the data points.
WINDOW, 0, Colors=128

LOADCT, 4

T3D, /Reset

; Set up the viewing window and load the color table.

!Y.Range = [MIN(points), MAX(points)]

; Set the y-axis range for plotting.

yval = FAST_GRID2(points, 256, Iter=0)

PLOT, yval, Color=60

yval = FAST_GRID2(points, 256, Iter=150, Nghbr=3)

OPLOT, yval, Color=80

yval = FAST_GRID2(points, 256, Nghbr=77)

348 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

OPLOT, yval, Color=100

yval = FAST_GRID2(points, 256)

OPLOT, yval, Color=120

; Grid and plot the points using different values for the
; neighborhood and number of iterations.

!Y.Range = [0.0, 0.0]

; Reset the y-axis range to the default value.

END

See Also

FAST_GRID3, FAST_GRID4, GRID_2D, GRID_3D, GRID_4D,
GRIDN, GRID_SPHERE

UNIX and OpenVMS USERS For information on the optional software pack-
age for advanced gridding, PV-WAVE:GTGRID, contact your Visual Numerics
account representative.

FAST_GRID3 Function
Returns a gridded, 2D array containing z values, given random x-, y-, z-coordinates
(this function works best with dense data points).

Usage

result = FAST_GRID3(points, grid_x, grid_y)

Input Parameters

points — A (3, n) array containing the random x, y, z points to be gridded.

grid_x — The x dimension of the grid. The x values are scaled to fit this dimension.

grid_y — The y dimension of the grid. The y values are scaled to fit this dimension.

Returned Value

result — A gridded, 2D array containing z values.

FAST_GRID3 Function 349

Keywords

Iter — The number of iterations on the smooth function. The execution time
increases linearly with the number of iterations. The default is 3, but any non-
negative integer (including zero) may be specified.

Nghbr — The size of the neighborhood to smooth. If not supplied, the
neighborhood size is calculated from the distribution of the points. The amount of
memory required increases by the square of the neighborhood size.

No_Avg — Normally, if multiple data points fall in the same cell in the gridded
array, then the value of that cell is the average value of all the data points that fall
in that cell.

If the No_Avg keyword is present and nonzero, however, the value of the cell in the
gridded array is the total of all the points that fall in that cell.

XMin — The x-coordinate of the left edge of the grid. If omitted, maps the
minimum x value found in the points(0, *) array to the left edge of the grid.

XMax — The x-coordinate of the right edge of the grid. If omitted, maps the
maximum x value found in the points(0, *) array to the right edge of the grid.

YMin — The y-coordinate of the bottom edge of the grid. If omitted, maps the
minimum y value found in the points(1, *) array to the bottom edge of the grid.

YMax — The y-coordinate of the top edge of the grid. If omitted, maps the
maximum y value found in the points(1, *) array to the top edge of the grid.

Discussion

FAST_GRID3 uses a neighborhood smoothing technique to interpolate missing
data values for 3D gridding. The gridded array returned by FAST_GRID3 is
suitable for use with the SURFACE, TV, AND CONTOUR procedures.

FAST_GRID3 is similar to GRID_3D. FAST_GRID3, however, works best with
dense data points (more than 1000 points to be gridded) and is considerably faster,
but slightly less accurate, than GRID_3D. (GRID_3D works best with sparse data
points and is stable when extrapolating into large void areas.)

TIP For best results, use a small neighborhood (such as 3) and a large number of
iterations (more than 16).

350 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Examples
PRO f_gridemo3

; This program shows 3D gridding with dense data points.

points = RANDOMU(s, 3, 1000)

points(0, *) = points(0, *) * 10.0

points(1, *) = points(1, *) * 10.0

points(*, 0) = [1.7, 1.6, 2.9]

points(*, 1) = [1.4, 1.2, 3.7]

points(*, 2) = [9.8, 9.2, 5.5]

points(*, 3) = [9.8, 8.4, 0.1]

points(*, 4) = [4.8, 9.9, 6.3]

points(*, 5) = [0.2, 9.0, 9.0]

points(*, 6) = [3.1, 7.2, 15.2]

points(*, 7) = [5.6, 6.0, -5.9]

points(*, 8) = [0.3, 0.5, 3.3]

points(*, 9) = [9.7, 0.7, -1.6]

; Generate random data points.

zval = FAST_GRID3(points, 48, 32)

; Grid the resulting data points.

WINDOW, 0, Colors=128

SURFR

SURFACE, zval, Bottom=90, Ax=30.0, Az=30.0, /T3d

; Display the gridded data as a surface in the specified window.

END

See Also

FAST_GRID2, FAST_GRID4, GRID_2D, GRID_3D,
GRID_4D, GRIDN, GRID_SPHERE

UNIX and OpenVMS USERS For information on the optional software pack-
age for advanced gridding, PV-WAVE:GTGRID, contact your Visual Numerics
account representative.

FAST_GRID4 Function 351

FAST_GRID4 Function
Returns a gridded, 3D array containing intensity values, given random 4D coordi-
nates (this function works best with dense data points).

Usage

result = FAST_GRID4(points, grid_x, grid_y, grid_z)

Input Parameters

points — A (4, n) array containing the random 4D points to be gridded. Typically,
points(0, *) contains the x values, points(1, *) contains the y values, points(2, *)
contains the z values, and points(3, *) contains the intensity values. (You may,
however, choose to put other variables in these four vectors.)

grid_x — The x dimension of the grid. The x values are scaled to fit this dimension.

grid_y — The y dimension of the grid. The y values are scaled to fit this dimension.

grid_z — The z dimension of the grid. The z values are scaled to fit this dimension.

Returned Value

result — A gridded, 3D array containing intensity values.

Keywords

Iter — The number of iterations on the smooth function. The execution time
increases linearly with the number of iterations. The default is 3, but any non-
negative integer (including zero) may be specified.

Nghbr — The size of the neighborhood to smooth. If not supplied, the
neighborhood size is calculated from the distribution of the points. The amount of
memory required increases by the square of the neighborhood size.

No_Avg — Normally, if multiple data points fall in the same cell in the gridded
array, then the value of that cell is the average value of all the data points that fall
in that cell.

If the No_Avg keyword is present and nonzero, however, the value of the cell in the
gridded array is the total of all the points that fall in that cell.

352 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

XMax — The x-coordinate of the right edge of the grid. If omitted, maps the
maximum x value found in the points(0, *) array to the right edge of the grid.

XMin — The x-coordinate of the left edge of the grid. If omitted, maps the
minimum x value found in the points(0, *) array to the left edge of the grid.

YMax — The y-coordinate of the top edge of the grid. If omitted, maps the
maximum y value found in the points(1, *) array to the top edge of the grid.

YMin — The y-coordinate of the bottom edge of the grid. If omitted, maps the
minimum y value found in the points(1, *) array to the bottom edge of the grid.

ZMax — The z-coordinate of the front edge of the grid. If omitted, maps the
maximum z value found in the points(2, *) array to the front edge of the grid.

ZMin — The z-coordinate of the back edge of the grid. If omitted, maps the
minimum z value found in the points(2, *) array to the back edge of the grid.

Discussion

FAST_GRID4 uses a neighborhood smoothing technique to interpolate missing
data values for 4D gridding. The gridded array returned by FAST_GRID4 is
suitable for use with the SHADE_VOLUME and VOL_REND functions.

FAST_GRID4 is similar to GRID_4D. FAST_GRID4, however, works best with
dense data points (more than 1000 points to be gridded) and is considerably faster,
but slightly less accurate, than GRID_4D. (GRID_4D works best with sparse data
points and is stable when extrapolating into large void areas.)

TIP For best results, use a small neighborhood (such as 3) and a large number of
iterations (more than 16).

Examples

See the Examples section in the description of the CENTER_VIEW routine.

See Also

FAST_GRID3, GRID_2D, GRID_3D, GRID_4D, GRIDN, GRID_SPHERE

UNIX and OpenVMS USERS For information on the optional software pack-
age for advanced gridding, PV-WAVE:GTGRID, contact your Visual Numerics
account representative.

FFT Function 353

FFT Function
Returns the fast Fourier transform (FFT) for the input variable.

Usage

result = FFT(array, direction)

Input Parameters

array — The array for which the FFT or the reverse FFT is computed. The size of
each dimension may be any positive integer value.

direction — A signed scalar value that determines the direction of the transform,
between the time (or spatial) domain and the frequency domain.

Returned Value

result — The fast Fourier transform of array. The Cooley-Tukey fast Fourier
transform algorithm is used for calculating the FFT.

Keywords

Intleave — A scalar string indicating the type of interleaving of 2D input signals
containing signal-interleaved signals; and 3D input arrays containing image-
interleaved images, or a volume. Valid strings and the corresponding interleaving
methods are:

’signal’ — The 2D input image array arrangement is (x, p) for p
signal-interleaved signals of length x.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Discussion

The FFT function supports input arrays composed of multiple images (multi-layer
band interleaved images) as well as input arrays composed of multiple signals. The
Intleave keyword is used to specify whether the input array is a multi-signal or
multi-image array. When the Intleave keyword is used to indicate multiple signals
or images in this way, each signal or image in the array is operated on separately
and an array of the individual results is returned.

354 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

The Fourier transform of a scaled-time function is defined by:

where w relates to the frequency domain, and t relates to the time (space) domain.

The data type of array is converted to complex, with the real part described by
array and the imaginary part set to 0, unless it is already complex. The output array
will have the same number and size of dimensions as array.

TIP For more efficient transforms, choose dimensions for array that are a power
of 2.

The direction parameter controls the direction of the transform:

• Set direction to a negative value to transform from space to frequency.

• Set direction to a positive (or zero) value to go from frequency to space.

A normalization factor of 1/n, where n is the number of points in array, is applied
to the transformation when going from space to frequency.

CAUTION Take care to avoid wrap-around artifacts when filtering and convolving
in the frequency domain. In particular, make sure your images are properly win-
dowed and sampled before applying the Fast Fourier Transform, or false and
misleading values will result.

Example 1

This example shows what an aerial image looks like before and after applying the
FFT function, in conjunction with other functions.

The FFT function is used to transform the image into the frequency domain. For
the example shown in , the following parameters are used:

fft_aerial = FFT(aerial_img, -1)

FFT places the frequency component into the first element of the image, which
appears in the lower-left corner. However, it is customary to display Fourier spectra
of images with the frequency component in the center of the image. This can be
done using the SHIFT function to move the origin to the center, and the ABS and
ALOG functions to convert the data back into a format that can be displayed:

F w() F f t()() f t()e jwt– dt

∞–

∞

∫= =

FFT Function 355

Figure 2-23 PV-WAVE makes it easy to generate the Fourier spectrum for any image. Note
that the diagonal, vertical, and horizontal lines in the Fourier spectrum correspond to the
roads in the original 512-by-512 image, but are perpendicular to them; this is because of the
90-degree phase shift that occurs when moving from the space domain to the frequency
domain.

• Use the SHIFT function to shift the image so the point with a subscript of (0,0)
is in the center (assuming the image is a 512-by-512 image).

• Use the ALOG function to return the natural logarithm of each pixel.
• Use the ABS function to calculate the magnitude of each complex-valued

pixel.

The result of the initial FFT operation (fft_aerial) can be run through these
other three functions as follows:

display = SHIFT(ALOG(ABS(fft_aerial)), 256, 256)

The resulting variable, display, is the image displayed on the right in .

Example 2
For an example of an FFT used in windowing, see the description of the
HANNING function.

See Also
HANNING, HILBERT

For background information, see the section Frequency Domain Techniques in
Chapter 6 of the PV-WAVE User’s Guide.

For details on the Cooley-Tukey Fast Fourier Transform algorithm, see the Special
Issue on FFT in IEEE Audio Transactions, June 1967.

356 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FILEPATH Function
Standard Library function that returns the file path to use to open a file, when given
a file name within the PV-WAVE distribution.

Optionally, can also return the file name of the user’s terminal and the default
location for temporary files for the current operating system.

Usage

result = FILEPATH(filename)

Input Parameters

filename — A string containing the name of a file. Must be in all lowercase. Do not
enter any device or directory information.

Returned Value

result — The fully qualified file path for filename.

Keywords

Subdirectory — The name of the subdirectory in the PV-WAVE distribution area
in which filename is located.

Terminal — The file name of the user’s terminal.

Tmp — The path to the default location for temporary files for the current operating
system (filename is a temporary or “scratch” file).

Discussion

FILEPATH is used to get path information for a file. It is not a search facility, but
simply builds the file path by padding information based on the operating system
and keyword information passed into the function in the system variable !Dir.

FILEPATH does not check for the existence of filename, but rather only contracts
a fully qualified pathname. It does account for operating system dependencies.

This routine is useful when you are writing a procedure that will be used on
different platforms that support PV-WAVE and will open files in the PV-WAVE
distribution.

FILEPATH Function 357

UNIX Examples
PRINT, FILEPATH(’wvstartup’)

/usr/local/vni/wave/wvstartup

full_name = FILEPATH(’errplot’, $
Subdirectory=’lib/std’)

PRINT, full_name

/usr/local/vni/wave/lib/std/errplot

PRINT, FILEPATH(’dummy’,/Terminal)

/dev/tty

PRINT, FILEPATH(’scratch10’,/Tmp)

/tmp/scratch10

VMS Examples
PRINT, FILEPATH(’wvstartup’)

WAVE_DIR:[000000]wvstartup

full_name = FILEPATH(’errplot’, $
Subdirectory=’lib.std’)

PRINT, full_name

WAVE_DIR:[lib.std]errplot

PRINT, FILEPATH(’dummy’,/Terminal)

SYS$OUTPUT:

PRINT, FILEPATH(’scratch10’,/Tmp)

SYS$LOGIN:scratch10

Windows Examples
full_name = FILEPATH(’errplot’, $

Subdirectory=’lib\std’)

PRINT, full_name

d:\vni\wave\lib\std\errplot

PRINT, FILEPATH(’scratch10’,/Tmp)

\tmp\scratch10

See Also

FINDFILE

System Variables: !Dir, !Path

358 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FINDFILE Function
Returns a string array containing the names of all files matching a specified file
description.

Usage

result = FINDFILE(file_specification)

Input Parameters

file_specification — A scalar string used to find files. May contain any valid shell
wildcard characters. If omitted, all files in the current directory are supplied.

Windows USERS If a filename or directory name used in the file specification
string contains a space, the entire string must be enclosed in quotes (either single
or double quotes). For example, to find files in the directory:
’Visual Numerics\wave\xres’, you must use the command:

files=FINDFILE(’”\Visual Numerics\wave\xres”’)

Returned Value

result — A string array containing the names of all files matching
file_specification. If no files with matching names exist, returns a null scalar string.

Keywords

Count — A named variable into which the number of files found is placed. A value
of 0 indicates that no files were found.

Discussion

FINDFILE returns all matched filenames in a string array, one file name per array
element.

UNIX USERS Under UNIX, FINDFILE uses the shell specified by the SHELL
environment variable (or /bin/sh if SHELL is not defined) to search for any files
matching file_specification.

FINDGEN Function 359

OpenVMS USERS Under OpenVMS, FINDFILE uses the command language
interpreter.

Example

This example assumes you have two files, test.c and test_2.c, in your
current directory.

x=FINDFILE(’*.c’, Count=cntr)

PRINT, x

test.c test_2.c

PRINT, cntr

2

See Also

FILEPATH

FINDGEN Function
Returns a single-precision floating-point array with the specified dimensions.

Usage

result = FINDGEN(dim1, ..., dimn)

Input Parameters

dimi — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value

result — An initialized single-precision, floating-point array. If the resulting array
is treated as a one-dimensional array, then its initialization is given by the
following:

array i() FLOAT i(), for i 0 1 … D j 1–
j 1=

n

∏

, , ,= =

360 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

None.

Discussion

Each element of the array is set to the value of its one-dimensional subscript.
Example

This example creates a 4-by-2 single-precision, floating-point array.

a = FINDGEN(4, 2)

; Create single-precision, floating-point array.

INFO, a

A FLOAT = Array(4, 2)

PRINT, a

0.00000 1.00000 2.00000 3.00000

4.00000 5.00000 6.00000 7.00000

See Also

BINDGEN, CINDGEN, DINDGEN, INDGEN, LINDGEN, SINDGEN

FINITE Function
Returns a value indicating if the input variable is finite or not.

Usage

result = FINITE(x)

Input Parameters

x — A scalar or array expression of single-precision complex, double-precision
complex, single-precision floating point, or double-precision floating point data
type.

Returned Value

result — Returns 1 if x is finite. Returns 0 if x is infinite or not a defined number
(NaN). Undefined numbers result from ill-defined operations, such as dividing zero
by zero, or taking the logarithm of zero or a negative number.

FINITE Function 361

Keywords

None.

Example
fmach = MACHINE(/Float)

; Get the single-precision, floating-point machine constants.

a = [fmach.nan, 3.0, fmach.pos_inf, 5.2, $
fmach.neg_inf]

; Create a five-element vector containing single-precision,
; floating-point NaN, positive infinity, negative infinity, and
; finite values.

b = FINITE(a)

; View result of FINITE.

INFO, b

B BYTE = Array(5)

FOR i = 0, 4 DO PRINT, a(i), b(i)

NaN 0

3.00000 1

Inf 0

5.20000 1

-Inf 0

; Print vectors a and b. Note that vector b contains a 0 when
; NaN or infinity occurs in a. Vector b contains a 1 at the indices
; where vector a contains finite values.

See Also

CHECK_MATH, ON_ERROR, ON_IOERROR

For more details, see Chapter 10, Programming with PV-WAVE, in the PV-WAVE
Programmer’s Guide.

362 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FIX Function
Converts an expression to integer data type.

Extracts data from an expression and places it in a integer scalar or array.

Usage

result = FIX(expr)
This form is used to convert data.

result = FIX(expr, offset, [dim1, ..., dimn])
This form is used to extract data.

Input Parameters

To convert data:

expr — The expression to be converted.

To extract data:

expr — The expression from which to extract data.

offset — The offset, in bytes, from the beginning of expr to where the
extraction is to begin.

dimi — (optional) The dimensions of the result. May be any scalar expres-
sion. Up to eight dimensions may be specified.

Returned Value

For data conversion:

result — A copy of expr converted to integer data type.

For data extraction:

result — If offset is used, FIX does not convert result, but allows fields of
data extracted from expr to be treated as integer data. If no dimensions are
specified, the result is scalar.

Keywords

None.

FIX Function 363

Discussion

CAUTION If the values of expr are within the range of a long integer, but outside
the range of the integer data type (–32,768 to +32,767), a misleading result occurs,
without an accompanying message. For example, FIX(66000) erroneously
results in 464.

In addition, PV-WAVE does not check for overflow during conversion to integer
data type. The values in expr are simply converted to long integers and the low 16
bits are extracted.

Examples

FIX is used in two ways here. First, FIX is used to convert a single-precision,
floating- point array to integer. Next, FIX is used to extract a subarray from the
integer array created in the first step.

a = FINDGEN(6) + 0.6

; Create a single precision, floating point vector of length 6. Each
; element has a value equal to its one-dimensional subscript plus 0.6.

PRINT, a

0.600000 1.60000 2.60000 3.60000 4.60000

5.60000

b = FIX(a)

; Convert a to type integer.

INFO, b

B INT = Array(6)

PRINT, b

0 1 2 3 4 5

; Notice that the floating-point numbers in a were truncated by
; FIX.

c = FIX(b, 4, 2, 2)

; Extract the last four elements of b, and place them in a 2-by-2
; integer array.

INFO, c

C INT = Array(2, 2)

PRINT, c

2 3

364 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

4 5

See Also

BYTE, COMPLEX, DOUBLE, FLOAT, LONG, SMALL_INT

For more information on using this function to extract data, see the PV-WAVE
Programmer’s Guide.

FLOAT Function
Converts an expression to single-precision floating-point data type.

Extracts data from an expression and places it in a single-precision floating-point
scalar or array.

Usage

result = FLOAT(expr)
This form is used to convert data.

result = FLOAT(expr, offset, [dim1, ..., dimn])
This form is used to extract data.

Input Parameters

To convert data:

expr — The expression to be converted, or from which to extract data.

To extract data:

expr — The expression to be converted, or from which to extract data.

offset — The offset, in bytes, from the beginning of expr to where the
extraction is to begin.

dimi — (optional) The dimensions of the result. May be any scalar expres-
sion. Up to eight dimensions may be specified.

Returned Value

For data conversion:

FLOAT Function 365

result — A copy of expr converted to single-precision floating-point data
type.

For data extraction:

result — If offset is used, FLOAT does not convert result, but allows fields
of data extracted from expr to be treated as single-precision floating-point
data. If no dimensions are specified, the result is scalar.

Keywords

None.

Example

In this example, FLOAT is used in two ways. First, FLOAT is used to convert an
integer array to single precision, floating point. Next, FLOAT is used to extract a
subarray from the single-precision array created in the first step.

a = INDGEN(6)

; Create an integer vector of length 6. Each element has a
; value equal to its one-dimensional subscript.

PRINT, a

0 1 2 3 4 5

b = FLOAT(a)

; Convert a to single precision, floating point.

INFO, b

B FLOAT = Array(6)

PRINT, b

0.00000 1.00000 2.00000 3.00000 4.00000

5.00000

c = FLOAT(b, 8, 2, 2)

; Extract the last four elements of b, and place them in a 2-by-2
; single-precision, floating-point array.

INFO, c

C FLOAT = Array(2, 2)

PRINT, c

2.00000 3.00000

4.00000 5.00000

366 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

See Also

BYTE, COMPLEX, DOUBLE, FIX, LONG

For more information on using this function to extract data, see the PV-WAVE
Programmer’s Guide.

FLTARR Function
Returns a single-precision floating-point vector or array.

Usage

result = FLTARR(dim1, ..., dimn)

Input Parameters

dimi — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value

result — A single-precision floating-point vector or array.

Keywords

Nozero — If Nozero is nonzero, this zeroing is not performed, thereby causing
FLTARR to execute faster.

Discussion

Normally, FLTARR sets every element of result to zero.

Example
PRINT, FLTARR(4)

0.00000 0.00000 0.00000 0.00000

PRINT, FLTARR(4, /Nozero)

5.60519e-45 1.98225e-39 2.35149e-38 5.60519e-45

FLUSH Procedure 367

See Also

BYTARR, COMPLEXARR, DBLARR, FINDGEN, INTARR, LONARR,
MAKE_ARRAY, REPLICATE, STRARR

FLUSH Procedure
Causes all buffered output on the specified file units to be written.

Usage

FLUSH, unit1, ..., unitn

Input Parameters

uniti — The file units (logical unit numbers) to flush.

Keywords

None.

Discussion

PV-WAVE uses buffered output for reasons of efficiency. This leads to rare
occasions where a program needs to be certain that output data are not waiting in a
buffer, but have actually been output. This procedure is handy for such occasions.

See Also

CLOSE, EMPTY

For background information, see Chapter 8, Working with Data Files, in the
PV-WAVE Programmer’s Guide.

368 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FREE_LUN Procedure
Deallocates file units previously allocated with GET_LUN.

Usage

FREE_LUN, unit1, ..., unitn

Input Parameters

uniti — The file units (logical unit numbers) to deallocate.

Keywords

None.

Discussion

If the specified file units are open, they are closed prior to the deallocation process.

Example

Suppose that the first available logical unit number is 100.

GET_LUN, log_unit

; Returns the logical unit number to allocate (100).

OPENR, log_unit, ’test.dat’

; Open test.dat file for reading.

READF, log_unit, my_var

; Read the file.

FREE_LUN, log_unit

; Closes the file and frees the logical unit 100.

See Also

CLOSE, GET_LUN, POINT_LUN

For background information, see the section Logical Unit Numbers (LUNs) in
Chapter 8 of the PV-WAVE Programmer’s Guide.

FSTAT Function 369

FSTAT Function
Returns an expression containing status information about a specified file unit.

Usage

result = FSTAT(unit)

Input Parameters

unit — The file unit (logical unit number) about which information is required.

Returned Value

result — A structure expression of type FSTAT containing status information
about unit.

Keywords

None.

Discussion

FSTAT can be used to get more detailed information, as well as information that
can be used from within a PV-WAVE program.

Example 1

To get detailed information about the standard input, enter the command:

INFO, /Structures, FSTAT(0)

This causes the following to be displayed on the screen:

** Structure FSTAT, 10 tags, 32 length:

UNIT LONG 0

NAME STRING '<stdin>'

OPEN BYTE 1

ISATTY BYTE 1

READ BYTE 1

WRITE BYTE 0

TRANSFER_COUNT LONG 0

CUR_PTR LONG 8112

SIZE LONG 0

REC_LEN LONG 0

370 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

The fields of the FSTAT structure provide the following information:

UNIT — The file unit number.

NAME — The name of the file.

OPEN— Nonzero if the file unit is open. If OPEN is 0, the remaining fields
in FSTAT contain no useful information.

ISATTY — Nonzero if the file is actually a terminal instead of a normal
file.

READ — Nonzero if the file is open for read access.

WRITE — Nonzero if the file is open for write access.

TRANSFER_COUNT— The number of scalar data items transferred in the
last I/O operation on the unit. This is set by the following routines: READ,
READF, READU, PRINT, PRINTF, and WRITEU.

TRANSFER_COUNT is useful when you are attempting to recover from
input/output errors.

CUR_PTR — The current position of the file pointer, given in bytes from
the start of the file. If the device is a terminal (ISATTY is nonzero), the
value of CUR_PTR will not contain useful information.

SIZE — The current length of the file, in bytes. If the device is a terminal
(ISATTY is nonzero), the value of SIZE will not contain useful
information.

REC_LEN — OpenVMS-specific record length, in bytes. This field is
always zero under UNIX and Windows.

Example 2

The following function can be used to read single-precision floating point data
from a file into a vector when the number of elements in the file is not known. This
function uses FSTAT to get the size of the file in bytes and then divides by 4 (the
size of a single-precision floating-point value) to determine the number of values:

FUNCTION read_data, file

; Read_data reads all the floating-point values from file and returns
; the result as a floating-point vector.

OPENR, /Get_Lun, unit, file

; Get a unique file unit and open the data file.

FSTAT Function 371

status = FSTAT(unit)

; Retrieve the file status.

data = FLTARR(status.size / 4.0)

; Make an array to hold the input data. The size tag of status gives the number
; of bytes in the file and single-precision floating-point values are four bytes each.

READU, unit, data

; Read the data.

FREE_LUN, unit

; Deallocate the file unit and close the file.

RETURN, data

; Return the data.

END

; This is the end of the read_data function.

Assuming that a file named herc.dat exists and contains 10 floating-point
values, the following statements:

a = read_data(’herc.dat’)

; Read floating-point values from herc.dat.

INFO, a

; Show the result.

will produce the following output:

See Also

CLOSE, FREE_LUN, GET_LUN, OPEN (UNIX/OpenVMS),
OPEN (Windows), POINT_LUN

For more information, see the section Getting Information About Files in Chapter
8 of the PV-WAVE Programmer’s Guide.

For background information, see the section Logical Unit Numbers (LUNs) in
Chapter 8 of the PV-WAVE Programmer’s Guide.

A FLOAT = Array(10)

372 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

FUNCT Procedure
Standard Library procedure that evaluates a function that is a sum of a Gaussian
and a second order polynomial.

Usage

FUNCT, x, parms, funcval [, pder]

Input Parameters

x — The values of the independent variable.

parms — The parameters of the equation described in the Discussion section.

funcval — The value of the function, described in the Discussion section, at each
x(i).

Output Parameters

pder — (optional) An N_ELEMENT(x)-by-6 array containing the partial
derivatives of the function. The parameter pder(i, j) is equal to the derivative at the
i th point with respect to the j th parameter.

Keywords

None.

Discussion

The FUNCT procedure is used primarily by the CURVEFIT function to fit the sum
of a line and a varying background to actual data. The function to be evaluated is:

,

where

See Also

CURVEFIT

F x() A e
z– 2 2⁄()

0 A3 A4x A5x2+ + +=

z x A1–() a2()⁄=

FUNCT Procedure 373

374 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

2
Procedure and Function Reference

GAMMA Function
Calculates the gamma function of the input variable.

Usage

result = GAMMA(x)

Input Parameters
x — The expression for which the gamma function will be evaluated. x must eval-
uate to < 34.5; otherwise, a floating-point over-flow will result.

Returned Value

result — The gamma function of x. The result is floating-point, regardless of the
data type for x.

Keywords

None.

Discussion
The gamma function can be used in a variety of applications; one example is to
solve nonlinear flow problems, such as the creep of metals.

GAMMA is defined as:

 x > 0

The gamma function has the following properties:

A special value of the gamma function occurs when x = 1/2:

See Also
ERRORF, GAUSSINT

Γ x() t x 1– e t–dt

0

∞

∫=

Γ x 1+() xΓ x()=

Γ 1
2

 π=

GAUSSFIT Function 375

GAUSSFIT Function
Standard Library function that fits a Gaussian curve through a data set.

Usage

result = GAUSSFIT(x, y [, coefficients])

Input Parameters
x — A real vector containing the values of the independent variable.

y — A real vector containing the values of the dependent variable. Should be the
same length as x.

Output Parameters

coefficients — (optional) A six-element vector with the coefficients A0 through A5
of the equation described in the Discussion section.

Returned Value

result — A real vector containing the dependent y values of the fitted function.

Keywords

None.

Discussion

The GAUSSFIT function fits y = F(x), where:

F(x) = A0 * EXP(-z2/2) + A3 + A4x + A5x2

and
z = z(x - A1)/(A2)

GAUSSFIT calls the POLY_FIT function to fit a straight line through the data for
the purpose of determining estimates of the height, center, orientation, and width
(approximately 1/e) of the Gaussian function to be fitted to the data.

These estimated parameters—along with the constant, linear, and quadratic
coefficients of the straight line polynomial—are sent to the CURVEFIT function as
trial coefficients of the Gaussian function. CURVEFIT uses a nonlinear least-
squares method to fit a function with an arbitrary number of parameters. Any

376 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

nonlinear function can be fitted as long as the partial derivatives of the function are
known or can be approximated.

The peak or minimum of the Gaussian function returned will be located at the index
of the largest or smallest value, respectively, in the y vector.

See Also

CURVEFIT, GAUSSINT, POLY_FIT

GAUSSINT Function
Evaluates the integral of the Gaussian probability function.

Usage

result = GAUSSINT(x)

Input Parameters

x — The expression for which the Gaussian function is computed. Can be a scalar
or array expression of any type except string.

Returned Value

result — The integral of the Gaussian probability function. Yields floating-point
results, regardless of the data type of x. Scalar inputs yield scalar results, and array
inputs yield array results.

Keywords

None.

Discussion

The Gaussian probability function provides a good mathematical model for many
different physically observed random phenomema. It can easily be extended to
handle an arbitrarily large number of random variables. It is most commonly asso-
ciated with the standard bell-shaped curve.

GAUSSINT is defined by:

1

2π
---------- e t 2–() 2⁄ dt

∞–

x

∫Gaussint (x) ≡

GCD Function 377

See Also

ERRORF, GAMMA, GAUSSFIT

GCD Function
Standard Library function that returns the greatest common divisor of some
integers greater than 0.

Usage

result = GCD(i)

Input Parameters

i — An array of integers greater than 0.

Returned Value

result — An integer: the greatest common divisor of the integers i.

Keywords

None.

Examples
pm, GCD([12,20,32])

See Also

FACTOR, LCM, PRIME

378 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

GETENV Function
Returns the specified equivalence string from the environment of the PV-WAVE
process.

Usage

result = GETENV(name)

Input Parameters

name — The scalar string specifying which equivalence string to return from the
environment.

Returned Value

result — The equivalence string for name. If name does not exist in the environ-
ment, returns a null string.

Keywords

None.

Discussion

OpenVMS USERS OpenVMS does not directly support the concept of environ-
ment variables. Instead, it is emulated in the manner described below, which allows
you to use GETENV portably between UNIX and OpenVMS:

• If name is one of HOME, TERM, PATH, or USER, an appropriate response is
generated. This mimics the most common UNIX environment variables.

• An attempt is made to translate name as a logical name. All four logical name
tables are searched in the standard order.

• An attempt is made to translate name as a command-language interpreter
symbol.

UNIX and OpenVMS Examples

This command prints information about the environment:

PRINT, ’Current shell is: ’, GETENV(’SHELL’)

GET_KBRD Function 379

This example shows how to read data from a file in a manner that will work on
either UNIX or OpenVMS systems:

IF !Version.platform EQ ’VMS’ THEN $
OPENR, u, GETENV(’WAVE_DIR’)+ $
’[data]heartbeat.dat’, /Get_Lun $

ELSE $

OPENR, u, ’$WAVE_DIR/data/heartbeat.dat’, /Get_Lun

Windows Example

This command prints information about the environment:

PRINT, ’Home Drive is: ’, GETENV(’HOMEDRIVE’)

This example shows how to read data using GETENV to obtain part of a file’s
pathname:

OPENR, u, GETENV(’WAVE_DIR’)+ $
’\data\heartbeat.dat’, /Get_lun

See Also

ENVIRONMENT, SETENV

GET_KBRD Function
Returns the next character available from standard input (file unit 0).

Usage

result = GET_KBRD(wait)

Input Parameters

wait — If wait is zero, GET_KBRD returns the null string if there are no characters
in the terminal typeahead buffer. If it is nonzero, GET_KBRD waits for a character
to be typed before returning.

Returned Value

result — The next character available from standard input, as a one-character
string.

380 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

None.

Example

In this example, a character is read from the keyboard, and the character and its
ASCII code are echoed to the screen. The loop is terminated when “q” or “Q” is
typed.

REPEAT BEGIN

; Retrieve keyboard input, placing result in the variable a.

a = GET_KBRD(1)

PRINT, a,’ = ’, BYTE(a)

ENDREP UNTIL STRLOWCASE(a) EQ ’q’

; Display the character entered and its associated ASCII code.
; Terminate loop when “q” or “Q” is entered.

GET_LUN Procedure
Allocates a file unit from a pool of free units.

Usage

GET_LUN, unit

Input Parameters

unit — A named variable.

Output Parameters

unit — On output, unit is converted into an integer containing the file unit number.

Keywords

None.

Discussion

GET_LUN sets unit to the first available logical unit number. This number can then
be used to open a file.

GET_LUN Procedure 381

User-written PV-WAVE functions and procedures should use GET_LUN to
reserve unit numbers to avoid conflicts with other routines. (Similarly, they should
use FREE_LUN to free them when finished).

NOTE The Get_Lun keyword, used with the OPENR, OPENU, and OPENW pro-
cedures, calls GET_LUN to allocate a file unit number.

Example

Suppose that the first available logical unit number is 100.

GET_LUN, log_unit

; Returns the logical unit number to allocate (100).

OPENR, log_unit, ’test.dat’

; Open test.dat file for reading.

READF, log_unit, my_var

; Read the file.

FREE_LUN, log_unit

; Closes the file and frees the logical unit 100.

See Also

CLOSE, FREE_LUN, ON_IOERROR, OPEN (UNIX/OpenVMS), OPEN
(Windows), POINT_LUN, READ, WRITEU

For background information, see the section Logical Unit Numbers (LUNs) in
Chapter 8 of the PV-WAVE Programmer’s Guide

382 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

GETNCERR Function
Retrieves the current value of the “ncerr” variable as discussed in the error section
of the NetCDF User’s Guide.

Usage

ncerr = GETNCERR([errstr])

Input Parameters

errstr — (optional) A variable to hold the corresponding error string to the ncerr
variable.

Keywords

Help — List the usage for this function.

Usage — List the usage for this function. (Same as the Help keyword.)

Return Value

ncerr — The current value of the ncerr variable.

Discussion

GETNCERR retrieves the current value of the “ncerr” variable as discussed in the
Error Handling section of the NetCDF User’s Guide. This variable gets set to a
non-zero value when an error occurs in a call to the NetCDF functions. A string
describing the error will be returned in the optional “errstr” parameter.

NOTE GETNCERR is only valid for the NetCDF functionality.

The value of “ncerr” does not change when a valid NetCDF function call is made.

Example
ncid = NCOPEN("foo.nc", NC_NOWRITE)

status = NCCLOSE(ncid)

status = NCREDEF(ncid)
ncredef: 0 is not a valid cdfid

GETNCOPTS Function 383

% NCREDEF: error in HDF return status.

ncerr = GETNCERR(errstr)

INFO, ncerr, errstr

NCERR LONG = 1

ERRSTR STRING = ’Not a netcdf id’

See Also

GETNCOPTS, SETNCOPTS

Also refer to the NetCDF User’s Guide.

For more information on using the PV-WAVE HDF interface and the calling
sequence for the entire suite of HDF base functions, refer to
Appendix A, The PV-WAVE HDF Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

GETNCOPTS Function
Retrieves the current value of the ncopts variable as discussed in the error section
of the NetCDF User’s Guide.

Usage

ncopts = GETNCOPTS()

Input Parameters

None.

Keywords

Help — List the usage for this function.

Usage — List the usage for this function. (Same as the Help keyword.)

Return Value

ncopts — The current value of the “ncopts” variable.

384 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

GETNCOPTS retrieves the current value of the “ncopts” variable as discussed in
the Error Handling section of the NetCDF User’s Guide. This variable defines the
level of error reporting by the netCDF functions.

NOTE GETNCOPTS is only valid for the netCDF functionality.

Example
ncopts = GETNCOPTS()

INFO, ncopts

NCOPTS LONG = 2

; The default value of "ncopts" is set to NC_VERBOSE which is
; equal to 2.

ncid = NCOPEN("foo.nc", NC_NOWRITE)

status = NCCLOSE(ncid)

status = NCREDEF(ncid)
ncredef: 0 is not a valid cdfid
% NCREDEF: error in HDF return status.

See Also

GETNCERR, SETNCOPTS

Also refer to the NetCDF User’s Guide.

For more information on using the PV-WAVE HDF interface and the calling
sequence for the entire suite of HDF base functions, refer to
Appendix A, The PV-WAVE HDF Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

GET_SYMBOL Function (OpenVMS) 385

GET_SYMBOL Function (OpenVMS)
Returns the value of an OpenVMS DCL interpreter symbol as a scalar string.

Usage

result = GET_SYMBOL(name)

Input Parameters

name — A scalar string containing the name of the symbol to be translated.

Returned Value

result — A scalar string containing the value of an OpenVMS Digital Command
Language interpreter symbol. If the symbol is undefined, the null string is returned.

Keywords

Type — Indicates in which OpenVMS table name is found:

Example

This example assumes that on your system kermit is a symbol that points to the
KERMIT communications software.

my_kermit=GET_SYMBOL(’kermit’)

; This converts my_kermit into the string SYS$SYSTEM:KERMIT.

See Also

DELETE_SYMBOL, DELLOG, SETLOG, SET_SYMBOL, TRNLOG

1 Specifies the local symbol table (the default).

2 Specifies the global symbol table.

386 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

GREAT_INT Function
Greatest Integer Function. Standard Library function that returns the greatest
integer less than or equal to the passed value. Also known as the Floor Function.

Usage

result = GREAT_INT(values)

Input Parameters

values — An array (scalar).

Returned Value

result — A long array (scalar) of the same dimensions as values: result(i) is the
greatest integer less than or equal to values(i).

Keywords

None.

Example
PM, GREAT_INT([-0.5,0,0.5])

See Also

SMALL_INT

GRID Function 387

GRID Function
Standard Library function that generates a uniform grid from irregularly-spaced
data.

Usage

result = GRID(xtmp, ytmp, ztmp)

Input Parameters
xtmp — The vector containing the x-coordinates of the irregularly-spaced input
data.

ytmp — The vector containing the y-coordinates of the irregularly-spaced input
data.

ztmp — The vector containing the z-coordinates of the irregularly-spaced input
data.

Returned Value

result — An array containing the gridded z values applied to a uniform XY grid.

Keywords

Nghbr — The number of neighboring data points to be used in the gridding algo-
rithm. Must be in the range of {3 ... 25}. (Default: 3)

Nx — The number of columns in the resulting array. Must be ≤ 200.

Ny — The number of rows in the resulting array. Must be ≤ 200.

Discussion
For PV-WAVE Version 6.0, the previously used GRID procedure algorithm has
been discontinued. GRID now calls the FAST_GRID3 procedure directly. If you
prefer to use the previously supported GRID algorithm, please contact Visual
Numerics Technical Support.

UNIX and OpenVMS USERS PV-WAVE:GTGRID is an optional software
package for advanced gridding. It gives you additional interpolation and extrapo-
lation power by providing access to a library of gridding routines provided by
Geophysical Techniques, Inc. For information on PV-WAVE:GTGRID, contact
your Visual Numerics account representative.

388 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

See Also

FAST_GRID3, GRID_3D

GRIDN Function
Standard Library function that grids n dimensional data.

Usage

result = GRIDN(d, i)

Input Parameters

d — An (m,n+1) array of m datapoints in n independent variables and one depen-
dent variable; d(*,n) is the dependent variable.

i — A vector of n integers specifying the dimensions of the grid.

Returned Value

result — An n dimensional array of values of the dependent variable on a regular
grid over the independent variables.

Keywords

r — A scalar specifying the order of the weighting function. The dependent vari-
able at a grid point is computed as a weighted average of the variable over all
neighborhood datapoints. The weighting function is 1/er where e is the Euclidean
distance between the grid point and the datapoint. r defaults to 2

t — A scalar between 0 and 1 specifying neighborhood size. t=1 gives a maximal
neighborhood which includes all datapoints, while lower t values yield smaller
neighborhoods. t defaults to 1

b — A 2 x n array fixing the boundary of the grid. b(0,*) is the minimum corner
and b(1,*) is the maximum corner. The default extent of the grid is the same as that
of the data.

f — The name of a user-supplied procedure describing voids in the independent
variable space (datapoints and gridpoints within these regions are ignored in com-
putation). Input to f is a (p,n) array of p points in the independent variable space. f
outputs two items where the first item is a vector of indices indicating which of the

GRID_2D Function 389

p input points are within bounds, and where the second item is a scalar that will
appear as a place holder for the dependent variable at out-of-bounds gridpoints.

c — (output) A list of n vectors defining the grid coordinates.

Examples

See wave/lib/user/examples/gridnex1.pro

wave/lib/user/examples/gridnex2.pro

See Also

FAST_GRID2, FAST_GRID3, FAST_GRID4, INTERPOLATE

GRID_2D Function
Returns a gridded, 1D array containing y values, given random x,y coordinates (this
function works best with sparse data points).

Usage

result = GRID_2D(points, grid_x)

Input Parameters

points — A (2, n) array containing the random x,y points to be gridded.

grid_x — The size of the vector to return.

Returned Value

result — A gridded, 1D array containing y values.

Keywords

Order — The order of the weighting function to use for neighborhood averaging.
Points are weighted by the function:

w = 1.0 / (dist ^ Order)

where dist is the distance to the point. (Default: 2)

XMax — The x-coordinate of the right edge of the grid. If omitted, maps the max-
imum x value found in the points(0, *) array to the right edge of the grid.

390 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

XMin — The x-coordinate of the left edge of the grid. If omitted, maps the mini-
mum x value found in the points(0, *) array to the left edge of the grid.

Discussion

GRID_2D uses an inverse distance averaging technique to interpolate missing data
values for 2D gridding. The gridded array returned by GRID_2D is suitable for use
with the PLOT function.

GRID_2D is similar to FAST_GRID2. GRID_2D, however, works best with sparse
data points (say, less than 1000 points to be gridded) and is stable when extrapolat-
ing into large void areas. (FAST_GRID2 works best with dense data points; it is
considerably faster, but slightly less accurate, than GRID_2D.)

Examples
PRO grid_demo2

; This program shows 2D gridding with sparse data points.

points = INTARR(2, 10)

points(*, 0) = [1,2]

points(*, 1) = [1,3]

points(*, 2) = [9,5]

points(*, 3) = [8,0]

points(*, 4) = [9,6]

points(*, 5) = [9,9]

points(*, 6) = [7,15]

points(*, 7) = [6,-5]

points(*, 8) = [0,3]

points(*, 9) = [0,-1]
; Generate the data.

WINDOW, 0, Colors=128

LOADCT, 4

T3D, /Reset
; Reset the viewing window and load the color table.

!Y.Range = [MIN(points), MAX(points)]
; Set the y-axis range for plotting.

yval = GRID_2D(points, 256, Order=0.5)

PLOT, yval, Color=60

yval = GRID_2D(points, 256, Order=1.0)

OPLOT, yval, Color=80

yval = GRID_2D(points, 256, Order=2.0)

OPLOT, yval, Color=100

yval = GRID_2D(points, 256, Order=3.0)

GRID_3D Function 391

OPLOT, yval, Color=120
; Grid and plot the resulting data.

!Y.Range = [0.0, 0.0]
; Reset the y-axis range to the default value.

END

See Also

FAST_GRID2, FAST_GRID3, FAST_GRID4, GRID_3D,
GRID_4D, GRID_SPHERE

UNIX and OpenVMS USERS For information on the optional software pack-
age for advanced gridding, PV-WAVE:GTGRID, contact your Visual Numerics
account representative.

GRID_3D Function
Returns a gridded, 2D array containing z values, given random x-, y-, z-coordinates
(this function works best with sparse data points).

Usage

result = GRID_3D(points, grid_x, grid_y)

Input Parameters

points — A (3, n) array containing the random x, y, z points to be gridded.

grid_x — The x dimension of the grid. The x values are scaled to fit this dimension.

grid_y — The y dimension of the grid. The y values are scaled to fit this dimension.

Returned Value

result — A gridded, 2D array containing z values.

Keywords

Order — The order of the weighting function to use for neighborhood averaging.
Points are weighted by the function:

w = 1.0 / (dist ^ Order)

392 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

where dist is the distance to the point. (Default: 2)

XMax — The x-coordinate of the right edge of the grid. If omitted, maps the max-
imum x value found in the points(0, *) array to the right edge of the grid.

XMin — The x-coordinate of the left edge of the grid. If omitted, maps the mini-
mum x value found in the points(0, *) array to the left edge of the grid.

YMax — The y-coordinate of the top edge of the grid. If omitted, maps the maxi-
mum y value found in the points(1, *) array to the top edge of the grid.

YMin — The y-coordinate of the bottom edge of the grid. If omitted, maps the min-
imum y value found in the points(1, *) array to the bottom edge of the grid.

Discussion

GRID_3D uses an inverse distance averaging technique to interpolate missing data
values for 3D gridding. The gridded array returned by GRID_3D is suitable for use
with the SURFACE, TV, and CONTOUR procedures.

GRID_3D is similar to FAST_GRID3. GRID_3D, however, works best with sparse
data points (say, less than 1000 points to be gridded) and is stable when extrapolat-
ing into large void areas. (FAST_GRID3 works best with dense data points; it is
considerably faster, but slightly less accurate, than GRID_3D.)

Examples
PRO grid_demo3

; This program shows 3D gridding with sparse data points.

points = INTARR(3, 10)

points(*, 0) = [1,1,2]

points(*, 1) = [1,1,3]

points(*, 2) = [9,9,5]

points(*, 3) = [9,8,0]

points(*, 4) = [4,9,6]

points(*, 5) = [0,9,9]

points(*, 6) = [3,7,15]

points(*, 7) = [5,6,-5]

points(*, 8) = [0,0,3]

points(*, 9) = [9,0,-1]

; Generate the data points.

zval = GRID_3D(points, 48, 32, Order=2.0)

; Grid the data points.

WINDOW, 0, Colors=128

GRID_4D Function 393

SURFR

SURFACE, zval, Bottom=90, Ax=30.0, Az=30.0, /T3d

; Display the gridded data as a surface.
END

See Also

FAST_GRID2, FAST_GRID3, FAST_GRID4, GRID_2D,
GRID_4D, GRID_SPHERE

UNIX and OpenVMS USERS For information on the optional software pack-
age for advanced gridding, PV-WAVE:GTGRID, contact your Visual Numerics
account representative.

GRID_4D Function
Grids a 3D array containing intensity values, given random 4D coordinates (this
function works best with sparse data points).

Usage

result = GRID_4D(points, grid_x, grid_y, grid_z)

Input Parameters

points — A (4, n) array containing the random 4D points to be gridded. Typically,
points(0, *) contains the x values, points(1, *) contains the y values, points(2, *)
contains the z values, and points(3, *) contains the intensity values. (You may, how-
ever, choose to put other variables in these four vectors.)

grid_x — The x dimension of the grid. The x values are scaled to fit this dimension.

grid_y — The y dimension of the grid. The y values are scaled to fit this dimension.

grid_z — The z dimension of the grid. The z values are scaled to fit this dimension.

Returned Value

result — A gridded, 3D array containing intensity values.

394 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

Order — The order of the weighting function to use for neighborhood averaging.
Points are weighted by the function:

w = 1.0 / (dist ^ Order)

where dist is the distance to the point. (Default: 2)

XMax — The x-coordinate of the right edge of the grid. If omitted, maps the max-
imum x value found in the points(0, *) array to the right edge of the grid.

XMin — The x-coordinate of the left edge of the grid. If omitted, maps the mini-
mum x value found in the points(0, *) array to the left edge of the grid.

YMax — The y-coordinate of the top edge of the grid. If omitted, maps the maxi-
mum y value found in the points(1, *) array to the top edge of the grid.

YMin — The y-coordinate of the bottom edge of the grid. If omitted, maps the min-
imum y value found in the points(1, *) array to the bottom edge of the grid.

ZMax — The z-coordinate of the front edge of the grid. If omitted, maps the max-
imum z value found in the points(2, *) array to the front edge of the grid.

ZMin — The z-coordinate of the back edge of the grid. If omitted, maps the mini-
mum z value found in the points(2, *) array to the back edge of the grid.

Discussion

GRID_4D uses an inverse distance averaging technique to interpolate missing data
values for 4D gridding. The gridded array returned by GRID_4D is suitable for use
with the SHADE_VOLUME and VOL_REND functions.

GRID_4D is similar to FAST_GRID4. GRID_4D, however, works best with sparse
data points (say, less than 1000 points to be gridded) and is stable when extrapolat-
ing into large void areas. (FAST_GRID4 works best with dense data points; it is
considerably faster, but slightly less accurate, than GRID_4D.)

Examples
PRO grid_demo4

; This program shows 4D gridding with sparse data points and a cut-away.

points = INTARR(4, 10)

points(*, 0) = [1, 1, 2, 86]

points(*, 1) = [1, 1, 3, 44]

points(*, 2) = [9, 9, 5, 37]

points(*, 3) = [5, 4, 7, 99]

GRID_4D Function 395

points(*, 4) = [4, 0, 6, 9]

points(*, 5) = [0, 9, 9, 32]

points(*, 6) = [3, 5, 5, 2]

points(*, 7) = [6, 6, 5, 55]

points(*, 8) = [0, 0, 5, 66]

points(*, 9) = [9, 0, 0, 44]

; Generate the data to be used for shading.

ival = GRID_4D(points, 32, 32, 32, Order=4.0)

ival = BYTSCL(ival)

; Grid the generated data.

block = BYTARR(30, 30, 30)

block(*, *, *) = 255

block = VOL_PAD(block, 1)

; Pad the data with zeroes.

block(0:16, 0:16, 16:31) = 0

; Cut away a section of the block by setting the desired elements to zero.

WINDOW, 0, Colors=128

LOADCT, 3

CENTER_VIEW, Xr=[0.0, 31.0], Yr=[0.0, 31.0], Zr=[0.0, 31.0], $
Ax=(-60.0), Az=45.0, Zoom=0.6

; Set up the viewing window and load the color table.

SET_SHADING, Light=[-1.0, 1.0, 0.2]

; Change the direction of the light source for shading.

SHADE_VOLUME, block, 1, vertex_list, $
polygon_list, Shades=ival, /Low

; Compute the 3D contour surface.

img1 = POLYSHADE(vertex_list, polygon_list, /T3d)

; Render the cut-away block with light source shading.

img2 = POLYSHADE(vertex_list, polygon_list, Shades=ival, /T3d)

; Render the cut-away block shaded by the gridded data.

TVSCL, (FIX(img1) + FIX(img2))

; Display the resulting composite image of the light
; source-shaded block and the data-shaded block.

END

For another example, see the vol_demo4 demonstration program in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

396 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Where <wavedir> is the main PV-WAVE directory.

See Also

FAST_GRID2, FAST_GRID3, FAST_GRID4, GRID_2D,
GRID_3D, GRID_SPHERE

UNIX and OpenVMS USERS For information on the optional software pack-
age for advanced gridding, PV-WAVE:GTGRID, contact your Visual Numerics
account representative.

GRID_SPHERE Function
Returns a gridded, 2D array containing radii, given random longitude, latitude, and
radius values.

Usage

result = GRID_SPHERE(points, grid_x, grid_y)

Input Parameters

points — A (3, n) array containing the random longitude, latitude, and radius coor-
dinates to be gridded.

grid_x — The x dimension of the grid. The longitude values are scaled to fit this
dimension (unless the XMin or XMax keywords are set).

grid_y — The y dimension of the grid. The latitude values are scaled to fit this
dimension (unless the YMin or YMax keywords are set).

Returned Value

result — A gridded, 2D array containing radius values.

Keywords

Degrees — If present and nonzero, reads the input coordinates in degrees instead
of in radians.

GRID_SPHERE Function 397

Order — The order of the weighting function to use for neighborhood averaging.
Points are weighted by the function:

w = 1.0 / (dist ^ Order)

where dist is the distance to the point. (Default: 2)

Radius — The radius of the sphere to grid on. The minimum allowable radius is
0.5. (Default: 1.0)

With a smaller radius, the data points are closer together and more smoothing
occurs. A larger radius causes less smoothing.

XMax — The longitude of the right edge of the grid. Should be in the range –π to
+π radians (–180 to +180 degrees). The XMax value is assumed to be in radians
unless the Degrees keyword is set.

If XMax is omitted, then a longitude of π is mapped to the right edge of the grid.

XMin — The longitude of the left edge of the grid. Should be in the range –π to +π
radians (–180 to +180 degrees). The value is assumed to be in radians unless the
Degrees keyword is set.

If XMin is omitted, then a longitude of –π is mapped to the left edge of the grid.

YMax — The latitude of the top edge of the grid. Should be in the range –π/2 to
+π/2 radians (–90 to +90 degrees). The YMax value is assumed to be in radians
unless the Degrees keyword is set.

If YMax is omitted, then a latitude of π/ 2 is mapped to the top edge of the grid.

YMin — The latitude of the bottom edge of the grid. Should be in the range –π/2
to +π/2 radians (–90 to +90 degrees). The YMin value is assumed to be in radians
unless the Degrees keyword is set.

If YMin is omitted, then a latitude of –π/2 is mapped to the bottom edge of the grid.

Discussion

GRID_SPHERE uses an inverse distance averaging technique to interpolate miss-
ing data values. The gridded array returned by GRID_SPHERE is suitable for use
with the POLY_SPHERE function.

The longitude values are assumed to be in the range –π to +π
(–180 to +180 if the Degrees keyword is set). The latitude values are assumed to be
in the range –π/2 to +π/2 (–90 to +90 if the Degrees keyword is set).

To grid on a portion of a sphere rather than on an entire sphere, use the XMin,
XMax, YMin, and YMax keywords.

398 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Examples
PRO grid_demo5

; This program shows spherical gridding.

sphere = FLTARR(3, 6)

sphere(*, 0) = [33.0, -64.0, 0.2]

sphere(*, 1) = [280.0, 5.0, 1.8]

sphere(*, 2) = [350.0, 41.0, 1.9]

sphere(*, 3) = [310.0, 83.0, 0.3]

sphere(*, 4) = [67.0, -16.0, 1.6]

sphere(*, 5) = [133.0, -75.0, 0.2]

sphere(0, *) = sphere(0, *) - 180.0

; Generate the data — random longitude, latitude, and radius points.

sphere = GRID_SPHERE(sphere, 32, 32, $
/Degrees, Order=4.0, Radius=20.0)

; Grid the resulting sphere.

POLY_SPHERE, sphere, 32, 32, vertex_list, polygon_list

; Generate the polygons representing the spherical surface.

WINDOW, 0, Colors=128, XSize=800, YSize=600

LOADCT, 3

CENTER_VIEW, Xr=[-2.0, 2.0], Yr=[-2.0, 2.0], $
Zr=[-2.0, 2.0], Ax=(-40.0), Az=0.0, $
Zoom=1.0, Winx=800, Winy=600

; Set up the viewing window and load the color table.

SET_SHADING, Light=[-0.5, 0.5, 1.0]

TVSCL, POLYSHADE(vertex_list, polygon_list, /T3d)

; Specify the shading and display the resulting spherical surface.

END

For another example, see the sphere_demo3 demonstration program in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

FAST_GRID2, FAST_GRID3, FAST_GRID4, GRID_2D,
GRID_3D, GRID_4D, POLY_SPHERE

GROUP_BY Function 399

UNIX and OpenVMS USERS For information on the optional software pack-
age for advanced gridding, PV-WAVE:GTGRID, contact your Visual Numerics
account representative.

GROUP_BY Function
Performs summary (aggregate) functions to groups of rows in a PV-WAVE table
variable.

Usage

result = GROUP_BY(in_table, 'sum_column [alias] [ASC | DESC]')

NOTE The entire second parameter is a string and must be enclosed in quotes.
Also, note that the vertical bar (|) means “or” in this usage. For instance, use either
ASC or DESC, but not both.

Input Parameters

in_table — An input PV-WAVE table variable on which to perform the summary
functions.

sum_column — A single column in the input table that determines how to perform
the summarization. For each distinct value of sum_column in the original table, all
rows that contain this value are grouped together to produce one row in the result-
ing table. A column with the same name and value as sum_column is created in the
resulting table.

alias — Specifies a new name for sum_column in the resulting table.

ASC — Requires that the rows of the result are sorted in ascending order by the
value in sum_column. If no sort order is specified, ASC is the default.

DESC — Requires that the rows of the result are sorted in descending order by the
value in sum_column.

400 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Returned Value

result — A PV-WAVE table variable, containing one column specified by
sum_column, and one for each column specified by the keywords. If the query
result is empty, and no syntax or other errors occurred, the result returned is –1.

Input Keywords

NOTE For each of the following keywords, the value is a string in the format
'col1 [alias], [col2 [alias],] ... [coln [alias]]', which represents a list of column
names from in_table and associated aliases for result.

Avg — Calculates the group average for each column listed in the string.

Count — Counts the number of occurrences of each data value within the group
for each column listed in the string.

Max — Calculates the group maximum for each column listed in the string.

Min — Calculates the group minimum for each column listed in the string.

Sum — Calculates the group total value for each column listed in the string.

Discussion

The GROUP_BY function produces similar output to the Group By option of the
QUERY_TABLE function, but GROUP_BY has a more compact and convenient
syntax. For each unique value in sum_column of in_table, GROUP_BY forms a
sub-table from all of the rows in in_table that have sum_column equal to that value.
For each keyword specified, GROUP_BY performs the indicated function (Avg,
Count, Max, Min, Sum) on each column given in the list, over all rows in the current
sub-table. For each sub-table, GROUP_BY returns one row in a PV-WAVE table
variable. The row contains the current value of sum_column, and an additional col-
umn for each column in the list for each keyword.

Example

Consider the following PV-WAVE table variable, already defined during the cur-
rent session:

INFO, prop_trx

PROP_TRX STRUCT = -> TABLE_3745584016934985140252399 Array(10000)

GROUP_BY Function 401

INFO, prop_trx, /Structure

** Structure TABLE_3745584016934985140252399, 8 tags, 72 length:

 TRX_ID LONG 0

 PROP_TYPE STRING ’OTHER ’

 PROP_ADDRESS STRING ’’

 PROP_POST_CD STRING ’’

 PROP_XGRID DOUBLE 0.0075200000

 PROP_YGRID DOUBLE 1.6357100

 TRX_AMT DOUBLE 116383.00

 TRX_DATE STRUCT -> !DT Array(1)

Suppose that we would like to find the total amount, average amount, count, aver-
age x grid value, and average y grid value for each property type. We could
accomplish this with the following call to GROUP_BY:

trx_sum = GROUP_BY(prop_trx, $

 ’prop_type my_prop_type ’, $

 AVG=’trx_amt my_avg_amt, ’ + $

 ’prop_xgrid my_avg_x, ’ + $

 ’prop_ygrid my_avg_y ’, $

 SUM=’trx_amt my_total_amt’, $

 COUNT=’prop_type my_type_cnt’)

We would get a new PV-WAVE table, trx_sum, which has 9 rows (one for each
unique value of prop_type).

INFO, trx_sum

TRX_SUM STRUCT = -> TABLE_2654125490145392573020051 Array(9)

The columns in trx_sum are as follows:

INFO, trx_sum, /Structure

** Structure TABLE_2654125490145392573020051, 6 tags, 48 length:

 MY_PROP_TYPE STRING ’STUDIO ’

 MY_AVG_AMT DOUBLE 54541.422

 MY_AVG_X DOUBLE 2.5688594

402 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

 MY_AVG_Y DOUBLE 1.5601237

 MY_TYPE_CNT LONG 1075

 MY_TOTAL_AMT DOUBLE 58632029.

Note that this could also be accomplished with the following call to
QUERY_TABLE:

trx_sum2 = QUERY_TABLE(prop_trx, $

 ’prop_type my_prop_type, ’ + $

 ’AVG(trx_amt) my_avg_amt, ’ + $

 ’AVG(prop_xgrid) my_avg_x, ’ + $

 ’AVG(prop_ygrid) my_avg_y, ’ + $

 ’SUM(trx_amt) my_total_amt, ’ + $

 ’COUNT(prop_type) my_type_cnt ’ + $

 ’GROUP BY prop_type ’)

which produces the following results:

INFO, trx_sum2

TRX_SUM2 STRUCT = -> TABLE_7241171353020130317830120 Array(9)

INFO, trx_sum2, /Structure

** Structure TABLE_7241171353020130317830120, 6 tags, 48 length:

 MY_PROP_TYPE STRING ’STUDIO ’

 MY_AVG_AMT DOUBLE 54541.422

 MY_AVG_X DOUBLE 2.5688594

 MY_AVG_Y DOUBLE 1.5601237

 MY_TYPE_CNT LONG 1075

 MY_TOTAL_AMT DOUBLE 58632029.

See Also

ORDER_BY, QUERY_TABLE, UNIQUE

For more information on BUILD_TABLE, see .

For information on reading data into variables, see

GROUP_BY Function 403

404 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

2
Procedure and Function Reference

HAK Procedure
Standard Library procedure that lets you implement a “hit any key to continue”
function.

Usage

HAK

Parameters

None.

Keywords

Mesg — Alerts the user that the procedure is momentarily stopped. If set to 1 (the
default), the following message is printed on the display screen:

Hit any key to continue...

Mesg may also be set to an arbitrary string.

Discussion

HAK waits for keyboard input, clears the typeahead buffer, and allows the
application to continue. It is used primarily to stop a procedure momentarily — for
example, to allow the user to read an explanation screen or view a temporary plot.

Example 1
a = INDGEN(200)

PRINT, a

HAK, Mesg=’Press a key to go on.’

Example 2
t = ’When ready, press any key.’

PRINT, t

HAK, Mesg=t

See Also

WAIT

HANNING Function 405

HANNING Function
Standard Library function that implements a window function for Fast Fourier
Transform signal or image filtering.

Usage

result = HANNING(col [, row])

Input Parameters

col — The number of columns in the result.

row — (optional) The number of rows in the result.

Returned Value

result — The processed result.

Keywords

None.

Discussion

HANNING is a window function for signal or image filtering using a fast fourier
transform. By processing data through HANNING before applying FFT, more
realistic results can be obtained.

The window calculated by HANNING is basically the first half of a cosine — in
other words, only the positive cosine values. When used with only the col
parameter, HANNING returns a vector of the same length as col. The vector starts
and ends with zeros and rises to a peak in the center (just as a cosine goes up and
then comes back down to zero).

For one dimension, the result of HANNING is determined by the following
equation:

where n is the total number of elements described by row and col.

result i() 1
2
--- 1

2πi
n 1–

 cos–
 =

406 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

When used with both the col and row parameters, HANNING returns an array
whose dimensions are the same as these two parameters. The resultant array has
zeros around the sides and rises to a peak in the center.

For two dimensions, the result (i, j) = result(i) * result(j).

Example
OPENR, unit, !Data_dir + ’mandril.img’, /Get_lun

; Open the mandrill image file.

aa = ASSOC(unit, BYTARR(512, 512))

image = aa(0)

; Store the image.

CLOSE, unit

; Close the logical unit number.

han = HANNING(512, 512)

; Create the HANNING window.

a = FFT(image, -1)

; Create an FFT of the image without the HANNING window.

WINDOW, 0, XSize=512, YSize=512, $
Title=’FFT without HANNING Window Applied’

TVSCL, SHIFT(ALOG(ABS(a)), 256, 256)

; Shifting makes it easier to see.

b = FFT(image * han, -1)

; Create an FFT of the image with the HANNING window. This
; diminishes the effect of the outside edges of the image on the
; FFT result.

WINDOW, 2, Xsize=512, Ysize=512, $
Title=’FFT with HANNING Window Applied’

TVSCL, SHIFT(ALOG(ABS(b)), 256, 256)

; Take a look at the result for comparison, and notice that the vertical
; and horizontal streaking is gone.

See Also

FFT, HILBERT

For details on how processing data through HANNING before applying FFT
improves results, see Chapter 5 in Digital Signal Processing, by Oppenheim and
Schafer, Prentice-Hall, Englewood Cliffs, NJ, 1975.

HDFGET24 Function 407

HDFGET24 Function
Obtains an HDF Raster 24 image.

Usage

status = HDFGET24 (filename, image)

Input Parameters

filename — The name of the HDF file.

Output Parameters

image — A byte array into which the HDF Raster 24 image is placed.

Return Value

status — The status of the function call, where:

Keywords

Help — If present and nonzero, lists the usage for this routine.

Interlace — Set the HDF interlace scheme to use in reading the image. Possible
values include:

DFIL_PIXEL

DFIL_LINE

DFIL_PLANE

The default will be the interlace scheme used when the image was written to the
file.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

SUCCEED (0) Indicates success.

FAIL (–1) Indicates failure.

408 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

HDFGET24 obtains an HDF Raster 24 image from the named HDF file.
HDFGET24 reads the current (or first) Raster 24 image in the file and positions the
HDF active pointer to the next Raster 24 image. You can read all Raster 24 images
in an HDF file using successive calls to HDFGET24. The return status is set to
FAIL when the function reads beyond the last Raster 24 image.

Example
testfile = ’raster24.hdf’

status = DF24RESTART()

IF (status EQ FAIL) THEN $

MESSAGE, ’Failed at DF24restart for’+’HDFGET24.’

status = HDFGET24(testfile, image, interlace=DFIL_PIXEL)

IF (status EQ FAIL) THEN $

MESSAGE, ’HDFGET24 failed.’

TV, image, True=1

See Also

HDFGETR8, HDFPUT24

Also refer to the following routines in the HDF Reference Manual:

DF24GETDIMS, DF24GETIMAGE, DF24READREF, DF24RESTART,
HISHDF

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HDFGETANN Function 409

HDFGETANN Function
Obtains HDF object (e.g., an SDS, Raster 8 image, etc.) annotations, either a label
or a description.

Usage

status = HDFGETANN (filename, tag, ref)

Input Parameters

filename — The name of the HDF file.

tag — The HDF tag number associated with the annotation.

ref — The HDF reference number of the target object.

Return Value

status — The status of the function call, where:

Keywords

Description — A byte array that contains the description for the specified filename/
tag/ref object. This byte array may require further processing for display of the
description.

Help — If present and nonzero, lists the usage for this routine.

Label — A string variable that contains the label for the specified filename/tag/ref
object.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

Discussion

HDFGETANN is used to get a label or description for an arbitrary HDF object, as
specified by a filename/tag/ref triplet.

SUCCEED (0) Indicates success.

FAIL (–1) Indicates failure.

410 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Example
newdesc = BYTE (’ ’)

tag = DFTAG_RI8

ref = 2

status = HDFGETANN (testfile, tag, ref, Description=newdesc)

IF (status EQ FAIL) THEN $

MESSAGE, ’Failed HDFGETANN with’+’Description.’

PRINT, STRING (newdesc)

See Also

Also refer to the following routines in the HDF Reference Manual:

DFANGETDESC, DFANGETDESCLEN, DFANGETLABLEN,
DFANGETLABEL, DFANPUTDESC, DFANPUTLAB

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HDFGETFILEANN Function
Obtains an HDF file annotation, either label or description.

Usage

status = HDFGETFILEANN (filename)

Input Parameters

filename — The name of the HDF file.

Return Value

status — The status of the function call, where:

SUCCEED (0) Indicates success.

HDFGETFILEANN Function 411

Keywords

Description — A byte array that contains the description for the specified filename/
tag/ref object. This byte array may require further processing for display of the
description.

Help — If present and nonzero, lists the usage for this routine.

Isfirst — Specifies whether to select the first or next label or description. Values for
Isfirst are:

Label — A string variable that contains the label for the specified filename/tag/ref
object.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

Discussion

HDFGETFILEANN is used to get an HDF file annotation, either a file label or a
file description. File labels and file descriptions differ from HDF object labels/
descriptions in that you can access multiple labels or descriptions using the Isfirst
keyword.

Example
status = HDFGETFILEANN (testfile, Description=newdesc)

IF (status EQ FAIL) THEN $

MESSAGE,’Failed HDFGETFILEANN with’+’Description.’

PRINT, STRING (newdesc)

See Also

HDFPUTFILEANN

Also refer to the following routines in the HDF Reference Manual:

FAIL (–1) Indicates failure.

1 for the first label/descriptor.

0 for the next label/descriptor.

412 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

DFANGETFDS, DFANGETFDSLEN, DFANGETFID, DFANGETFIDLEN,
HCLOSE, HOPEN

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HDFGETNT Function
Obtains the HDF number type (i.e., data type) and descriptive number type string
for the current HDF Scientific Data Set.

Usage

status = HDFGETNT (type)

Output Parameter

type — HDF Scientific Data Set numeric data type. The range of possible values
are defined in HDF_COMMON:

DFNT_FLOAT32

DFNT_FLOAT64

DFNT_INT8

DFNT_UINT8

DFNT_INT16

DFNT_UINT16

DFNT_INT32

DFNT_UINT32

Return Value

status — The status of the function call, where:

Keywords

Help — If present and nonzero, lists the usage for this routine.

SUCCEED (0) Indicates success.
FAIL (–1) Indicates failure.

HDFGETNT Function 413

Name — Returns HDF SDS numeric data type as a string, e.g.,
“DFNT_FLOAT32”. This keyword is more for human use than programmatic use.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

Wavecast — Returns a string containing the PV-WAVE data type cast that is
equivalent to an HDF SDS numeric data type. You can use the string in a
PV-WAVE EXECUTE statement to dynamically declare a PV-WAVE variable for
use with HDF. Example value: “FLTARR”.

Wavetype — Returns a string containing the PV-WAVE data type that is equivalent
to a HDF SDS numeric data type. This string can be used to programmatically
change the data type of a given PV-WAVE variable to the type required for HDF.
Example value: “FLOAT”.

Discussion
HDFGETNT gets the current HDF Scientific Data Set numeric (data) type in a
number of different formats. The primary format, where only type is returned, is a
simple numeric value that corresponds to a specific numeric type. Keywords
facilitate mapping of this value to strings that are of greater use to the PV-WAVE
programmer. These strings can be used with the PV-WAVE command EXECUTE
to dynamically declare an array for use with an HDF Scientific Data set.

Example
 wavetype = ’’

 status = HDFGETNT (type, Name=typename, $
Wavetype=wavetype)

 IF (status EQ FAIL) THEN $
MESSAGE, /Continue,’HDFGETNT failed.’

 IF (!Hdf_debug GE 1) THEN $
MESSAGE, /Continue,’Data type is:’ + $

typename + "(’ + wavetype + ’)"

 arg_size = SIZE (maxvalue)

 arg_type = arg_size (arg_size(0) + 1)

 IF (arg_type EQ 0) THEN BEGIN

 decl = ’maxvalue = ’ + wavetype + ’(0)’

 status = EXECUTE (decl)

 ENDIF

414 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

See Also

EXECUTE, HDFGETRANGE, HDFSETNT

Also refer to the following routine in the HDF Reference Manual:
DFSDGETNT

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HDFGETR8 Function
Obtains an HDF Raster 8 image and associated palette.

Usage

status = HDFGETR8 (filename, image, palette)

Input Parameters

filename — The name of the HDF file.

Output Parameters

image — A byte array which contains the obtained HDF Raster 8 image.

palette — A byte array (3-by-256) which contains the color palette associated with
the HDF image. Use the HDFLCT procedure to load the palette.

Return Value

status — The status of the function call, where:

SUCCEED (0) Indicates success.

FAIL (–1) Indicates failure.

HDFGETR8 Function 415

Keywords

Help — If present and nonzero, lists the usage for this routine.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

Discussion

HDFGETR8 obtains an HDF Raster 8 image from the named HDF file.
HDFGETR8 will read the current (or first) Raster 8 image in the file and position
the HDF active pointer to the next Raster 8 image. You can read all Raster 8 images
in an HDF file using successive calls to HDFGETR8. The return status is set to
FAIL when the function reads beyond the last Raster 8 image.

You can load the HDF palette associated with the image into PV-WAVE directly
using the HDFLCT procedure.

Use DFR8READREF or DFR8RESTART to position the active pointer within the
HDF file.

Example
testfile = ’raster8.hdf’

status = DFR8RESTART()

IF (status EQ FAIL) THEN $

MESSAGE, ’Failed at DFR8restart for’+ ’ HDFGETR8.’

status = HDFGETR8 (testfile, image, palette)

IF (status EQ FAIL) THEN $

MESSAGE, ’HDFGETR8 failed.’

TV, image

HDFLCT, palette

See Also

HDFGET24, HDFLCT, HDFPUTR8

Also refer to the following routines in the HDF Reference Manual:

DFR8GETDIMS, DFR8GETIMAGE, DFR8NIMAGES,
DFR8READREF, DFR8RESTART, HISHDF

416 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HDFGETRANGE Function
Gets the maximum and minimum range for the current HDF Scientific Data Set.

Usage

status = HDFGETRANGE (maxvalue, minvalue)

Output Parameters

maxvalue — The maximum data value for the HDF Scientific Data Set.

minvalue — The minimum data value for the HDF Scientific Data Set.

Return Value

status — The status of the function call, where:

Keywords

Help — If present and nonzero, lists the usage for this routine.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

Discussion

The maximum and minimum data values for the current Scientific Data Set are
obtained.

The data type of maxvalue and minvalue is determined by the numeric type
returned by HDFGETNT.

SUCCEED (0) Indicates success.

FAIL (–1) Indicates failure.

HDFGETSDS Function 417

Example
status = HDFGETRANGE(min, max)

IF (status EQ FAIL) THEN $

MESSAGE, ’HDFGETRANGE failed.’

See Also

HDFGETNT, HDFGETSDS

Also refer to the following routine in the HDF Reference Manual:

DFSDGETRANGE

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HDFGETSDS Function
Gets an HDF Scientific Data Set.

Usage

status = HDFGETSDS (filename, data)

Input Parameters

filename — The name of the HDF file.

Output Parameters

data — An array containing values from the Scientific Data Set. The data type and
dimensions for data are automatically set using calls to DFSDGETNT and
DFSDGETDIMS.

Return Value

status — The status of the function call, where:

418 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

Help — If present and nonzero, lists the usage for this routine.

Maxrank — Maximum number of dimensions expected with this dataset. The
default value is 10.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

Discussion

HDFGETSDS obtains the current Scientific Data Set in an HDF file and positions
the active pointer to the next SDS. This function is preferred for getting Scientific
Data Sets, as it automatically dimensions and casts a PV-WAVE array prior to
obtaining the actual data.

Example
data = 0

status = DFSDrestart ()

IF (status EQ FAIL) THEN $
MESSAGE, ’Failed DFSDrestart for’+ ’ HDFGETSDS.’

status = HDFGETSDS (testfile, data, Maxrank=100)

IF (status EQ FAIL) THEN $
MESSAGE, ’HDFGETSDS failed.’

INFO, data

See Also

HDFGETNT

Also refer to the following routines in the HDF Reference Manual:

DFSDGETDATA, DFSDGETDIMS, DFSDLASTREF

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

SUCCEED (0) Indicates success.

FAIL (–1) Indicates failure.

HDFLCT Procedure 419

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HDFLCT Procedure
Loads an HDF palette as a PV-WAVE color table.

Usage

HDFLCT, palette

Input Parameters

palette — A byte array containing the HDF palette to load into PV-WAVE.

Keywords

Help — If present and nonzero, lists the usage for this routine.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

Discussion

HDFLCT allows direct loading of an HDF palette into PV-WAVE when displaying
HDF Raster 8 images.

Example
status = HDFGETR8 (testfile, image, palette)

IF (status EQ FAIL) THEN $
MESSAGE, ’HDFGETR8 failed.’

TV, image

HDFLCT, palette

See Also

HDFGETR8, TVLCT

420 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HDFPUT24 Function
Puts an HDF Raster 24 image into an HDF file.

Usage

status = HDFPUT24 (filename, image)

Input Parameters

filename — A string containing the name of the HDF file.

image — A byte array containing the 24 bit image to write to the file.

Return Value

status — The status of the function call, where:

Keywords

Append — If nonzero, append the image to the end of the HDF file. Otherwise, the
HDF file is rewritten to contain only the image provided. The default is 0, do not
append the image to the file, overwrite file contents.

Help — If present and nonzero, lists the usage for this routine.

Interlace — Set the HDF interlace scheme to use in writing the image. Possible
values include:

DFIL_PIXEL

DFIL_LINE

DFIL_PLANE

SUCCEED (0) Indicates success.

FAIL (–1) Indicates failure.

HDFPUT24 Function 421

The default interlace scheme used will be DFIL_PIXEL.

NOTE The interlace should match the dimensions of the image provided. Refer to
“Writing 24-Bit Raster Images to a File” in the NCSA HDF Calling Interfaces and
Utilities manual for details.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

Discussion

HDFPUT24 writes 24 bit images to an HDF file. The Append keyword lets you
write additional 24 bit images the same file.

Example
testmonkey = ’testmandril24.hdf’

status = HDFPUT24 (testmonkey, smallimg)

IF (status EQ FAIL) THEN $
MESSAGE, ’Failed to write the small’+ $
’ monkey.’

status = HDFGET24 (testmonkey, bigimg, $
/Append)

IF (status EQ FAIL) THEN $
MESSAGE, ’Failed to write the big monkey.’

See Also

HDFGET24, HDFPUTR8, HDFPUTSDS

Also refer to the following routines in the HDF Reference Manual:

DF24ADDIMAGE, DF24PUTIMAGE, DF24SETIL

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

422 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

HDFPUTFILEANN Function
Inserts HDF file labels and file descriptions (annotations) into a file.

Usage

status = HDFPUTFILEANN (filename)

Input Parameters

filename — A string containing the name of the HDF file.

Return Value

status — The status of the function call, where:

Keywords

Description — A byte array that contains the description for the specified file. This
byte array may require further processing later for display of the description.

Help — If present and nonzero, lists the usage for this routine.

Label — A string variable that contains the label for the specified file.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

Discussion

Multiple calls to HDFPUTFILEANN will cause additional labels/descriptions to
be added in the file. There is no way known to overwrite an existing file label/
description, other than to start writing a new file.

Example 1
label = ’Put File Label (ID) Test’

status = HDFPUTFILEANN (testfile, Label=label)

IF (status EQ FAIL) THEN $
MESSAGE, ’Failed HDFPUTFILEANN with Label.’

SUCCEED (0) Indicates success.

FAIL (–1) Indicates failure.

HDFPUTR8 Function 423

Example 2
desc = BYTE (’Put File Description Test’)

status = HDFPUTFILEANN (testfile, $
Description=desc)

IF (status EQ FAIL) THEN $
MESSAGE, ’Failed HDFPUTFILEANN with’+ $
’ Description.’

See Also

HDFGETFILEANN

Refer to the following routines in the HDF Reference Manual:

DFANADDFID, DFANADDFDS, HCLOSE, HOPEN

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HDFPUTR8 Function
Writes an 8 bit image to an HDF file.

Usage

status = HDFPUTR8 (filename, image)

Input Parameters

filename — A string containing the name of the HDF file.

image — A byte array containing the 8 bit image to write to the file.

Return Value

status — The status of the function call, where:

SUCCEED (0) Indicates success.

424 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

Append — If present and nonzero, append the image to the end of the HDF file. By
default, the image is not appended and the contents of the file are overwritten.

Compression — Defines the compression scheme to use when writing the image.
Possible values are:

0 — No compression

DFTAG_RLE — Run length encoding (RLE)

DFTAG_IMCOMP — IMCOMP compression

The default value is 0 (no compression is used).

Help — If present and nonzero, lists the usage for this routine.

Palette — A byte array containing an HDF palette to write with the image. This
palette is pixel interlaced (r, g, b, r, g, b, ...) and cannot be a standard PV-WAVE
color table.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

Discussion

HDFPUTR8 writes an 8 bit image and associated palette to an HDF file. The
Append keyword lets you write additional 8 bit images to the same file.

Example
status = HDFPUTR8 (testfile, smallimage)

IF (status EQ FAIL) THEN $
MESSAGE, ’HDFPUTR8 failed.’

status = HDFPUTR8 (testfile, image, /Append)

If (status EQ FAIL) THEN $
MESSAGE, ’HDFPUTR8 failed.’

See Also

HDFGETR8, HDFPUT24, HDFPUTSDS

FAIL (–1) Indicates failure.

HDFPUTSDS Function 425

Also refer to the following routines in the HDF Reference Manual:

DFR8ADDIMAGE, DFR8PUTIMAGE, DFR8SETPALETTE

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HDFPUTSDS Function
Writes a Scientific Data Set to an HDF file.

Usage

status = HDFPUTSDS (filename, data)

Input Parameters

filename — A string containing the name of the HDF file.

data — An array containing values for the Scientific Data Set. The keyword data
may be of any PV-WAVE numeric data type or dimension.

Return Value

status — The status of the function call, where:

Keywords

Append — If present and nonzero, append the image to the end of the HDF file. By
default, the image is not appended and the contents of the file are overwritten.

Help — If present and nonzero, lists the usage for this routine.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

SUCCEED (0) Indicates success.

FAIL (–1) Indicates failure.

426 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

HDFPUTSDS is used to write an arbitrary array of data to an HDF file as a
Scientific Data Set. The numeric data type and dimensions of the Scientific Data
Set are based on the numeric data type and dimensions of the array passed. The
Append keyword writes additional Scientific Data Sets to the HDF file.

Example 1
testfile = ’testsdsgen.hdf’

data = BINDGEN (11, 7, 5, 3)

status = HDFPUTSDS (testfile, data)

IF (status EQ FAIL) THEN $
MESSAGE, ’HDFPUTSDS failed for BYTE data.’

Example 2
data = INDGEN (6, 8, 7)

status = HDFPUTSDS (testfile, data, /Append)

IF (status EQ FAIL) THEN $
MESSAGE, ’HDFPUTSDS failed for INTEGER’+ ’ data.’

See Also

HDFGETSDS, HDFPUT24, HDFPUTR8, HDFSETNT

Also refer to the following routines in the HDF Reference Manual:

DFSDADDDATA, DFSDPUTDATA, DFSDSETDIMS

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HDFSCAN Procedure 427

HDFSCAN Procedure
Scans an HDF file and prints a simple list of file contents by HDF object type.

Usage

HDFSCAN, filename

Input Parameters

filename — A string containing the name of the HDF file.

Keywords

Help — If present and nonzero, lists the usage for this routine.

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

Discussion
HDFSCAN is a simple HDF file reader that examines an HDF file for Raster 8
images, HDF Palettes, Raster 24 images, and Scientific Data Sets.

TIP For cleaner output, run HDFSCAN with !HDF_debug = –1.

Example
HDFSCAN, ’testfile.hdf’

See Also
HDFGETNT

Also refer to the following routines in the HDF Reference Manual:
DFPGETPAL, DFPLASTREF, DFPNPALS, DFPRESTART, DF24GETDIMS,
DF24LASTREF, DF24RESTART, DFR8GETDIMS, DFR8LASTREF,
DFR8NIMAGES, DFR8RESTART, DFSDGETDIMS, DFSDLASTREF,
DFSDRESTART, HCLOSE, HGETLIBVERSION, HISHDF, HOPEN

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

428 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

HDFSETNT Function
Computes and sets the HDF number type (i.e., data type) and descriptive number
type string for the specified data array.

Usage

status = HDFSETNT (data)

Input Parameters

data — An array containing data for a Scientific Data Set. Must be a numeric
PV-WAVE data type.

Return Value

status — The status of the function call, where:

Keywords

Help — If present and nonzero, lists the usage for this routine.

Name — HDF SDS numeric data type as a string, e.g., “DFNT_FLOAT32”. This
keyword is more for human use than programmatic use.

Type — HDF Scientific Data Set numeric data type. The range of possible values
are defined in HDF_COMMON:

DFNT_FLOAT32

DFNT_FLOAT64

DFNT_INT8

DFNT_UINT8

DFNT_INT16

DFNT_UINT16

DFNT_INT32

DFNT_UINT32

Usage — If present and nonzero, lists the usage for this routine. (Same as the Help
keyword.)

SUCCEED (0) Indicates success.

FAIL (–1) Indicates failure.

HDF_TEST Procedure 429

Discussion

HDFSETNT gets the current HDF Scientific Data Set numeric type (data type) for
the specified data array (data). Additionally, the SDS numeric type is set using
DFSDSETNT. Keywords are optionally set if you want to explicitly know the HDF
SDS numeric type set as an INTEGER (type) or a string (name).

Example
testfile = ’testsdsset.hdf’

data = INDGEN (6, 8, 7)

status = HDFSETNT (data)

IF (status EQ FAIL) THEN $
MESSAGE, ’Failed HDFSETNT for SDS ’+ $
’ set annotation test.’

See Also

HDFGETNT

Also refer to the following routine in the HDF Reference Manual:

DFSDSETNT

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HDF_TEST Procedure
Runs the PV-WAVE HDF test suite.

Usage

HDF_TEST

Input Parameters

None.

430 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Keywords

No_display — Prevents visual output from being displayed.

Discussion

HDF_TEST runs the PV-WAVE HDF test suite after first changing to the directory
containing the tests before starting PV-WAVE. The procedure determines the path
to the test directory, changes to that directory, runs the tests, and changes back to
the original working directory.

Example
@hdf_startup

PV-WAVE:HDF 3.30 Module Initialized

hdf_test

; Test output not shown.

See Also

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

HELP Procedure
Starts the online help system or the online documentation system.

Usage

HELP [, topic]

Parameters

topic — (optional) A string containing the name of a PV-WAVE command.

HELP Procedure 431

Keywords

Contents — If present and nonzero, displays the Contents topic of the help file.

Documentation — If present and nonzero, starts the online documentation system
(Manuals Online) instead of online help. This system contains the complete text
and graphics of the entire PV-WAVE documentation set.

Filename — Specifies a string containing the name of a help file to load, if other
than the default help file. See the Discussion section for information on the default
help file.

Help — If present and nonzero, displays the topic How to Use Help in the help
viewer.

Index — If present and nonzero, displays the Contents topic of the help file (same
as the Contents keyword).

Keyword — Specifies a string containing the name of a help keyword. The first help
topic matching the keyword is displayed.

PartialKey — Specifies a string containing a partial keyword. The first help topic
containing the partial keyword is displayed.

Quit — Exits the online help viewer.

Discussion

The PV-WAVE online help system uses the Bristol Hyperhelp™ viewer to display
detailed information on PV-WAVE commands. Use the HELP command to start
the help viewer and display a topic. For information on how to use the online help
system, select How to Use Help from the Help menu of the viewer.

The HELP procedure checks to see if the help viewer is already running. If it is
running, the specified topic is displayed in the viewer. If it is not running, the
viewer is started and the topic is displayed.

NOTE On Microsoft Windows systems, the Windows help viewer (WINHELP) is
used.

The main PV-WAVE online help file (the file that is loaded into the Hyperhelp™
viewer by default) is:

(UNIX) <vnidir>/hyperhelp/wave.hlp

(OpenVMS) <vnidir>:[HYPERHELP]WAVE.HLP

Where <vnidir> is the main product installation directory.

432 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

(Windows) <wavedir>\help\wavewin.hlp

Where <wavedir> is the main PV-WAVE directory.

Examples

The following commands entered at the WAVE> prompt demonstrate some of the
features of the HELP command.

HELP, ’REBIN’

; Displays documentation for the REBIN command in the online help viewer.

HELP, Filename=’vdatools.hlp’, /Contents

; Loads the help file vdatools.hlp and displays the Contents topic.

HELP, /Documentation

; Starts the online documentation system (Manuals Online).

See Also

INFO

HILBERT Function
Standard Library function that constructs a Hilbert transformation matrix.

Usage

result = HILBERT(x [, d])

Input Parameters

x — The vector to be transformed. Can be of either floating-point or complex data
type, and can contain any number of elements.

d — (optional) A flag to indicate the direction of rotation:

+1 Shifts the vector +90 degrees.

–1 Shifts the vector –90 degrees.

HILBERT Function 433

Returned Value

result — The value of the Hilbert transform of x. Result is of a complex data type,
with the same dimensions as x.

Keywords

None.

Discussion

A Hilbert transform is a series of numbers in which all periodic components have
been phase-shifted by 90 degrees. Angle shifting is accomplished by multiplying
or dividing by the complex number i = (0.000, 1.000).

A Hilbert series has the interesting property that the correlation between it and its
own Hilbert transform is mathematically zero.

The HILBERT function generates a Hilbert matrix by generating the Fast Fourier
Transform of the data with the FFT function and shifting the first half of the
transform products by +90 degrees and the second half by –90 degrees. The
constant elements of the transform are not changed.

The shifted vector is then submitted to the FFT function for the transformation
back to the “time” domain. Before it is returned, the output is divided by the
number of elements in the vector to correct for the multiplication effect
characteristic of the FFT algorithm.

Example
a = FINDGEN(1000)

sine_wave = SIN(a/(MAX(a)/(2 * !pi)))

; Create a sine wave.

PLOT, sine_wave

; Plot the sine wave.

OPLOT, HILBERT(sine_wave, -1)

; Plot the sine wave phase-shifted to the right by 90 degrees.

rand = RANDOMN(seed, 1000) * 0.05

; Create an array of random numbers to mimic a noisy signal.

PLOT, rand

; Plot the random numbers.

sandwich = [sine_wave, rand, sine_wave]

; Sandwich the random data between two sine waves.

434 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

PLOT, sandwich, XStyle=1

; Plot the two sine waves with the random noise in the middle, thereby
; turning them into a single signal.

OPLOT, HILBERT(sandwich, -1)

; Plot the sandwiched wave forms. Note that the sine waves are
; phase-shifted to the right by 90 degrees, while the noise data has
; not shifted at all, but rather has been distorted vertically (its
; amplitude) by the effect of the two adjacent phase-shifted sine
; waves. This is because the sine waves and the noise data were set
; up to be a single signal.

See Also

FFT, HANNING

HIST_EQUAL Function
Standard Library function that returns a histogram-equalized image or vector.

Usage

result = HIST_EQUAL(image)

Input Parameters

image — The image to be equalized.

Returned Value

result — An array that has been histogram equalized.

Keywords

Binsize — The size of the bin, i.e., the number of elements to consider as having a
single value. If not specified, a value of 1 is used.

Maxv — The maximum value to be used. If not specified, the largest value of the
elements in image is used. Input elements greater than max are output as 255.

Minv — The minimum value to be used. Should be greater than 0. All input
elements in image less than or equal to min will be output as 0. If not specified, 0
is used.

HIST_EQUAL Function 435

Top — If specified, scales the result from 0 to Top before it is returned.

Discussion

In many images, most pixels reside in a few small subranges of the possible values.
By spreading the distribution so that each range of pixel values contains an
approximately equal number of members, the information content of the display is
maximized.

To equalize the histogram of display values, the count-intensity histogram of the
image is required. This is a vector in which the ith element contains the number of
pixels with an intensity equal to the minimum pixel value of the image plus i. The
vector is of long integer type and has one more element than the difference between
the maximum and minimum values in the image. (This assumes a Binsize of 1 and
an image that is not of byte type.) The sum of all the elements in the vector is equal
to the number of pixels in the image.

HIST_EQUAL uses the HISTOGRAM function to obtain the density distribution
of the image. This distribution is integrated to obtain the cumulative density
probability function. Finally, the distribution is normalized so that its maximum
element has a value of 255.

If image is of floating-point data type, its range of values should be at least 255,
unless the Binsize keyword is used. If image is of byte data type, any Binsize
keyword is ignored.

Sample Usage

Histogram equalization is commonly used in medical photography and X-rays. It
causes the image gray levels that have the most pixels to be allocated the most
display levels, thereby maximizing the transfer of information from an image.

Unfortunately, it is this very effect that can sometimes cause unsatisfactory
results—histogram equalization chooses a display map-ping based on the area
covered by the various features in the image, rather than their importance. This can
cause the contrast enhancement of reconstruction artifacts in the large background
area, while small features of medical interest are sacrificed.

Example

This example uses the HIST_EQUAL function to manipulate the whirlpool image
found in:

(UNIX) <wavedir>/data

436 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

(OpenVMS) <wavedir>:[DATA]

(Windows) <wavedir>\data

Where <wavedir> is the main PV-WAVE directory.

The commands shown in this example produce the image on the right in :

Figure 2-24 The HIST_EQUAL function has been used to make the visual elements of this
512-by-512 galaxy image more pronounced.

whirlpool = BYTARR(512,512)

GET_LUN, unit

filename = ’whirlpool.img’

OPENR, unit, filename

READU, unit, whirlpool

CLOSE, unit

FREE_LUN, unit

; Create a 512-by-512 byte array, get the next free logical unit number
; (LUN), open the file, read the image into the array, and free the LUN.

!Order = 1

; Transfer the image from top to bottom.

WINDOW, 2, XSize=500, YSize=500

TVSCL, whirlpool

; Open the window and display the image.

WINDOW, 0, XSize=500, YSize=500

image = HIST_EQUAL(whirlpool)

TVSCL, HIST_EQUAL(image)

; Open another window and display the histogram-equalized image.

HIST_EQUAL_CT Procedure 437

See Also

HIST_EQUAL_CT, HISTOGRAM

For more information, see the section Histogram Equalization in Chapter 6 of the
PV-WAVE User’s Guide.

HIST_EQUAL_CT Procedure
Standard Library procedure that uses an input image parameter, or the region of the
display you mark, to obtain a pixel distribution histogram. The cumulative integral
is taken and scaled, and the result is applied to the current color table.

Usage

HIST_EQUAL_CT [, image]

Input Parameters

image — (optional) The image whose histogram is to be used in determining the
new color tables:

• If image is supplied, it is assumed to be the image that was last loaded to the
display.

• If image is omitted, you are prompted to mark the diagonal corners of a region
of the display with the mouse. The image must be a byte image, scaled the
same way as the image loaded to the display.

Keywords

None.

Example

This is an example of how to obtain a pixel distribution histogram of a displayed
image. It uses the aerial view of Boulder, Colorado in:

(UNIX) <wavedir>/data

(OpenVMS) <wavedir>:[DATA]

(Windows) <wavedir>\data

Where <wavedir> is the main PV-WAVE directory.

438 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

The result is applied to the current color table using the image parameter. Note that
this example will only work if the original image contains values in the range of 0
to 255.

aerial_view = BYTARR(512,512)

GET_LUN, unit

OPENR, unit, ’aerial_demo.img’

; Create a 512-by-512 byte array, get the next free logical unit number
; (LUN), and open the file.

READU, unit, aerial_view

CLOSE, unit

FREE_LUN, unit

; Read the data into the array aerial_view, close the file, and free the LUN.

WINDOW, 1, XSize=512, YSize=512, $
title=’Aerial View of Boulder, CO’

TVSCL, aerial_view

; Open the window and display the image.

HIST_EQUAL_CT, aerial_view

; Load the color table with a histogram-equalized distribution.

See Also

HIST_EQUAL, HISTOGRAM

For more information, see the section Histogram Equalization in Chapter 6 of the
PV-WAVE User’s Guide.

HISTN Function
Standard Library function that computes an n dimensional histogram.

Usage

result = HISTN(d [, axes])

Input Parameters

d — An (m,n) array of m data points in n-space.

HISTN Function 439

Returned Value

result — An n dimensional array of size binnum.

axes = (optional - use with /scale) an (n, binnum) array containing properly scaled
axes with which to plot the results. For example:
CONTOUR, result, transpose(axes(0,*)), transpose(axes(1,*))

Keywords

Binnum — The number of bins for the histogram.

Binsize — The size of bins for the histogram. The default = 1.

NOTE Only 1 of binnum or binsize can be set.

/Scale — If set, the result is scaled so to have unit volume under the curve/surface
when plotted against x.i/stdev(x.i)

/Compatible — If set, the result will align with HISTOGRAM. The default
behavior of HISTN is “binnum-central” logic, while the default behavior of
HISTOGRAM is “binsize-central” logic. Setting /compatible will force HISTN to
be “binsize-central.”

NOTE When using /compatible with 2D arrays and setting binsize manually, you
may see poor results if the binsize is not appropriate for all variables. In this case,
you should either set binnum or not use /compatible.

Examples

Interpreting an n-dimensional histogram, a 2D example.

Consider two sets of 10 random numbers. If one computes 1D histograms with 3
bins, you may find these results (number of items in each bin):

x = RANDOMN(s,10) & y = RANDOMN(s,10)

xy = FLTARR(10,2) & xy(*,0) = x & xy(*,1) = y

PRINT, HISTN(x, binnum=3)

 4 5 1

PRINT, HISTN(y, binnum=3)

 3 4 4

The result for the 2D histogram may give:

440 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

PRINT, HISTN(xy, binnum=3)

 1 1 1

 2 2 0

 1 2 0

Summing this result vertically yields the 1D result for x. Summing this result
horizontally yields the 1D result for y. To plot a probability distribution function
with unit volume under the surface, one would call HISTN with the /Scaled
keyword and plot the results against x/std(x) and y/STD(y). Using the axes output
parameter with HISTN returns these vectors in a 2D array.

h2 = HISTN(xy, axes, binnum=3, /scaled)

shade_surf, h2, axes(0,*), axes(1,*)

See Also

HISTOGRAM

HISTOGRAM Function
Returns the density function of an array.

Usage

result = HISTOGRAM(array)

Input Parameters

array — The array for which the density function will be computed. The size of
each dimension of array may be any integer value.

Returned Value

result — A longword vector equal to the density function of the input array.

Keywords

Armax — An array of the maximum values to consider for each image or signal in
array. If Armax is a single element array, Armax(0) is used for every image or
signal. For a multi-image or multi-signal input array, Armax must contain the same
number of elements as there are images or signals in array.

HISTOGRAM Function 441

NOTE When both Armin and Armax are supplied, they must contain the same
number of elements.

Armin — An array of the minimum values to consider for each image or signal in
array. If Armin is a single element array, Armin(0) is used for every image or signal.
For a multi-image or multi-signal input array, Armin must contain the same number
of elements as there are images or signals in the input array.

Binsize — The range of values to consider as having a single value. If no value is
specified, the Binsize range defaults to a value of 1.

Intleave — (If used, requires the Armin and Armax keywords.) A scalar string
indicating the type of interleaving of 2D input signals containing signal-interleaved
signals; and 3D input arrays containing image-interleaved images, or a volume.
Valid strings and the corresponding interleaving methods are:

’signal’ — The 2D input image array arrangement is (x, p) for p
signal-interleaved signals of length x.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Max — The maximum value to consider. If set but no value is specified, array is
searched for its largest value. If the Max keyword is specified, its value is used for
every signal or image in the array.

Min — The minimum value to consider. If set but no value is specified, array is
searched for its smallest value. If the Min keyword is specified, its value is used for
every signal or image in the array.

Omax — Specifies a variable used to hold the maximum value considered in the
array. (Equal to max when the Max keyword is given.) If the input array is
composed of multiple images or signals, Omax is an array of the maximum values,
one for each signal or image. (Equal to max or armax when Max or Armax is
given.)

Omin — Specifies a variable to hold the minimum value considered in the array.
(Equal to min when Min is given.) If the input array is composed of multiple images
or signals, Omin will be an array of the minimum values, one for each signal or
image. (Equal to min or armin when Min or Armin is given.)

442 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

The HISTOGRAM function supports input arrays composed of multiple images
(multi-layer band interleaved images) as well as input arrays composed of multiple
signals. The Intleave keyword is used to specify whether that the input array is a
multi-signal or multi-image array. When the Intleave keyword is used to indicate
multiple signals or images in this way, each signal or image in the array is operated
on separately and an array of the individual results is returned.

In the simplest case (in which array ranges in value from 0 to some maximum
value), the value of the density function at subscript i is equal to the number of
array elements with a value of i.

For example, let Fi equal the value of element i, for i in the range {0 ... n–1}. Then
Hv (the result of the HISTOGRAM function) is given by:

where

and P(Fi , v) = 1 when

and P(Fi , v) = 0 otherwise.

NOTE There may not always be enough virtual memory available to create den-
sity functions of arrays that contain a large number of bins. For information on
virtual memory and PV-WAVE, see the section Tips for Efficient Programming in
Chapter 11 of the PV-WAVE Programmer’s Guide.

Hv P Fi v,()
i 0=

n 1–

∑=

v 0 1 2 … Max Min–
Binsize

----------------------------, , , ,=

v Fi Min–() Binsize v 1+<()⁄≤

HISTOGRAM Function 443

Sample Usage

Histograms are useful in a variety of applications, and can often provide signs as
to what type of image processing should be performed. For example, photos sent
back via satellite from outer space are usually accompanied by histograms. If the
histogram for a photo contains a large spike, and the rest of the histogram is
generally flat, this typically indicates that a histogram equalizing operation (such
as the HIST_EQUAL function) is needed. Such an operation would spread out the
pixels more evenly, thereby improving contrast and bringing out greater detail in
the image.

Histograms can also be used to provide clues about images. For example, running
a histogram on a series of identical photos taken at different times of the day may
show the histogram peak shifting to the right—an indication that the average
brightness is higher in that photo, and therefore more likely to be have been taken
at a sunnier part of the day.

Similarly, you can use histograms to compare two images of the same scene more
fairly. By shifting the histogram of one scene so that it is aligned with that of the
other scene, you can equalize the level of brightness in both images.

Example 1

The data for this example is from Hinkley (1977) and Velleman and Houglin
(1981). Data includes measurements (in inches) of precipitation in Minneapolis/St.
Paul during the month of March for 30 consecutive years.

x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, $
0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, $
2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, $
2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, $
1.89, 0.90, 2.05]

table = HISTOGRAM(x, Binsize = 0.444)

; Call HISTOGRAM.

PRINT, ’ Bin Number Count’ &$

PRINT, ’ ---------- -----’ &$

FOR i = 1, 10 DO PRINT, i, table(i-1)

Bin Number Count

---------- -----

1 4

2 8

3 5

4 5

444 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

5 3

6 1

7 3

8 0

9 0

10 1

Example 2

This example exhibits how histogram equalization of an image better distributes
pixel values. An image of a galaxy is read and displayed, then the density function
of that image is plotted. After the image is histogram equalized, it is displayed,
along with a plot of the density function of the equalized image.

OPENR, unit, FILEPATH(’whirlpool.img’, $
Subdir = ’data’), /Get_Lun

; Open the file containing the galaxy image.

g = BYTARR(512, 512)

; Create an array large enough to hold the image.

READU, unit, g

; Read the image.

FREE_LUN, unit

; Close the file and free the file unit number.

!Order = 1

WINDOW, 0, Xsize = 512, Ysize = 512

; Create a window with the same dimensions as the image.

TVSCL, g

; Display the original image.

HISTOGRAM Function 445

Figure 2-25 Original galaxy image.

hist_g = HISTOGRAM(g)

; Compute the density function of the image.

WINDOW, 1, Xsize = 512, Ysize = 512

; Create a window to display a plot of the result of the density function
; of the image.

PLOT, hist_g, Xrange = [20, 100], $
Yrange = [0, 30000], Title = $
’Density Function of Original Image’

; Plot the result of the density function of the image.

Figure 2-26 Plot of density function of original galaxy image.

g2 = HIST_EQUAL(g)

; Histogram equalize the galaxy image.

WINDOW, 2, Xsize = 512, Ysize = 512

; Create a window with the same dimensions as the histogram equalized image.

TVSCL, g2

; Display the equalized image.

446 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Figure 2-27 Histogram equalized galaxy image.

hist_g2 = HISTOGRAM(g2)

; Compute the density function of the equalized image.

WINDOW, 3, Xsize = 512, Ysize = 512

; Create a window to display a plot of the result of the density
; function of the equalized image.

PLOT, hist_g2, Xrange = [20, 100], $
Yrange = [0, 30000], Title = $
’Density Function of Equalized Image’

; Plot the result of the density function of the equalized image.

HISTOGRAM Function 447

Figure 2-28 Plot of density function of equalized galaxy image.

See Also

HIST_EQUAL, HIST_EQUAL_CT, HIST_EQUAL_CT

448 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

HLS Procedure
Standard Library procedure that generates and loads color tables into an image dis-
play device based on the HLS color system. The resulting color table is loaded into
the display system.

Usage

HLS, ltlo, lthi, stlo, sthi, hue, lp [, rgb]

Input Parameters

ltlo — The starting color lightness or intensity, expressed as 0 to 100 percent. Full
lightness (the brightest color) is 100 percent.

lthi — The ending color lightness or intensity, expressed as 0 to 100 percent.

stlo — The starting color saturation, expressed as 0 to 100 percent. Full saturation
(undiluted or pure color) is expressed as 100 percent.

sthi — The ending color saturation, expressed as 0 to 100 percent.

hue — The starting hue, expressed as 0 to 360 degrees.

lp — The number of loops around the color cone. The value may be floating-point.
A positive value will traverse the color cone in a clockwise direction; a negative
value will traverse the color cone in a counterclockwise direction.

Output Parameters

rgb — (optional) A 256-by-3 integer output array containing the red, green, and
blue vector values that were translated from the HSV system and loaded into the
color tables. The following example shows the ordering of the RGB values in the
output array:
Red_Vec(i) = RGB(i, 0)

Green_Vec(i) = RGB(i, 1)

Blue_Vec(i) = RGB(i, 2)

Keywords

None.

HLS Procedure 449

Discussion

The HLS procedure traces a spiral through the HLS color cone. Points along the
spiral are converted from HLS values to RGB values and then loaded into the color
tables with the TVLCT procedure. The color representation of pixel values
between 0 and 255 is linearly interpolated from the hue, saturation, and lightness
of the end points.

Example

The statement:

HLS, 0, 100, 50, 100, 0, –2.5

loads a color table that ranges from 0 to 100 percent in lightness or intensity and
from 50 to 100 percent in saturation. This color table begins with a color of red,
and makes two and a half full loops around the color solid in the direction of red to
blue.

See Also

COLOR_CONVERT, COLOR_EDIT, HSV, LOADCT,
MODIFYCT, RGB_TO_HSV, TVLCT, WgCeditTool, WgCtTool

For more information, see the section The HSV and HLS Color Systems in Chapter
11 of the PV-WAVE User’s Guide.

The HLS procedure is adapted from a program in Fundamentals of Interactive
Computer Graphics by Foley and Van Dam, Addison Wesley Publishing Company,
Reading, MA, 1982.

450 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

HSV Procedure
Standard Library procedure that generates and loads color tables into an image dis-
play device based on the HSV color system. The final color table is loaded into the
display device.

Usage

HSV, vlo, vhi, stlo, sthi, hue, lp [, rgb]

Input Parameters

vlo — The starting color value or intensity, expressed as 0 to 100 percent. Full
intensity is 100 percent.

vhi — The ending color value or intensity, expressed as 0 to 100 percent.

stlo — The starting color saturation, expressed as 0 to 100 percent. Full saturation
(undiluted or pure color) is expressed as 100 percent.

sthi — The ending color saturation, expressed as 0 to 100 percent.

hue — The starting hue, expressed as 0 to 360 degrees.

lp — The number of loops around the color cone. The value may be floating-point.
A positive value will traverse the color cone in a clockwise direction; a negative
value will traverse the color cone in a counterclockwise direction.

Output Parameters

rgb — (optional) A 256-by-3 integer output array containing the red, green, and
blue vector values that were translated from the HSV system and loaded into the
color tables. The following example shows the ordering of the RGB values in the
output array:

Red_Vec(i) = RGB(i, 0)

Green_Vec(i) = RGB(i, 1)

Blue_Vec(i) = RGB(i, 2)

Keywords

None.

HSV_TO_RGB Procedure 451

Discussion

The HSV procedure traces a spiral through the HSV color cone. Points along the
spiral are converted from HSV values to RGB values and then loaded into the color
tables with the TVLCT procedure. The color representation of pixel values
between 0 and 255 is linearly interpolated from the hue, saturation, and value of
the end points.

Example

The statement:

HSV, 0, 100, 50, 100, 0, –2.5

loads a color table that ranges from 0 to 100 percent in intensity or brightness and
from 50 to 100 percent in saturation. This color table begins with a color of red,
and makes two and a half full loops around the color solid in the direction of red to
blue.

See Also

COLOR_CONVERT, COLOR_EDIT, HLS, LOADCT,
MODIFYCT, RGB_TO_HSV, TVLCT, WgCeditTool, WgCtTool

For more information, see the section The HSV and HLS Color Systems in Chapter
11 of the PV-WAVE User’s Guide.

The HSV procedure is adapted from a program in Fundamentals of Interactive
Computer Graphics by Foley and Van Dam, Addison Wesley Publishing Company,
Reading, MA, 1982.

HSV_TO_RGB Procedure
Standard Library procedure that converts colors from the HSV color system to the
RGB color system.

Usage

HSV_TO_RGB, h, s, v, red, green, blue

Input Parameters

h — The hue variable. May be either vector or scalar, in the range of 0 to 360.

452 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

s — The saturation variable. Must be the same dimension as h, in the range of 0 to
1.

v — The value variable. Must be the same dimension as h, in the range 0 to 1.

Output Parameters

red — Red color output value(s). Will be short integer(s), the same dimension as
h, and in the range of 0 to 255.

green — Green color output value(s). Will be short integer(s), the same dimension
as h, and in the range of 0 to 255.

blue — Blue color output value(s). Will be short integer(s), the same dimension as
h, and in the range of 0 to 255.

Keywords

None.

Discussion

HSV_TO_RGB provides a convenient way to convert from the HSV (hue,
saturation, value) color system to the RGB (red, green, blue) color system. Most
output devices capable of displaying color use the RGB color system.

Example

The statement:

HSV_TO_RGB, 0, 1, 1, red, green, blue

returns red=255, green=0, blue=0. You can use the red, green, and blue values
to set color table values with the TVLCT procedure.

See Also

COLOR_CONVERT, COLOR_EDIT, HLS, HSV, LOADCT,
MODIFYCT, RGB_TO_HSV, TVLCT, WgCeditTool, WgCtTool

For more information, see the section The HSV and HLS Color Systems in Chapter
11 of the PV-WAVE User’s Guide.

HTML_BLOCK Procedure 453

HTML_BLOCK Procedure
Writes out a specifically formatted block of HTML text.

Usage

HTML_BLOCK, text

Input Parameters

text — An array of strings.

Keywords

BlockQuote — Creates a <BLOCKQUOTE> text block (indented on both sides).

Pre — Creates a <PRE> block (pre-formatted).

Safe — Handles HTML special characters (see HTML_SAFE).

Tag — Accepts a string indicating which HTML tag to use, allowing you to use
any formatting tags (e.g., tag=”address”). If Tag is set, it overrides the
predefined keywords Pre and BlockQuote.

Discussion

This procedure allows you to format blocks of text with specific HMTL opening
and closing tags. You may use the preset tag keywords (BlockQuote and Pre) or
identify others using the Tag keyword. HTML_BLOCK is particularly useful if
your target browser uses nonstandard extensions.

Example

This example creates a paragraph that will be indented on both sides when viewed.

HTML_OPEN

HTML_BLOCK, ’This paragraph will be ’ + $
’indented on both sides of the ’ + $
’viewer window. Use HTML_BLOCK ’ + $
’whenever you want to control ’ + $
’the appearance of a paragraph.’, $
/Blockquote

HTML_CLOSE

454 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

See Also

HTML_HEADING, HTML_HIGHLIGHT, HTML_LIST, HTML_OPEN,
HTML_PARAGRAPH, HTML_SAFE, HTML_TABLE

For a complete listing of HTML tag elements, see HTML Sourcebook, Second
Edition, by Ian S. Graham, John Wiley & Sons, Inc., 1996, New York.

HTML_CLOSE Procedure
Closes an HTML file, after end-tagging major elements.

Usage

HTML_CLOSE

Input Parameters

None.

Keywords

None.

Discussion

You must always use HTML_CLOSE when you finish creating an HTML file.

See Also

HTML_OPEN

HTML_HEADING Procedure 455

HTML_HEADING Procedure
Creates a heading with a level specification.

Usage

HTML_HEADING, text

Input Parameters

text — The heading text.

Keywords

Center — Centers the heading.

Justify — Fully justifies the heading to the left and right.

Left — Left-justifies the heading. (Default: set)

Level — Defines the heading level. (Default: 1)

Right — Right-justifies the heading.

Safe — Handles HTML special characters.

Discussion

HTML allows six levels of headings, from 1 to 6. There is no forced hierarchy; in
other words, you may use any heading at any time.

Example

This example creates a centered, level-2 heading.

HTML_OPEN

HTML_HEADING,$
’This <H2> heading will be ’ + $
’centered’, /Center, /Safe, Level = 2

HTML_CLOSE

See Also

HTML_BLOCK, HTML_HIGHLIGHT, HTML_LIST,
HTML_OPEN, HTML_PARAGRAPH, HTML_RULE,
HTML_SAFE, HTML_TABLE

456 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

HTML_HIGHLIGHT Function
Allows the use of all the basic textual highlighting elements in HTML.

 Usage

html_text = HTML_HIGHLIGHT(str, tag)

Input Parameters

str — The string or array of strings to be highlighted.

tag — The highlighting tag or array of tags. If tag is scalar but str is a list of strings,
then tag is applied around each of the items in str. If tag is an array, it must be the
same length as str. This parameter is the string inside the HTML angle brackets:
e.g., B elicits ... (for boldfacing).

Keywords

Safe — Handles HTML special characters (see HTML_SAFE).

Returned Value

html_text — A string (array) of HTML text tagged with highlighting tags in place.

Discussion

HTML_HIGHTLIGHT supports both physical (e.g., ‘U’, ‘B’, etc.) and logical
(e.g., ‘CITE’, ‘CODE’, etc.) text highlighting. The flexibility of the function also
allows you to take advantage of any extension to standard formatting used by a
particular browser.

Example

HTML_OPEN

HTML_PARAGRAPH, $
HTML_HIGHLIGHT(’Example citation text.’,$
’CITE’, /Safe)

HTML_CLOSE

HTML_IMAGE Function 457

See Also

HTML_BLOCK, HTML_HEADING,
HTML_LIST, HTML_OPEN, HTML_PARAGRAPH,
HTML_SAFE, HTML_TABLE

For a complete listing of HTML text highlighting elements, see HTML
Sourcebook, Second Edition, by Ian S. Graham, John Wiley & Sons, Inc., 1996,
New York, p. 251.

HTML_IMAGE Function
Allows for the creation of an HTML image reference.

Usage

html_img = HTML_IMAGE(url)

Input Parameters

url — A string or array of strings containing URL(s) for images.

Keywords

Alt — A string which is an alternate attribute used to replace the image in browsers
unable to display graphics.

Bottom — Aligns the image at the bottom of its containing element.

Left — Aligns the image at the left of the browser window.

Middle — Aligns the image vertically in the middle of its containing element.

Right — Aligns the image at the right of the browser window.

Top — Aligns the image at the top of its containing element.

Returned Value

html_img — A string or an array of strings containing the HTML image code.

458 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

Discussion

Coupled with PV-WAVE imaging, rendering, and visualization capabilities, the
HTML_IMAGE function allows you the flexibility of visualizing your data in an
HTML document over the Internet.

For an example of how to create a GIF file from PV-WAVE for inclusion in an
HTML document, see the following demonstration:

(UNIX) <wavedir>/demo/web/html/html_demo.pro

(OpenVMS) <wavedir>:[DEMO.WEB.HTML]HTML_DEMO.PRO

(Windows) <wavedir>\demo\web\html\html_demo.pro

where <wavedir> is the main PV-WAVE directory.

TIP Although HTML_IMAGE has many keywords enabling you to position the
image within the containing element or browser window, you can also use the
HTML_HIGHLIGHT function to specify any HTML image alignment attribute
that is not included as a keyword for HTML_IMAGE. For example, the following
line of code can be used to center an image:
HTML_HIGHLIGHT(HTML_IMAGE(url), ’CENTER’)

Example

This example centers the PV-WAVE logo in a browser window.

HTML_OPEN

HTML_BLOCK, HTML_HIGHLIGHT(HTML_IMAGE($
’wave_logo.gif’), ’CENTER’)

HTML_CLOSE

See Also

HTML_BLOCK, HTML_HIGHLIGHT,
HTML_LINK, HTML_OPEN, IMAGE_CREATE,
IMAGE_READ, IMAGE_WRITE, READ_XBM,
WRITE_XBM

HTML_LINK Function 459

HTML_LINK Function
Sets up hypertext links to Uniform Resource Locations (URLs).

Usage

link_text = HTML_LINK(url, text)

Input Parameters

url — A string or string array specifying the URL of the hypertext link.

text — A string or string array specifying the text displayed for the link.

NOTE The two input parameters, url and text, must have the same number of
elements.

Keywords

Safe — Handles HTML special characters (see HTML_SAFE).

Returned Value

link_text — A string or a string array of HTML hypertext links to URLs.

Discussion

The HTML_LINK function creates the hypertext links that most HTML browsers
commonly identify using an underline and/or a specific text color.

TIP To make an image that activates a hypertext link, use the HTML_IMAGE
function as the “text” in HTML_LINK as follows:

link = HTML_LINK(url, HTML_IMAGE(’imagefile.gif’)

Example

This example creates a link to the VNI home page.

HTML_OPEN

HTML_HEADING, ’A Hypertext Link from HTML_LINK’, $
Level = 2, /Center

460 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

HTML_BLOCK, HTML_LINK(’http://www.vni.com’, $
’Visual Numerics Home Page’)

HTML_CLOSE

See Also

HTML_BLOCK, HTML_IMAGE, HTML_LIST,
HTML_OPEN, HTML_SAFE

For complete information of HTML URLs and hyperlinks, see HTML Sourcebook,
Second Edition, by Ian S. Graham, John Wiley & Sons, Inc., 1996, New York.

HTML_LIST Procedure
Generates HTML code for lists of all types.

Usage

HTML_LIST, list_item

Input Parameters

list_item — A 1D string array of items for the list.

Keywords
Add — Adds more elements to the current list level.

AllClose — Closes off all list levels.

CloseCurrent — Closes the current list level to further entries.

Compact — Renders the list in a compact format.

NOTE The HTML compact attribute for lists is not interpreted by some browsers.

Dir — Creates a directory list.

DL — Creates a glossary list of paired items. The glossary list is a special case list
interpreted as follows: list items with even-numbered indices (0, 2, 4, ...) are treated
as glossary terms (<DT>); list items with odd-numbered indices (1, 3, 5, ...) are
treated as definitions (<DD>).

NOTE Glossary lists require that the list_item array have an even number of
elements.

HTML_LIST Procedure 461

Menu — Creates a menu list.

NOTE The Compact keyword cannot be used with the Menu keyword; menu lists
don’t accept the compact attribute.

NoClose — Keeps the list open, so more lists can be added using the Add keyword
in subsequent HTML_LIST commands.

OL — Creates an ordered list, where each item is ordered numerically or by
ascending letters.

Safe — Handles HTML special characters (see HTML_SAFE).

UL — (The default list type.) Creates an unordered list, where each item is
indicated by a special symbol. (Default: usually a bullet; however this is browser-
dependent)

Discussion

The HTML_LIST procedure supports all standard HTML list elements. There are
two main types of lists in HTML: “glossary” (DL) lists containing paired items;
and “regular” (DIR, MENU, OL, and UL) lists containing individual list items
(LI). Unless otherwise specified, the default list type is unordered (UL).

If you want to include a lower-level (sub) list, you must use the NoClose keyword
in the top list level. When NoClose is used, one or more new lists can be nested
under the current list level. Open lists are closed in a separate HTML_LIST
procedure call, using either the CloseCurrent or the AllClose keywords.

Example

This example creates a nested list — one bulleted list of function types (Statistics
and Mathematics), with glossary lists of function names and descriptions sublisted
under each bullet.

HTML_OPEN, Title = ’Math Functions’

; Open an HTML file.

HTML_LIST, [’Statistics’], /NoClose

; Create a bullet item for Statistics functions, and
; leave the list open.

HTML_LIST, [’AVG’, $
’The mean of the variable’, ’STDEV’, $
’The standard deviation’], /DL

462 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

; Add a DL (glossary) list under the “Statistics”
; bullet to include the AVG and STDEV functions
; and their descriptive phrases as its items.

HTML_LIST, [’Mathematics’], $
/Add, /NoClose

; Add a “Mathematics” item to the bullet-level list.

HTML_LIST, [’FFT’, $
’Fast Fourier Transform’, $
’CONVOL’, $
’Convolution of an array ’+$
’with a kernel’, ’CROSSP’,$
’The Cross Product of two ’+$
’vectors’], /DL

; Add a DL (glossary) list under the “Mathematics”
; bullet to include the FFT, CONVOL, and
; CROSSP functions as its items.

HTML_LIST, /AllClose

; Close all of the lists.

HTML_CLOSE

; Close the HTML file.

The resulting HTML nested list output looks like this:

• Statistics
AVG

The mean of the variable
STDEV

The standard deviation

• Mathematics
FFT

Fast Fourier Transform
CONVOL

Convolution of an array with a kernel
CROSSP

The Cross Product of two vectors

See Also
HTML_BLOCK, HTML_HEADING, HTML_HIGHLIGHT,
HTML_OPEN, HTML_PARAGRAPH, HTML_SAFE, HTML_TABLE

For a complete discussion of HTML list elements, see HTML Sourcebook, Second
Edition, by Ian S. Graham, John Wiley & Sons, Inc., 1996, New York, pp. 172-183.

HTML_OPEN Procedure 463

HTML_OPEN Procedure
Opens the output HTML file, writes out the basic HTML information and sets an
HTML output file information variable.

 Usage

HTML_OPEN [, filename]

 Input Parameters

filename — (optional) The output HTML file name.
(Default on UNIX and OpenVMS: wave.html)
(Default on Windows: wave.htm)

Keywords

NOTE Some of the attributes that you can specify with these keywords are not
used by certain browsers.

ALinkColor — Defines the color of active links. An active link is a selected link
which is being processed.

BgColor — A string or long integer specifying the background color name or
number (24-bit color). Examples of this keyword usage are:

BgImage — Accepts a URL string to an image for the background.

CGI — Writes a “Content-type” header — useful if you are outputting from a CGI
script.

LinkColor — Defines the text color of new links. A new link is one which hasn’t
been previously selected.

Stdout — If set, writes to standard output instead of to a file.

Title — A string scalar specifying the HTML <TITLE>.

BgColor = ’red’

BgColor = ’#ff0000’

BgColor = ’ff0000’XL

BgColor = 16711680

464 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

TextColor — Defines the text color.

VLinkColor — Defines the color of visited links.

Discussion

The HTML_OPEN procedure provides the basic formatting information required
at the beginning of every HTML file. Optional format features such as background,
foreground, and text colors can be added by using the keywords.

A file opened using the HTML_OPEN procedure must always be closed with an
HTML_CLOSE procedure call at the end. This closes many of the initial HTML
formatting elements opened when the file was initiated.

See Also

HTML_CLOSE

For a complete discussion of HTML, see HTML Sourcebook, Second Edition, by
Ian S. Graham, John Wiley & Sons, Inc., 1996, New York.

HTML_PARAGRAPH Procedure
Outputs an HTML paragraph.

Usage

HTML_PARAGRAPH, text

Input Parameters

text — A scalar or string array containing the text of the paragraph. In the case of
a string array, each element is interpreted as a separate paragraph.

Keywords

Center — Centers each line in the paragraph.

Justify — Fully justifies the paragraph to the left and right.

Left — Left-justifies the paragraph. (Default: set)

Safe — Handles HTML special characters (see HTML_SAFE).

HTML_PARAGRAPH Procedure 465

Right — Right-justifies the paragraph.

Discussion

The HTML_PARAGRAPH procedure creates HTML paragraphs by inserting the
elements <P> . . .</P> around the text. The created paragraph is left-justified unless
otherwise specified using keywords.

Example

This example illustrates how to put a standard paragraph into HTML format in
PV-WAVE.

HTML_OPEN

HTML_PARAGRAPH, ’PV-WAVE provides an ’ + $
’array-oriented fourth-generation ’ + $
’language that is compact and ’ + $
’efficient. Its interactive structure ’ + $
’reduces coding by up to 80% and ’ + $
’eliminates compiling and linking. ’ + $
’It supports variables, collections ’ + $
’of variables and all the same ’ + $
’language constructs of FORTRAN ’ + $
’and C.’, /Justify

HTML_CLOSE

See Also

HTML_BLOCK, HTML_HEADING, HTML_HIGHLIGHT,
HTML_LIST, HTML_OPEN, HTML_SAFE, HTML_TABLE

466 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

HTML_RULE Procedure
Inserts a horizontal-line separator in HTML.

 Usage

HTML_RULE

Input Parameters

None.

Keywords

None.

Discussion

The HTML_RULE procedure inserts the standard horizontal rule (<HR>) into the
HTML flow. To insert a separator other than the standard, use HTML_IMAGE with
the separator image of your choice.

See Also

HTML_BLOCK, HTML_HEADING, HTML_OPEN, HTML_PARAGRAPH

HTML_SAFE Function
Allows special characters defined in HTML to be displayed as text, rather than
using them for format tagging.

Usage

html_str = HTML_SAFE(str)

Input Parameters

str — A text string that may contain special HTML characters.

HTML_SAFE Function 467

Keywords

None.

Returned Value

html_str — A string containing the HTML escape sequences for the special
characters included in str.

Discussion

The HTML_SAFE function easily allows the special HTML formatting characters
to be interpreted as text. The special characters covered by HTML_SAFE are the
left and right angle brackets (< and >); the ampersand (&); and quotation marks
(“ ”). HTML_SAFE assures that these characters will be translated to their HTML
escape sequence, so that the browser will display them as intended.

NOTE All text-related HTML routines in PV-WAVE have a Safe keyword, which
calls the HTML_SAFE function to escape any special characters contained in the
text.

Example

For this example, you could achieve the same result by using the Safe keyword with
HTML_HEADING procedure.

HTML_OPEN

HTML_HEADING, HTML_SAFE(’For An list’)

HTML_CLOSE

See Also

HTML_BLOCK, HTML_HEADING, HTML_HIGHLIGHT, HTML_LIST,
HTML_OPEN, HTML_PARAGRAPH, HTML_TABLE

468 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

HTML_TABLE Procedure
Creates an HTML table.

Usage

HTML_TABLE, table_text

Input Parameters

table_text — An (m, n) string array of text to put in a table with m columns and n
rows. A 1D array builds an m-column, 1-row table.

Keywords

NOTE Whenever a specified attribute is not supported by a particular browser, the
attribute is simply ignored by that browser.

Border — The size of the border around cells in the table.

Bottom — Places the cell content at the bottom of each cell.

Caption — The table caption.

CBottom — Table caption displayed beneath the table.

CellPadding — Specifies the space between the borders and the content of the cell.

CellSpacing — Specifies the space between each individual cell.

Center — Centers the cell content.

ColLabels — The column labels.

EqualWidth — Defines all cells as having the same width as the largest one used.

Left — Left-justifies the cell contents in the cell.

Middle — Places the content in the middle of each cell.

NoWrap — When set, the cell contents don’t wrap onto multiple lines within the
cell.

Right — Right-justifies the cell contents in the cell.

RowLabels — The row labels.

HTML_TABLE Procedure 469

Safe — Handles HTML special characters (see HTML_SAFE).

TCenter — Centers the table on the page (left-right centering).

TLeft — Left-justifies the table on the page. (Default: set)

Top — Places the cell content at the top of each cell.

TRight — Right-justifies the table on the page.

Discussion

This procedure creates an HTML table.

Example

This example creates a captioned table with headings, which contains random data.

HTML_OPEN, Title = ’PV-WAVE ’+ ’HTML Output Example’

HTML_HEADING, ’Example HTML ’+ ’output from PV-WAVE’

a = RANDOMN(seed, 100, 100)

b = RANDOMU(seed, 100, 100)

; Get some data.

table_info = FLTARR(2, 5)

table_info(0, *) = [MIN(a), $
MAX(a), AVG(a), MEDIAN(a), $
STDEV(a)]

table_info(1, *) = [MIN(b), $
MAX(b), AVG(b), MEDIAN(b), $
STDEV(b)]

; Build a variable containing the numbers.

table_text = STRTRIM $
(STRING(table_info), 2)

; The table contents needs to be text.

col_titles = [’Normal Distribution’, $
’Uniform Distribution’]

row_titles = [’Minimum’, ’Maximum’, $
’Mean’, ’Median’, $
’Standard Deviation’]

; Build arrays of row and column headings.

470 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

HTML_TABLE, table_text, $
RowLabels = row_titles, $
ColLabels = col_titles, $
Caption = ’Two Random ’ +$
’Number Sets’, Border = 1

; Make the table with a caption and labels.

HTML_CLOSE

See Also

HTML_BLOCK, HTML_HEADING, HTML_HIGHLIGHT, HTML_LIST,
HTML_OPEN, HTML_PARAGRAPH, HTML_SAFE

For complete information on HTML tables, refer to HTML Sourcebook, Second
Edition, by Ian S. Graham, John Wiley & Sons, Inc., 1996, New York.

HTML_TEXT Procedure
Outputs text to the open HTML file.

Usage

HTML_TEXT, text

Input Parameters

text — A string containing the text to output.

Keywords

Safe — If nonzero, the procedure handles HTML special characters (see
HTML_SAFE).

Example

HTML_OPEN

HTML_TEXT, ’Hello, world!’

HTML_CLOSE

HTML_TEXT Procedure 471

See Also

HTML_PARAGRAPH, HTML_SAFE

472 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 1

IMAGE_CHECK Function 473

2
Procedure and Function Reference

IMAGE_CHECK Function
Checks if the input variable is a properly defined associative array in image format
and ensures that all keys in the array are of the correct data type.

Usage

status = IMAGE_CHECK(image)

Input Parameters
image — An associative array in image format.

Keywords
Quiet — Suppresses successive levels of error messages, depending on the value
set. This keyword accepts the same integer values used with the system variable
!Quiet.

Valid — If set, checks to make sure that the image associative array’s status key
does not contain an error code and that the data values are within supported limits.

Returned Value
status — A value indicating the success or failure of the function.

Discussion
Call this function after modifying image data to be sure that the resulting image
data is valid.

Use the Valid keyword to check the input image more thoroughly. If an error is
detected, an informative message is printed to the screen.

NOTE You can use IMAGE_CREATE or ‘ to create an image associative array.
Complete image information is stored in this type of array. Refer to the
IMAGE_CREATE function description for detailed information on the structure of
an image associative array.

< 0 Indicates that the input array is not a valid image associative array.

0 Indicates that the input array is a valid image associative array.

474 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example
In this example, a test image is created using IMAGE_CREATE. Then, the test
image is modified and the result checked with IMAGE_CHECK. In this case, the
modification made is invalid — the width key in the associative array has been
assigned a short integer and it expects a long integer.

pix = BYTARR(400, 200)

test_image = IMAGE_CREATE(pix)

test_image(’width’) = 500

PRINT, IMAGE_CHECK(test_image)
%IMAGE_CHECK: Wrong datatype of array element width
-8

; The error message is displayed because the width key in the
; associative array has been assigned a short integer and it expects
; a long integer.

See Also
IMAGE_CREATE, IMAGE_QUERY_FILE,
IMAGE_READ

System Variables: !Quiet

IMAGE_COLOR_QUANT Function
Quantizes a 24-bit image to 8-bit pseudo-color.

Usage

result = IMAGE_COLOR_QUANT(image [, n_colors])

Input Paramters
image — Either an image associative array with a 24-bit color image or a 3D byte
array.

n_colors — (optional) An integer specifying the number of colors desired in the
output pseudo-color image. This value must be greater than 0 and less than or equal
to 256. (Default: !D.Table_Size)

IMAGE_COLOR_QUANT Function 475

Returned Value
result — The returned value depends upon whether the input was a 24-bit color
image or a 3D byte array:

Keywords
Colormap — Specifies a variable to hold the colormap of the quantized image.
Colormap is a 3-by-n_colors byte array.

Dither — If set, Floyd-Steinberg dithering is used to quantize the 24-bit image.

Intleave — A scalar string indicating the type of interleaving of 3D image arrays.
This keyword can only be used when the input image is a 3D byte array. If Intleave
is not specified, the default interleaving method corresponds to the minimum
dimension of the array, where p is the minimum dimension.

Valid strings and the corresponding interleaving methods are:

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’row’ — The 3D image array arrangement is (x, p, y) for p row-inter-
leaved images of x-by-y.

’pixel’ — The input array arrangement is (p, x, y) for p pixel-inter-
leaved images of x-by-y.

NOTE If the input image is an associative array, the interleaving method is found
in the interleave field of the array.

Loadcmap — If set, the generated colormap is automatically loaded using TVLCT.

Quiet — Suppresses successive levels of error messages, depending on the integer
value specified. This keyword accepts the same integer values used with the system
variable !Quiet.

Type of Input Description of Output

Image associative
array

Returns an associative array in image format containing
the color quantized (8-bit) pseudo-color image.
On error, returns an image associative array with the
status key set to < 0.

3D byte array Returns a 2D byte array containing the color quantized (8-
bit) pseudo-color image.
On error, returns < 0.

476 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Discussion
The IMAGE_COLOR_QUANT function is useful for converting 24-bit images for
display on 8-bit devices. It can also be used to compress the amount of information
in the image to reduce the amount of storage space needed when the image is saved
to a file.

NOTE The original 24-bit image cannot be reconstructed from the 8-bit quantized
result.

The function quantizes the image using the median-cut algorithm. For information
on the algorithm used in this function, refer to:

Paul Heckbert. “Color Image Quantization for Frame Buffer Display”, Siggraph
‘82 Proceedings, pp. 297-307.

Example 1
The first example uses an associative array in image format as input.

NOTE The filename used in this example is a UNIX specific filename, which must
be modified for use on other platforms.

chautauqua = IMAGE_READ(GETENV(’VNI_DIR’) + $
’/image-1_0/data/chautauqua24.tiff’)

; Read in a 24-bit image-interleaved image.

chautauqua_8bit = IMAGE_COLOR_QUANT(chautauqua, 256,)

; Convert the image to 8-bit pseudo-color.

IMAGE_DISPLAY, chautauqua_8bit

; Display the 8-bit image.

Example 2
This example reads 24-bit image data that has been stored in three separate image
files — one red, one green, and one blue. Each file is read separately and then
combined in one 3D array before being quantized and displayed.

The data used in the example comes from the red, green, and blue images of
Boulder in the PV-WAVE data directory.

imgx = 477

imgy = 512

red_img = BYTARR(imgx, imgy, /Nozero)

IMAGE_CONT Procedure 477

grn_img = BYTARR(imgx, imgy, /Nozero)

blu_img = BYTARR(imgx, imgy, /Nozero)

OPENR, 1, !Data_Dir + ’boulder_red.img’

READU, 1, red_img

CLOSE, 1

OPENR, 1, !Data_Dir + ’boulder_grn.img’

READU, 1, grn_img

CLOSE, 1

OPENR, 1, !Data_Dir + ’boulder_blu.img’

READU, 1, blu_img

CLOSE, 1

; Read the separate red, green, and blue image files.

boulder = BYTARR(imgx, imgy, 3, /Nozero)

boulder(*, *, 0) = red_img

boulder(*, *, 1) = grn_img

boulder(*, *, 2) = blu_img

; Combine the image files into a single 3D array.

boulder_8bit = IMAGE_COLOR_QUANT(boulder, 256, /Loadcmap)

; Convert the image to 8-bit pseudo-color.

TV, boulder_8bit

; Display the 8-bit image.

See Also
IMAGE_CREATE, IMAGE_DISPLAY, IMAGE_READ, IMG_TRUE8

System Variables: !Quiet

IMAGE_CONT Procedure
Standard Library procedure that overlays a contour plot onto an image display of
the same array.

478 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Usage

IMAGE_CONT, array

Input Parameters
array — The two-dimensional array to display.

Keywords
Aspect — Set to 1 to change the image’s aspect ratio. It assumes square pixels. If
Aspect is not set, the aspect ratio is retained.

Interp — Set to 1 to interpolate the image with the bilinear method, when and if
the image is resampled. Otherwise, the nearest neighbor method is used.

Window_Scale — Set to 1 to scale the window size to the image size. Otherwise,
the image size is scaled to the window size. Window_Scale is ignored when
outputting to devices with scalable pixels (e.g., PostScript devices).

Discussion
If the device you are using has scalable pixels, then the image is written over the
plot window.

Example

This example uses IMAGE_CONT to display the image and overlaid contour plot
depicting different elevations of the surface defined by

f(x,y) = xsin(y) + ycos(x) - 10sin(xy/4)

where

(x,y) ∈{R2 | x, y ∈ [-10, 10]}

.RUN

FUNCTION f, x, y

RETURN, x * SIN(y) + y * COS(x) - 10 * SIN(0.25 * x * y)

END

; Define the function.

x = FINDGEN(101)/5 - 10

; Create vector of x-coordinates.

y = x

; Create vector of y-coordinates.

IMAGE_CREATE Function 479

z = FLTARR(101, 101)

; Create an array to hold the function values.

FOR i = 0, 100 DO FOR j = 0, 100 DO $
z(i, j) = f(x(i), y(j))

; Evaluate the function at the given x- and y-coordinates and
; place the result in z.

IMAGE_CONT, z

; Display image and contour plot.

Figure 2-29 Image and contour plot of .

See Also
CONTOUR, SHOW3, TV, TVSCL

For details on methods of interpolation, see the PV-WAVE User’s Guide.

IMAGE_CREATE Function
Creates an associative array in image format.

x y(,) x y()sin y x()cos+= 10 xy 4⁄()sin–

480 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Usage

image = IMAGE_CREATE(pixel_array)

Input Parameters
pixel_array — An array containing image data.

The input array must be in one of the following forms, where w is the image width,
h is the height, and img_count, an optional parameter, is the number of images in
the array:

Returned Value
image — An associative array in image format.

Keywords
Colormap — A 3-by-n colormap array.

NOTE If the input pixel_array is 2D and the Colormap keyword is not specified,
the returned image is assumed to be grayscale.

Colormodel — A long integer specifying the color model:

Comments — A string containing additional information about the image. This
feature is supported for GIF, JPEG, MIFF, PNG, TGA, and TIFF formats.

Depth — A long integer specifying the number of bits per channel. (Default: 8)

File_Name — A string containing a default filename for the image.

(w, h [, img_count]) 8-bit (pseudo-color) images

(3, w, h [, img_count]) 24-bit (direct color) images, pixel interleaved

(w, 3, h [, img_count]) 24-bit (direct color) images, row interleaved

(w, h, 3 [, img_count]) 24-bit (direct color) images, image interleaved

0 Monochrome or gray scale

1 RGB

2 CMY *

3 HSV *

* Currently not supported

IMAGE_CREATE Function 481

File_Type — A string specifying the type of image file to create. For example,
’sun’ denotes a Sun Rasterfile. (Default: TIFF)

NOTE See the Discussion section of the IMAGE_READ function for a list of
valid file types.

Img_Count — A long integer specifying the number of images in the output array
image. (Default: 1)

Intleave — A scalar string indicating the desired type of interleaving of 3D image
arrays. (Default: image)

Valid strings and the corresponding interleaving methods are:

’image’ — The resulting 3D image array arrangement is (x, y, p) for p
image-interleaved images of x-by-y. (Default)

’row’ — The resulting 3D image array arrangement is (x, p, y) for p
row-interleaved images of x-by-y.

’pixel’ — The resulting 3D image array arrangement is (p, x, y) for p
pixel-interleaved images of x-by-y.

Quiet — Suppresses successive levels of error messages, depending on the value
set. This keyword accepts the same integer values used with the system variable
!Quiet.

Units — Units of pixel size. (1 = inches; 2 = millimeters)

X_resolution — Pixel size in Units.

Y_resolution — Pixel size in Units.

Discussion
The IMAGE_CREATE function creates an image associative array. Complete
image information is stored in this type of array, which is used by all of the
IMAGE_* routines in PV-WAVE. (Refer to the PV-WAVE Programmer’s Guide
for additional information on associative arrays.)

NOTE When creating an image that contains 3D pixel data, you must specify the
interleaving method if either the width or height has a value of 3. For example, if
the dimensions of your data are 100 x 3 x 3 and the data is plane interleaved, it will
be interpreted as line interleaved unless you explicitly set the Interleave keyword
to the correct value.

482 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

The image format associative array allows the following operations:

• File I/O of images to and from different file formats

• Displaying images

• Processing images

Image Associative Array Structure

The following table describes each key of the image associative array.

Array Key Name Variable Type Description

file_name STRING Absolute or relative pathname of an image file

file_type STRING The type of image file. (See IMAGE_READ for
a list of supported file types.)

width LONG Image width

height LONG Image height

img_num LONG Index number in the range {0...n} of a
subimage in the file (if the image was created
with IMAGE_READ)

img_count LONG Number of subimages in the pixel array

PIXELS:

nr_cc LONG Number of color channels. This item specifies
how many storage units are allocated per pixel.
(Supported values: 1 and 3)

depth LONG Bits per color channel

pixel_dtype LONG Data type of the pixel array:
1 BYTE
2 SHORT **
3 LONG **

interleave LONG Interleave method used:
1 = Pixel interleaving
2 = Row interleaving
3 = Image interleaving

color_model LONG Color model:
0 Monochrome or gray scale
1 RGB
2 CMY (currently not supported)
3 HSV (currently not supported)

IMAGE_CREATE Function 483

Pixel Arrays

This table describes valid pixel arrays.

pixels BYTE
SHORT **
LONG **

A multidimensional array describing an 8-bit or
24-bit image. Refer to the Pixel Arrays section
later for a description of supported pixel arrays.

x_resolution FLOAT Pixel size in units

y_resolution FLOAT Pixel size in units

units LONG Units of pixel size:
 1 (inches)
 2 (mm)

COLORMAP:

cmap_type LONG Type of colormap:
 0 No colormap
 1 1 colormap vector (not supported)
 2 Multiple colormap vectors

cmap_dtype LONG Data type of colormap (only BYTE (1) is
supported)

n_colors LONG Number of entries in the colormap

colormap BYTE
SHORT **
LONG **

Array whose dimensions depend on cmap_type
and n_colors.
cmap_type:
 1 : not supported
 2 : (3 , n_colors)

SUPPLEMENTARY and CONTROL:

label STRING Optional annotation (NOTE: None of the
supported graphics file types currently support
labels.)

comments STRING Optional information about source, etc.

status LONG 0 = success; < 0 = error

** This data type is currently not supported for IMAGE_READ and IMAGE_WRITE.
IMAGE_CREATE accepts an array in this data type, but before writing the image to a file
the pixel array must be converted to BYTE.

Array Key Name Variable Type Description

484 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Pixel Array Dimensions

This table describes the valid pixel array dimensions. The dimensions of the pixel
array (width, height, nr_images, etc.) refer to keys in the image associative array.

Example
This example demonstrates how IMAGE_CREATE creates an image associative
array. The associative array is listed using the INFO command.

pixels = BYTARR(100, 200)

; Create some pixel data (all zeros).

cmap = BYTARR(3, 50)

; Create a colormap (all zeros).

image = IMAGE_CREATE(pixels, File_name=’test.tif’, $
Colormap = cmap, File_type = ’tif’)

Color Model Number of
color channels
(nr_cc)

Bits per
pixel

Colormap Number of
color
channels
in colormap

Dimensions
of pixel
array

True Color
RGB

3 24 No N/A 3D **

GrayScale 1 8 Yes 3 2D **

Pseudo Color 1 8 Yes 3 2D **

Direct Color 3 24 Yes 3 3D **

** Refer to the Pixel Array Dimensions table for more information.

Type of Array Description

2D Pixel Arrays:

(width, height, [nr_images]) 8-bit (pseudo-color) image

3D Pixel Arrays:

(nr_cc, width, height [, img_count]) 24-bit (direct color) image, pixel interleaved

(width, nr_cc, height [, img_count]) 24-bit (direct color) image, row interleaved

(width, height, nr_cc [, img_count]) 24-bit (direct color) image, image interleaved

IMAGE_CREATE Function 485

; Create the image -- an associative array of image-related
; data. Next, use INFO to display the contents of the array.

INFO, image, /Full

See Also
IMAGE_DISPLAY, IMAGE_READ, IMAGE_WRITE

System Variables: !Quiet

IMAGE AS. ARR = Associative Array(22)

label STRING = ’’

file_type STRING = ’tif’

height LONG = 200

units LONG = 2

img_num LONG = 0

y_resolution FLOAT = 72.0000

pixels BYTE = Array(100, 200)

color_model LONG = 1

n_colors LONG = 50

file_name STRING = ’test.tif’

width LONG = 100

cmap_type LONG = 2

x_resolution FLOAT = 72.0000

status LONG = 0

img_count LONG = 1

nr_cc LONG = 1

depth LONG = 8

colormap BYTE = = Array(3, 50)

cmap_dtype LONG = 1

comments STRING = ’ ’

pixel_dtype LONG = 1

interleave LONG = 3

486 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

IMAGE_DISPLAY Procedure
Displays an image associative array.

Usage

IMAGE_DISPLAY, image [, x, y]

IMAGE_DISPLAY, image [, position]

Input Parameters
image — An associative array in image format.

x, y — (optional) The lower-left x- and y-coordinates of the displayed image in the
window. (See the TV procedure for more information.)

position — (optional) A number specifying the position of the image. (See the TV
procedure for more information.)

Keywords
Animate — If nonzero, multiple images are displayed sequentially. The Animate
keyword only applies if the image associative array contains multiple images.

Delay — A floating-point value determining the frame-to-frame delay in seconds:
applies only to animations. (Default: 0.01)

Quiet — Suppresses successive levels of error messages, depending on the set
value. This keyword accepts the same integer values used with the system variable
!Quiet.

Sub_Img — An integer specifying the index of the subimage in the image
associative array to display. (Default: 0)

Window — An integer specifying the window number. (Default: first free window
number)

Keywords Relating to the Image Display (TV)

Data — Specifies that the data coordinate system be used by x and y (image
position).

Device — Specifies that the device coordinate system be used by x and y (image
position). This is the default if no other coordinate-system keyword is specified.

Normal — Specifies that the normal coordinate system be used by x and y (image
position).

IMAGE_DISPLAY Procedure 487

Keywords Relating to the Window

Wset — If set and the Window keyword is also specified, the image draws into the
specified window. If set and the Window keyword is not specified, the image draws
into the current active window.

The following keywords are only used if a new window is created; they are ignored
if you use Wset and the window exists.

Bitmap — (Windows Only) Specifies that the window being created is actually an
invisible portion of the display memory called a bitmap.

TIP For cross-platform portability, use the Pixmap keyword instead of the Bitmap
keyword.

Colors — The maximum number of color-table indices to be used.

NOTE The Colors keyword has an effect only if it is supplied when the first win-
dow is created; otherwise, PV-WAVE uses all of the available color indices.

NoMeta — (Windows Only) Turns metafiles off for the window. This is the default
if Animate is specified.

Pixmap — Specifies that the window being created is actually an invisible portion
of the display memory called a pixmap.

Retain — Specifies how backing store for the window should be handled. (See the
Retain keyword in the WINDOW procedure for more information.)

Title — If specified with a string value, then the string becomes the title of the
window. If set, but no string is specified (for example, /Title), then the window
title is the COMMENTS field of the image.

XPos — The x position of the lower-left corner of the new window, specified in
pixels relative to the lower-left corner of the display.

XSize — The width of the window, in pixels. (Default: width of the image)

YPos — The y position of the lower-left corner of the new window, specified in
pixels relative to the lower-left corner of the display.

YSize — The height of the window, in pixels. (Default: height of the image)

Discussion
The input associative array for the IMAGE_DISPLAY procedure, image, must be
created by the routines IMAGE_READ or IMAGE_CREATE.

488 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

On systems where the display depth is eight or less (for example, when
!D.Display_Depth ≤ 8), 24-bit images are converted to 8-bit pseudo-color before
being displayed. This conversion is performed using the
IMAGE_COLOR_QUANT function and does not affect the original data.
However, 8-bit images may be quantized to fewer colors if there are not enough
colors available to display the image. To ensure that enough colors are available,
use Colors=256 when creating the first window.

NOTE The IMAGE_DISPLAY procedure generates errors, and/or will display
some or all of an image outside of the window, if the window size and image posi-
tion are improperly selected.

NOTE Color tables associated with the image are loaded when the image is dis-
played. This behavior may cause the colors in other windows to appear altered.

Example
This example shows how an image associative array created with
IMAGE_CREATE can be displayed with IMAGE_DISPLAY.

pixels = BYTARR(100, 200)

; Assign some pixel data (all zeros).

cmap = BYTARR(3, 50)

; Assign a colormap (all zeros).

image = IMAGE_CREATE(pixels, File_name = $
’test.tif’, Colormap = cmap, $
File_type = ’tif’)

IMAGE_DISPLAY, image

; The image is displayed as a black image.

See Also
IMAGE_COLOR_QUANT, IMAGE_CREATE, IMAGE_READ, TV,
WINDOW

System Variables: !Quiet

IMAGE_QUERY_FILE Function
Returns the image type in a specified image file.

IMAGE_QUERY_FILE Function 489

Usage

status = IMAGE_QUERY_FILE(filename [, filetype])

Input Paramters
filename — On input, a string containing the name of the file to query. System
variables/logicals and special characters recognized by the operating system shell
can be used in the path.

filetype — (optional) On output, a string containing the type of image in the file.

Keywords
Default_Filetype — A string specifying a supported file type. This keyword is
interpreted according to the rules listed in the Discussion section.

Quiet — Suppresses successive levels of error messages, depending on the set
value. This keyword accepts the same integer values used with the system variable
!Quiet.

Readable — If set, checks the file type of the image against the list of supported
readable file types.

Returned Value
status — A value indicating the success or failure of the function.

Discussion

NOTE For a list of supported image types, refer to the Discussion section of the
IMAGE_READ function.

This function returns an image file type according to the following rules of
precedence:

1. If an encoded ID number can be extracted from the file header, and
the number matches that of one of the supported image types, return
that image type.

2. If no encoded ID number is detected, return the image type
corresponding to the type specified by the Default_Filetype
keyword.

< 0 Indicates that the file does not contain a supported image type.

0 Indicates that the file does contain a supported image type.

490 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

3. If no encoded ID number is detected and the Default_Filetype
keyword is not present, try to determine the image type from the
filename suffix. The function tries to match the suffix to a list of
standard suffixes for supported image file types.

4. If the image type cannot be determined by the above rules, the
function returns an error status.

Example 1
In these two code examples, the correct image type is obtained from the encoded
ID number in the file header.

status = IMAGE_QUERY_FILE(’photo_pcx.sun’, filetype)

PRINT, status, filetype

0, PCX

; The image file is a PCX file. The correct image type is obtained from
; the encoded ID number, which takes precedence over the specified
; filename extension.

status = IMAGE_QUERY_FILE(’photo_pcx.sun’, $
filetype, Default_Filetype = ’tif’)

PRINT, status, filetype

0, PCX

; The image file is a PCX file. The correct image type is obtained from
; the encoded ID number, which takes precedence over both the filename
; suffix and the Default_Filetype keyword.

Example 2
In this example, the correct filetype for a TGA (Truevision Targa) file is obtained
using the Default_Filetype keyword. If the Default_Filetype keyword were not
specified, an incorrect image type would have been returned. This is because TGA
graphics files don’t contain an encoded ID number (see also Example 3).

status = IMAGE_QUERY_FILE(’photo_tga.sun’, $
filetype, Default_Filetype = ’tga’)

PRINT, status, filetype

0, TGA

IMAGE_QUERY_FILE Function 491

Example 3
The following three code examples show how an incorrect file type or an error can
be returned for TGA (Truevision Targa) files because they don’t contain an
encoded ID number. The lack of an encoded ID number results in ambiguity when
identifying the file type using the IMAGE_QUERY_FILE function. (Example 2
shows how the correct file type can be returned for a TGA file.)

status = IMAGE_QUERY_FILE(’photo_tga.sun’, $
 filetype, Default_Filetype = ’tif’)

PRINT, status, filetype

0, TIFF

; Note that the wrong image type, TIFF, was returned. Without an
; encoded ID number in the graphics file, IMAGE_QUERY_FILE
; looks at the value of the Default_Filetype keyword, which in this
; case was incorrect.

status = IMAGE_QUERY_FILE(’photo_tga.sun’, filetype)

PRINT, status, filetype

0, SUN

; Here, once again the incorrect image type is returned for
; a TGA file; since no encoded ID number was found, and
; no Default_Filetype keyword is specified, the function “guesses”
; the image type by looking at the filename suffix.

status = IMAGE_QUERY_FILE(’photo_tga’, filetype)

PRINT, status

-3

; This example code also returns an error status. The error results
; because the function can’t make a reasonable guess at the image type
; without the following: an encoded ID number, the Default_Filetype
; keyword, and/or a filename suffix.

See Also
IMAGE_CHECK, IMAGE_DISPLAY, IMAGE_READ,

DICM_TAG_INFO

System Variables: !Quiet

492 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

IMAGE_READ Function
Reads an image file and returns an associative array in image format.

Usage

image = IMAGE_READ(filename)

Input Parameters
filename — A string containing the pathname and filename of an image file.
System variables/logicals and special characters recognized by the operating
system shell can be used in the path.

Keywords

NOTE If File_Type is TIFF16, all other keywords are ignored.

All_Subimages — If set, all subimages in the file are read and the Img_Count
keyword is ignored. The first subimage in the file is read first, unless the Sub_Img
keyword is also specified.

NOTE Multiple images being read with the IMAGE_READ function must all be
of the same height, width, and class. If a file contains images of different heights,
widths, and/or classes, only the first contiguous sequence with equal height, width,
and class are read.

Cmap_Compress — If set, and the colormap in the image file has unused entries,
IMAGE_READ compresses the colormap to the minimum size and re-maps the
pixel array.

File_Type — A string specifying the default file type. (See the Discussion.)

Intleave — A scalar string indicating the desired type of interleaving of 3D image
arrays. (Default: pixel)

Valid strings and the corresponding interleaving methods are:

’image’ — The resulting 3D image array arrangement is (x, y, p) for p
image-interleaved images of x-by-y.

’row’ — The resulting 3D image array arrangement is (x, p, y) for p
row-interleaved images of x-by-y.

’pixel’ — The resulting 3D image array arrang10ement is (p, x, y) for

IMAGE_READ Function 493

p pixel-interleaved images of x-by-y. (Default)

Img_Count — An integer specifying the number of images to read from an array
of images.

NOTE The Img_Count keyword is ignored if the All_Subimages keyword is set.

Order — If nonzero, returns the image mirrored in the y-direction. (Default: Do not
mirror the image.)

Quiet — Suppresses successive levels of error messages, depending on the value
set. This keyword accepts the same integer values used with the system variable
!Quiet.

Sub_Img — The index number (integer) of the first image to read from an array of
images. (Default: 0, the first image)

NOTE If Sub_Img is used to request a subimage that is not in the image file, the
status key of the returned image associative array is set to a negative number.

Unmap — When you read in an image containing a 2D pixel array and no
colormap, a colormap is created and your pixel data is mapped into this colormap.
When nonzero, this keyword restores your original pixel values and places a
standard grayscale colormap in the colormap field of the image associative array.

Verbose — If nonzero, any available information about the file is printed to the
screen.

Returned Value
image — An associative array in image format.

Discussion

NOTE Refer to the IMAGE_CREATE function for detailed information on the
structure of the image associative array.

The following table lists the file formats that you can read and write using
IMAGE_READ and IMAGE_WRITE functions, respectively. The table also
specifies the conversions that are performed on particular file types.

494 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

NOTE The TIFF 6.0 Specification (“the Standard”) is used. There are eleven
required fields for grayscale and these are the only fields used in processing. Type
checking for fields is performed, but only Types 1-12 are supported. A required
field must have a type conforming to the Standard. Only positive integer data is
supported. The ‘pixel’ field is stored in a long array.

Most image files have an encoded ID number to identify the file format. When
IMAGE_READ reads an image file, it determines the type of file according to the
rules of precedence used by the function IMAGE_QUERY_FILE.

File type Pseudo-color
(8-bit with
colormap)

Pseudo-color
(16-bit with
colormap)

Direct color (24-
bit)

Support
subimages
(multiple
images)

Read Write Read Write Read Write Read Write

BMP y y n n y y n n

DICM y y y y y y y(+) y(+)

GIF y y n n y y y n

JPEG y y n n y y n n

MIFF y y n n y y y n

PCD y n n n y n y n

PCX y y n n y y y n

PNG y y n n y y n n

SUN y y n n y y y n

TGA y y(c) n n(c) y y y n

TIFF y y y y y y y n

XWD y(*) y(*) n(*) n(*) y(*) y(*) n n

XPM y(c, *) y(*) n(c, *) n(*) n/a n/a n n

XBM y y(bw) n n(bw) n/a n/a n n

c — Converted to 24-bit direct color on read/write. (NOTE: In order to read an
XPM file, the DISPLAY environment variable must be set.)
bw — Reduces the image to black and white on write.
n — Not supported.
n/a — File format does not support this class.
* — Not supported for Windows 95 and Windows NT.
+ — Uses Sub_Img option to read a sub-image one at a time. All_Subimages
option is not supported.

IMAGE_WRITE Function 495

NOTE Filetype TGA does not have an encoded ID number. To read this type of file
you must specify the File_type keyword or filename must have a .tga suffix.

If at least the first requested subimage in the image file is available, but the number
of requested images exceeds the highest subimage number in the file, a warning
message is displayed and the number of images in the file is returned in the
img_count key of the returned image associative array.

Example 1
flowers = IMAGE_READ(’flowers.tif’)

; Reads the file flowers.tif in the current directory and creates
; the associative array flowers in image format.

Example 2
cells = IMAGE_READ(’tiff16.tif’, file_type=’TIFF16’)

; Reads the file tiff16.tif in the current directory and creates
; the associative array cells in image format.

See Also
IMAGE_CREATE, IMAGE_DISPLAY, IMAGE_WRITE, DICM_TAG_INFO

System Variables: !Quiet

IMAGE_WRITE Function
Writes an image variable to a file.

Usage
status = IMAGE_WRITE(filename, image)

Input Parameters
filename — A string specifying the pathname and filename of the image file to
write. This parameter can also be a null string (see Discussion).

image — An associative array in image format.

Returned Value
status — A value indicating the success or failure of the function.

< 0 Indicates an error, such as an invalid input array. An informational
message describing the error is also output to the screen.

496 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

NOTE IMAGE_WRITE will process the file as a 16-bit TIFF file if the depth field
is 16 and the file type is tif. All other keywords are ignored. This assumes image
was imported with IMAGE_READ. Only the eleven required fields for grayscale
images are processed.

Keywords
Compress — If nonzero, and if the requested image file type allows compression,
the image file is written in compressed form. (See Discussion.)

File_type — A string specifying an image file type. See the Discussion section for
a list of valid image file types.

Order — If nonzero, the image is mirrored in the y-axis direction before being
written to the file. (Default: The bottom of the image is stored at array index 0, per
the PV-WAVE convention.)

Overwrite — If the specified file already exists, overwrite it.

Quality — Sets the quality level of JPEG compression. (Default: 100)

Quiet — Suppresses successive levels of error messages, depending on the value
set. This keyword accepts the same integer values used with the system variable
!Quiet.

Verbose — If nonzero, information about the written image is displayed.

Discussion
Before writing a file, the IMAGE_WRITE function checks to make sure that the
input array is a valid image associative array, and that the keys of the array contain
data consistent with the expected values. Refer to the IMAGE_CREATE function
for detailed information on the structure of the associative array.

NOTE When bilevel or grayscale TIFF images with no colormap data are written
to files, a color map is created and the pixel values are mapped into the colormap.
You can recover the original values when the TIFF file is read back into PV-WAVE
by using either IMAGE_READ with the Unmap keyword or using
DC_READ_TIFF.

The following table lists file formats that you can write and read using the
IMAGE_WRITE and IMAGE_READ functions, respectively. The table also
shows the conversions that are performed on particular file types.

0 Indicates a successful write.

IMAGE_WRITE Function 497

NOTE The input parameter, image, must be created with either the
IMAGE_READ or IMAGE_CREATE routine.

The rules of precedence for determining the file type are:

1. Use the value of the File_Type keyword.

File type Pseudo-color
(8-bit with
colormap)

Pseudo-color
(16-bit with
colormap)

Direct color (24-
bit)

Support
subimages
(multiple
images)

Read Write Read Write Read Write Read Write

BMP y y n n y y n n

DICM y y y y y y y(+) y(+)

GIF y y n n y y y n

JPEG y y n n y y n n

MIFF y y n n y y y n

PCD y n n n y n y n

PCX y y n n y y y n

PNG y y n n y y n n

SUN y y n n y y y n

TGA y y(c) n n(c) y y y n

TIFF y y y y y y y n

XWD y(*) y(*) n(*) n(*) y(*) y(*) n n

XPM y(c, *) y(*) n(c, *) n(*) n/a n/a n n

XBM y y(bw) n n(bw) n/a n/a n n

c — Converted to 24-bit direct color on read/write. (NOTE: In order to read an
XPM file, the DISPLAY environment variable must be set.)
bw — Reduces the image to black and white on write.
n — Not supported.
n/a — File format does not support this class.
* — Not supported for Windows 95 and Windows NT.
+ — Uses Sub_Img option to read a sub-image one at a time. All_Subimages
option is not supported.

498 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

2. Use the suffix given as part of the filename given in the filename
parameter. The suffix will be recognized if it is for one of the
supported file types.

3. Use the file type specified in the file_type key of the image
associative array.

4. Use the suffix given in the file_name key of the image associative
array.

If the filename parameter is a null string, the filename is taken from the file_name
key of the image associative array. In this case, the filename suffix will be changed
to match the file type as determined by the rules of precedence above.

TIP You can use the File_Type keyword to convert image files from one format to
another. For example, if you read a JPEG file, you can convert it to a Sun Rasterfile
by writing it with the following command:

status = IMAGE_WRITE(’’, image, File_Type = ’SUN’)

If the image has been created from the file picture.jpeg, this command will
write a file picture.sun.

Available compression algorithms include:

NOTE LZW compression GIF and TIFF files is a proprietary format and is not
available.

Example

stat = IMAGE_WRITE(’flowers.sun’, flowers)

; Writes an image file flowers.sun in Sun Rasterfile format, in the
; current directory.

See Also
IMAGE_CREATE, IMAGE_DISPLAY, IMAGE_READ, DICM_TAG_INFO

Supported Image File Types Compression Algorithm

BMP, PCX RLE

JPEG JPEG

TIFF (bilevel only) Packbits

IMAGINARY Function 499

System Variables: !Quiet

IMAGINARY Function
Returns the imaginary part of a complex number.

Usage

result = IMAGINARY(complex_expr)

Input Parameters
complex_expr — A single or double-precision complex number (one with both a
real and imaginary part). Can be of any dimension.

Returned Value
result — The imaginary part as a single or double-precision floating-point value.
It is of the same dimension as complex_expr.

Keywords
None.

Discussion
If the input parameter, complex_expr, is single-precision complex, the result is
single-precision. If complex_expr is double-precision complex, the result is
double-precision.

IMAGINARY can be used for a variety of applications — one example is using it
to find the phase angle of a complex result, such as a filter, by dividing the
arctangent of the imaginary part by the real part.

Example
x = COMPLEX(0, 2)

PRINT, IMAGINARY(x)

2.00000

500 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

See Also
CINDGEN, COMPLEX, DCOMPLEX

IMG_TRUE8 Procedure
Generates a pseudo true-color image suitable for display on devices capable of
displaying 256 simultaneous colors.

Usage

IMG_TRUE8, red_img, grn_img, blu_img, rgb_img, red, grn, blu

Input Parameters
red_img — A 2D image representing the red component of a true color image.
red_img must be the same size as grn_img and blu_img.

grn_img — A 2D image representing the green component of a true color image.

blu_img — A 2D image representing the blue component of a true color image.

Output Parameters
rgb_img — A pseudo true-color 8-bit image that can be displayed using the TV
procedure (see Discussion).

red — The red component of the color table.

grn — The green component.

blu — The blue component.

Keywords
None.

Discussion
The image generated by IMG_TRUE8 is suitable for display on devices with 8-bit
planes of color. It is useful when you have Landsat type images that you want to
merge into a true color system.

IMG_TRUE8 Procedure 501

For correct appearance, rgb_img should be displayed in a graphics window with n
colors allocated to it, where n is 256 under UNIX and OpenVMS, and 236 under
Windows. For example:

WINDOW, 0, Colors = 256

Also, the proper color table needs to be loaded by using the command:

TVLCT, red, grn, blu, 0

where red, grn, and blu are the values obtained from IMG_TRUE8.

Then use the TV procedure to display the image:

TV, rgb_img

NOTE On some systems it may be necessary to click in the image window to see
the proper colors.

Examples
PRO img_demo1

; This program displays a pseudo true-color Landsat image on an
; 8-bit color system.

winx = 477

winy = 512

; Specify the window size.

red_img = BYTARR(winx, winy)

grn_img = BYTARR(winx, winy)

blu_img = BYTARR(winx, winy)

; Set up the color components for the true color image.

OPENR, 1, !Data_Dir + ’boulder_red.img’

READU, 1, red_img

CLOSE, 1

OPENR, 1, !Data_Dir + ’boulder_grn.img’

READU, 1, grn_img

CLOSE, 1

OPENR, 1, !Data_Dir + ’boulder_blu.img’

READU, 1, blu_img

CLOSE, 1

; Read in the data.

WINDOW, 0, Colors=256, XSize=winx, YSize=winy

; Set up the display window.

502 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Windows USERS Under Windows, change 256 to 236.

IMG_TRUE8, red_img, grn_img, blu_img, $
rgb_img,red, grn, blu

TVLCT, red, grn, blu, 0

TV, rgb_img

; Create and display the true color image.

END

UNIX and OpenVMS USERS To see an example using the same data, except
displayed in true 24-bit color on a 24-bit X workstation, see the PV-WAVE User’s
Guide.

See Also
LOADCT

UNIX and OpenVMS USERS For a comparison of pseudo- and true-color
images, see the PV-WAVE User’s Guide.

INDEX_AND Function
Standard Library function that computes the logical AND for two vectors of
positive integers.

Usage

result = INDEX_AND(array1, array2)

Input Parameters
array1 — A vector of positive integers.

array2 — A vector of positive integers.

Returned Value
result — A vector containing all elements common to both input arrays. (result is
not unique’d.)

INDEX_CONV Function 503

Keywords
None.

Examples
PM INDEX_AND([2,0,3], [1,2,0,2])

See Also
INDEX_OR, WHEREIN

INDEX_CONV Function
Converts one-dimensional indices to n-dimensional indices, or n-dimensional
indices to 1D indices.

Usage

j = INDEX_CONV(a, i)

Input Parameters
a — An n-dimensional array.

i — A vector of m one-dimensional indices into a, or an m-by-n array of m n-
dimensional indices into a.

Returned Value
j — An m-by-n array of m n-dimensional indices into a (if i is one-dimensional) or
a vector of m one-dimensional indices into a (if i is two-dimensional).

Example
a = INDGEN(2, 3) & j = INDEX_CONV(a, INDGEN(6)) & PM, j

 0 0

 1 0

 0 1

 1 1

 0 2

504 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

 1 2

 PM, INDEX_CONV(a, j)

 0

 1

 2

 3

 4

 5

INDEX_OR Function
Standard Library function that computes the logical OR for two vectors of positive
integers.

Usage

result = INDEX_OR(array1, array2)

Input Parameters
array1 — A vector of positive integers.

array2 — A vector of positive integers.

Returned Value
result — A vector consisting of all elements contained in either of the input arrays
(result is unique’d).

Keywords
None.

Examples
PM, INDEX_OR([2,0,3], [1,2,0,2])

See Also
INDEX_AND, WHEREIN

INDGEN Function 505

INDGEN Function
Returns an integer array with the specified dimensions.

Usage

result = INDGEN(dim1, ... , dimn)

Input Parameters
dimi — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value
result — An initialized integer array. If the resulting array is treated as a one-
dimensional array, then its initialization is given by the following:

Keywords
None.

Example
This example creates a 4-by-2 integer array.

a = INDGEN(4, 2)

; Create an integer array.

INFO, a

VARIABLE INT = Array(4, 2)

PRINT, a

0 1 2 3

4 5 6 7

See Also
BINDGEN, CINDGEN, DINDGEN, FINDGEN, LINDGEN, SINDGEN

array i() i, for i 0 1 … D j 1–
j 1=

n

∏

, , ,= =

506 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

INFO Procedure
Displays information on many aspects of the current PV-WAVE session.

Usage

INFO, expr1, ... , exprn

Input Parameters
expri — The expressions specifying the type of information to be displayed. These
expressions are interpreted differently, depending on the keyword selected. If no
keyword is selected, INFO displays basic information for its parameters.

Keywords
Breakpoints — Displays the breakpoint table containing the name of the program
module, line number and source file name of each breakpoint. If Breakpoints is set
to a specified variable, the information is stored in a string array of the variable
name rather than displayed.

Calls — Displays the current procedure’s call stack containing the name of the
program module, source file name, and line number. If Calls is set to a specified
variable, the information is stored in a string array of the variable name rather than
displayed. The first array element contains the information about the caller of the
INFO command, the second element contains information about its caller, and so
on.

If Level is specified with Calls, the information displayed is for the current
routine on the level specified.

NOTE Calls is useful for programs that require traceback information.

Depth — Displays the depth of the current procedure’s call stack. If Depth is set to
a specified variable, the depth of the procedure call stack is stored in a long scalar
of the variable name rather than displayed.

Device — Lists all available graphics devices, and displays information about the
currently selected graphics device. If Device is set to a specified variable, the list of
all available graphics devices is stored in a string array of the variable name rather
than displayed.

Files — Displays information about file units depending on the input parameters
supplied in the calling sequence. If input parameters are supplied, the value for
Files is taken to be integer file-unit numbers, and information on the specified units

INFO Procedure 507

is displayed. If no input parameters are supplied, information about all open file
units is displayed.

If Files is set to a specified variable, the names of all currently open files
are stored in a string array of the variable name rather than displayed.
If Names is used, Files only displays information for the specified files.

Full — If nonzero, displays all information about specified variable elements
including structures, lists, and associative arrays.

Functions — Displays a list of all currently available user functions. If Functions
is set to a specified variable, the function names are stored in a string array of the
variable name rather than displayed.

Keys — Displays current function key definitions as set using the DEFINE_KEY
procedure:

If input parameters are supplied, Keys must be scalar strings containing the
names of function keys, and information on the specified keys is displayed.
If no input parameters are supplied, information on all function keys is
displayed.

Level — Specifies the level of the program for which information is to be
displayed. This keyword is used in conjunction with the keywords Calls,
Parameters, Routines, Traceback, Upvar, and Variables.

If n ≥ 0, the level is counted from the $MAIN$ level to the current
procedure.
If n < 0, the level count is relative, counting from the current procedure
back to the $MAIN$ level.

Memory — Reports the amount of dynamic memory currently in use by the
PV-WAVE session, and the number of times dynamic memory has been allocated
and deallocated. If Memory is set to a specified variable, it stores the information
in a three-element long array of the variable name.

Names — Specifies patterns to be matched against strings which are to be
displayed. This keyword is used in conjunction with other keywords. Patterns
specified by Names can contain the following wild card characters.

* (asterisk) — Matches any string.
? (question mark) — Matches any character.

Parameters — Displays the list of all parameters for the current procedure or
function. The procedure or function must be specified as an input parameter for
INFO, or Level must be used; otherwise, Parameters defaults to the $MAIN$
program level. If Parameters is set to a specified variable, the parameter names are
stored in a string array of the variable name rather than displayed.

If Level is specified, only information about the procedure or function on

508 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

the specified level is displayed.
If Names is used, only parameters with names matching those specified are
displayed.

Procedures — Displays a list of all procedures available in the current session. If
Procedures is set to a specified variable, the procedure names are stored in a string
array of the variable name rather than displayed.

If Names is used, only procedures with names matching those specified are
displayed.

Recall_Commands — Displays the currently saved commands. Input parameters
are ignored.

Routines — Displays a list of all compiled procedures and functions with their
parameter names. Keywords accepted by each module are enclosed in quotation
marks. If Routines is set to a specified variable, the procedure and function names
are stored in a string array of the variable name rather than displayed. The
parameter names associated with the functions and procedures are not stored in the
string array.

If Level is specified, only information about the procedures or functions on
the specified level is displayed.
If Names is used, only the procedures and functions with names matching
those specified are displayed.

Structures — Displays information on the structure of variables depending on the
input parameters specified in the calling sequence. If input parameters are supplied,
the structure of those expressions is displayed. If no input parameters are supplied,
all currently defined structures are shown.

Sysstruct — Displays information on all system structures (structures that begin
with ‘!’). This keyword is a subset of the Structures keyword.

System_Variables — Displays information on all system variables. Input
parameters are ignored. If System_Variables is set to a specified variable, the
system variable names are stored in a string array rather than displayed.

If Names is used, only the system variables with names matching those
specified are displayed.

Traceback — Displays the call stack of the current procedure, which contains the
program module name, source file name, and the line number. If Traceback is set
to a specified variable, the information is stored in a string array of the variable
name rather than displayed. The first array element contains the information about
the caller of the INFO command, the second element contains information about
its caller, and so on.

If Level is specified, only information about the procedure or function on

INTARR Function 509

the specified level is displayed.

Upvar — Displays the name of a variable from the previous program level that was
passed as a parameter into the procedure or function that calls INFO. If Upvar is a
string array, the name of the variable passed between the program levels is stored
rather than displayed. If the variable doesn’t exist on the previous program level,
an empty string is returned.

Upvar can display the name of a variable on other program levels, if the
Level keyword is also specified.

Userstruct — Displays information on the regular user-defined structures
(structures that do not begin with ‘!’). This keyword is a subset of the Structures
keyword.

Variables — Displays a list of all variables of the current function or procedure.
The procedure or function must be specified either by using the input parameter of
the INFO command, or by using Level; otherwise, Variables defaults to the
$MAIN$ program level. If Variables is set to a specified variable, the procedure or
function variable names are stored in a string array rather than displayed.

If Level is specified, only information about the procedure or function on
the specified level is displayed.
If Names is used, only variables with names matching those specified are
displayed.

Discussion
You select information on a specific area by specifying the appropriate keyword
from the above list. Only one keyword may be specified at a time.

If no input parameters or keywords are specified, INFO shows the current nesting
of procedures and functions, all current variables at the current program level, and
open files.

See Also
DEFINE_KEY, DOC_LIBRARY

For more information and examples, see the PV-WAVE Programmer’s Guide.

INTARR Function
Returns an integer vector or array.

510 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Usage

result = INTARR(dim1, ... , dimn)

Input Parameters
dimi — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value
result — An integer vector or array with the dimensions specified by dimi.

Keywords
Nozero — If Nozero is nonzero, the normal zeroing is not performed. This causes
INTARR to execute faster.

Discussion
Normally, INTARR sets every element of the result to zero.

Example
result = INTARR(2, 3)

PRINT, result

0 0

0 0

0 0

See Also
BYTARR, FLTARR, INDGEN, LONARR

INTERPOL Function
Standard Library function that performs a linear interpolation of a vector using
either a regular or irregular grid.

INTERPOL Function 511

Usage

result = INTERPOL(v, n)
This form is used with a regular grid.

result = INTERPOL(v, x, u)
This form is used with an irregular grid.

Input Parameters
For a regular grid:

v — The dependent values of the vector that is to be interpolated. Must be
one-dimensional. Can be of any data type except string.

n — The number of interpolated points.

For an irregular grid:

v — The dependent values of the vector that is to be interpolated. Must be
one-dimensional. Can be of any data type except string.

x — The independent values of the vector that is to be interpolated. Must
have the same number of values as v, and must be monotonic, either
increasing or decreasing.

u — The independent values at which interpolation is to occur. Is not nec-
essarily monotonic.

Returned Value
For a regular grid:

result — A vector containing n points interpolated from vector v.

For an irregular grid:

result — A vector containing the same number of values as u.

Keywords
None.

Discussion
The result returned by INTERPOL differs depending on whether a regular or an
irregular grid was used, as described below.

512 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

• Regularly-gridded vectors. The vector resulting from INTERPOL used with
a regular grid is calculated in the following way, using the FIX function:

result(i) = v(j) + (j – FIX(j)) (v(j + 1) – v(j))
where

j = i(m–1)/(n–1)

i is in the range 0 ≤ i ≤ (n–1)

m is the number of points in the input vector v.

The output grid horizontal coordinates (abscissae values) are calculated in the
following way, using the FLOAT function:

abscissa_value(i) = FLOAT(i) / m

where i is in the range 0 ≤ i < (n – 1).

• Irregularly-gridded vectors. The vector resulting from INTERPOL used
with an irregular grid has the same number of elements as j and is calculated
in the following way, using the FIX function:

result(i) = v(j) + (j – FIX(j)) (v(j + 1) – v(j))

where j = u(i).

Example
INTERPOL can be used in signal processing to reconstruct the signal between
original samples of data. For example, suppose you have 5 sample data readings,
[0, 5, 10, 5, 0], but you need 15 samples.

To get these additional samples, enter the following command:

out_vector = INTERPOL(in_vector, 15)

where in_vector has a value of [0, 5, 10, 5, 0] and
out_vector yields the following values:

[0, 1.42857, 2.85714, 4.28571, 5.71429, 7.14286, 8.57143, 10.0000,
8.57143, 7.14286, 5.71429, 4.28571, 2.85714, 1.42857, 0]

The data still starts and ends with zero, and the maximum is still ten, but all the
points in between have been recalculated.

See Also
BILINEAR, SPLINE

INTERPOLATE Function 513

INTERPOLATE Function
Standard Library function that interpolates scattered data at scattered locations.

Usage

result = INTERPOLATE(d, x)

Input Parameters
d — An (m, n+1) array of m datapoints in n independent variables and one
dependent variable; d(*,n) is the dependent variable.

x — A (p,n) array specifying p interpolation points.

Returned Value
result — A 1d array of values of the dependent variable at points x.

Keywords
r — A scalar specifying the order of the weighting function. The dependent
variable at an interpolation point is computed as a weighted average of the variable
over all datapoints. The weighting function is 1/er where e is the Euclidean distance
between the interpolation point and the datapoint. r defaults to 2

Example
x = findgen(51) / 50 & plot, x, INTERPOLATE([[0,1],[2,3]],x)

See Also
GRIDN

INTRP Function
Standard Library function that interpolates an array along one of its dimensions.

514 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Usage

result = INTRP(a, n, x)

Input Parameters
a — An array.

n — An integer (≥0) designating the dimension to interpolate.

x — A one-dimensional array giving the coordinates at which to interpolate.

Returned Value
result — The array of interpolated slices perpendicular to dimension n.

Keywords
z — a strictly increasing 1d array of coordinates for dimension n (defaults to the
indicies into this dimension).

Example
See wave/lib/user/examples/intrp_ex.

See Also
REBIN, RESAMP

INVERT Function
Returns an inverted copy of a square array.

Usage
result = INVERT(array [, status])

Input Parameters
array — A two-dimensional square array. May be of any data type except string.

Output Parameters
status — (optional) The name of a scalar variable used to accumulate errors from
singular or near-singular arrays. Possible values are:

ISASKEY Function 515

Returned Value
result — An inverted copy of array.

Keywords
None.

Discussion
An input array of double-precision floating-point data type returns a result of
identical type. An input array of any other type yields a result of single-precision
floating-point data type.
Errors are accumulated in the optional status parameter, or the math error status
indicator. This latter status may be checked using the CHECK_MATH function.

CAUTION Unless double-precision floating-point values are used for array,
round off and truncation errors may occur, resulting in imprecise inversion.

INVERT uses the Gaussian elimination method (whose objective is the
transformation of the given system into an equivalent system with upper-triangular
coefficient matrix).

See Also
CHECK_MATH, DETERM, LUBKSB, LUDCMP, TRANSPOSE

ISASKEY Function
Matches a key name in a given associative array.

Usage
result = ISASKEY(asarr, key)

Input Parameters
asarr — The name of an associative array.

key — A string to be matched against the key names in the given associative array.

0 Successful completion.

1 A singular array, indicating that the inversion is invalid.

2 A warning that a small pivot element was used and it is likely that
significant accuracy was lost.

516 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Returned Value
result — A value indicating success or failure of the match.

Keywords
None.

Discussion
Use this function to determine if a particular key name exists in a given associative
array. A key name is the name associated with an element in the associative array.
To create an associative array, use the ASARR function.

Example
ISASKEY is used to determine if the associative array contains the element named
struct. If it does, then the value of struct is replaced with zero. The INFO command
is used to verify the change.
asar1 = ASARR(’byte’, 1B, ’float’, 2.2, ’string’, ’3.3’, $

’struct’, {,a:1, b:lindgen(2)})

IF ISASKEY(asar1, ’struct’) THEN asar1(’struct’) = 0

INFO, asar1, /Full

ASAR1 AS. ARR = Associative Array(4)

byte BYTE = 1

struct INT = 0

float FLOAT = 2.20000

string STRING = ’3.3’

See Also
ASARR, ASKEYS, LIST

ISHFT Function
Performs the bit shift operation on bytes, integers, and longwords.

Usage
result = ISHFT(p1, p2)

Input Parameters
p1 — The scalar or array to be shifted.

< 0 Indicates the string matches the key name in the associative array.

0 Indicates no match is found.

ISHFT Function 517

p2 — The scalar containing the number of bit positions and direction of the shift.

Returned Value
result — The shifted scalar or array value.

Keywords
None.

Discussion
If p2 is positive, p1 is left-shifted p2 bit positions, with 0 bits filling vacated
positions. If p2 is negative, p1 is right-shifted, again with 0 bits filling vacated
positions.

Example
In this example, ISHFT is used to multiply and divide each element of a five-
element vector by powers of 2.
a = BYTARR(5)

; Create and initialize a five-element byte array.
FOR i = 0, 4 DO a(i) = 4 * i

PRINT, a

0 4 8 12 16

PRINT, a, ISHFT(a, -2)

0 4 8 12 16

0 1 2 3 4

; Divide each element of A by 4.
PRINT, a, ISHFT(a, 1)

0 4 8 12 16

0 8 16 24 32

; Multiply each element of A by 2.

See Also
SHIFT

518 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

JACOBIAN Function
Standard Library function that computes the Jacobian of a function represented by
n m-dimensional arrays

Usage

j = jacobian (f)

Input Parameters

f — an n-element list of m-dimensional arrays all of the same dimensions d; f rep-
resents a n-valued function of m variables.

Returned Value

j — an n-element list of m-element lists of m-dimensional arrays: (j(p))(q) is the m-
dimensional array (of dimensions d) which represents the derivitive of the pth

dependent variable with respect to the qth independent variable.

Keywords

x — m-element list of vectors defining the independent variables; by default,
x(i) = findgen(d(i)).

Example
f = list(randomu(s,10,20), randomu(s,10,20), randomu(s,10,20))

j = jacobian(f)

for p=0,2 do for q=0,1 do pm, same((j(p))(q), derivn(f(p),q))

See Also

CURVATURES, DERIVN, EUCLIDEAN, NORMALS

JOURNAL Procedure
Provides a record of an interactive session by saving in a file all text entered from
the terminal in response to a prompt.

JUL_TO_DT Function 519

Usage

JOURNAL [, param]

Input Parameters
param — (optional) A string parameter whose use depends on whether journaling
is in progress when JOURNAL is called, and whether param is explicitly set:

• If journaling is not in progress and param is supplied, param sets the name of
the journal file into which the session’s commands will be written.

• If journaling is not in progress and param is not supplied, the default journal
file named wavesave.pro is used.

• If journaling is in progress and param is supplied, the contents of the param
string is written directly into the currently open journal file.

• If journaling is in progress and param is not supplied, the current journal file
is closed and the logging process is terminated.

Keywords
Nobuffer — If present and nonzero, output lines will be written immediately to the
journal file without the normal file buffering.

Discussion
The first call to JOURNAL starts the logging process. The read-only system
variable !Journal is set to the file unit into which all session commands are written.
Once the logging is initiated, a call to JOURNAL with no parameters closes the log
file and terminates the logging process. If logging is in effect and a parameter is
supplied, the parameter is simply written to the journal file.

See Also
RESTORE, SAVE

Also see the PV-WAVE User’s Guide.

JUL_TO_DT Function
Converts a Julian day number to a date/time variable.

520 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Usage

result =JUL_TO_DT(julian_day)

Input Parameters
julian_day — A Julian day number or array of Julian day numbers.

Returned Value
result — Α date/time variable containing the converted data.

Keywords
None.

Discussion
The date/time value is interpreted as a day in a series of days that begins on
September 14, 1752. For example, 2 is equated with September 15, 1752. The
decimal part of the Julian day indicates the time as a portion of the day. For
example, for May 1, 1992 at 8:00 a.m, the Julian day is 84702.333.

Example
dt = JUL_TO_DT(87507)

; Converts the Julian day 87507 into a date/time variable.
print, dt

{ 1992 4 15 0 0 0.00000 87507.000 0}

See Also
SEC_TO_DT, STR_TO_DT, VAR_TO_DT

For more information, see the PV-WAVE User’s Guide.

KEYWORD_SET Function
Tests if an input expression has a nonzero value.

KEYWORD_SET Function 521

Usage

result = KEYWORD_SET(expr)

Input Parameters
expr — The expression to be tested. Usually a named variable.

Returned Value
result —A nonzero value, if expr is defined and nonzero.

Keywords
None.

Discussion
KEYWORD_SET is especially useful in user-written procedures and functions
when you want to process keywords that can be interpreted as being either true
(keyword is present and nonzero) or false (keyword was not used, or was set to
zero).

It can also be used to test whether an expression evaluates to zero, or whether a
variable has been set.

Example 1
Assume you type the following commands:

IF KEYWORD_SET(x) THEN PRINT, ’It is set’ ELSE PRINT, ’Not set’

You will see:
Not set

because the value of x has not been initialized. On the other hand, if you set x to a
specific value, say 2, you will see:

x = 2

IF KEYWORD_SET(x) THEN PRINT, ’It is set’ ELSE PRINT, ’Not set’

It is set

Example 2
The following user-defined routine uses KEYWORD_SET to make a call to print
the results of a squaring operation:

FUNCTION SQUARE_IT, Value, Print_Flag = Print

522 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Squared_Val = Value * Value

IF (KEYWORD_SET(Print)) THEN PRINT, Squared_Val

RETURN, Squared_Val

END

To run this routine, enter the following commands at the WAVE> prompt:

.RUN SQUARE_IT.PRO

y = SQUARE_IT(5)

PRINT, y

25

y = SQUARE_IT(10, /Print_Flag)

100

See Also
N_ELEMENTS, N_PARAMS, PARAM_PRESENT

LCM Function
Standard Library function that returns the least common multiple of some integers
greater than 1.

Usage

result = LCM(i)

Input Parameters
i — An array of integers greater than 1.

Returned Value
result — An integer, the least common multiple of the integers i.

Keywords
None.

Example
pm, LCM([3,2,4])

LEEFILT Function 523

See Also
FACTOR, GCD, PRIME

LEEFILT Function
Standard Library function that performs image smoothing by applying the Lee
Filter algorithm.

Usage

result = LEEFILT(image [, n, sigma])

Input Parameters
image — A 1D, 2D, or 3D array containing a signal; signal-interleaved signals; an
image; image-interleaved images; or a volume.

n — (optional) The value of 2n + 1 is used for the side of the filter box. The side
of the filter box must be smaller than the smallest dimension of image. (Default: 5)

sigma — (optional) The estimate of the standard deviation. The value must be a
positive. (Default: 5)

NOTE If sigma is negative, you will be prompted for a value to be typed in, the
value will be displayed, and the filtered image will be displayed with the TVSCL
command. This cycle will continue until a zero value of sigma is entered.

Returned Value
result — A two-dimensional array containing the smoothed image.

Keywords
Edge — A scalar string indicating how edge effects are handled. (Default:
’copy’) Valid strings are:

’zero’ — Sets the border of the output image to zero.

’copy’ — Copies the border of the input image to the output image.
(Default)

524 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Intleave — A scalar string indicating the type of interleaving of 2D input signals
containing signal-interleaved signals; and 3D input arrays containing image-
interleaved images, or a volume. Valid strings and the corresponding interleaving
methods are:

’signal’ — The 2D input image array arrangement is (x, p) for p
signal-interleaved signals of length x.

’image’ — The 3D image array arrangement is (x, y, p) for p image-
interleaved images of x-by-y.

’volume’ — The input image array is treated as a single entity.

Discussion
LEEFILT performs image smoothing by applying the Lee Filter algorithm. This
algorithm assumes that the sample mean and variance of a value is equal to the
local mean and variance of all values within a fixed range surrounding it. LEEFILT
smooths additive signal noise by generating statistics in a local neighborhood and
comparing them to the expected values.

Since LEEFILT is not very computationally expensive, it can be used for near real-
time image processing. It can be used on signals as well as images.

See Also
MEDIAN, SMOOTH, TVSCL

For details on the Lee Filter, see the article by Jong-Sen Lee, “Digital Image
Enhancement and Noise Filtering by Use of Local Statistics,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Volume PAMI-2, Number 2, pages
165-168, March 1980.

LEGEND Procedure
Standard Library procedure that lets you put a legend on a plot or graph.

LEGEND Procedure 525

Usage

LEGEND, label [, col, lintyp, psym, data_x, data_y, delta_y]

Input Parameters
label — A row of labels, one for each data line. This parameter may be characters
or numbers.

col — (optional) An array containing the color to be used for each row of the
legend. If col is omitted (or if there are fewer colors than labels), the system
variable !P.Color is used.

lintyp — (optional) An array containing the values to be used in drawing each line
of the legend. If lintyp is omitted (or if there are fewer line types than labels), the
system variable !P.Linestyle is used.

psym — (optional) An array containing the value of the plot symbols to be used in
the legend. The plot symbols correspond to the values of the system variable
!P.Psym. If psym is omitted (or if there are fewer plot symbols than labels), the
system variable !P.Psym is used.

data_x — (optional) The x-coordinate of the upper-left corner of the legend in data
coordinates. If data_x is omitted, you are prompted for a value.

data_y — (optional) The y-coordinate of the upper-left corner of the legend in data
coordinates. If data_y is omitted, you are prompted for a value.

delta_y — (optional) The vertical spacing between the lines of the legend,
expressed in data coordinates. If delta_y is omitted, you are prompted for a value.

Keywords
None.

Discussion
You have control of the color, line type, and plotting symbol for each row of the
legend using the available keywords. The size of the text is controlled by the system
variable !P.Charsize.

See Also
PLOT, XYOUTS

For more information, see Chapter 4, System Variables.

526 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

LINDGEN Function
Returns a longword integer array with the specified dimensions.

Usage

result = LINDGEN(dim1, ... , dimn)

Input Parameters
dimi — The dimensions of the result. This parameter may be any scalar expression,
and can have up to eight dimensions specified.

Returned Value
result — An initialized longword integer array. If the resulting array is treated as a
one-dimensional array, then its initialization is given by:

Keywords
None.

Example
This example creates a 4-by-2 longword integer array.

a = LINDGEN(4, 2)

; Create longword integer array.

INFO, a

VARIABLE LONG = Array(4, 2)

PRINT, a

0 1 2 3

4 5 6 7

See Also
BINDGEN, CINDGEN, DINDGEN, FINDGEN, INDGEN, INTARR,
SINDGEN

array i() LONG i(), for i 0 1 … D j 1–
j 1=

n

∏

, , ,= =

LINKNLOAD Function 527

LINKNLOAD Function
Provides simplified access to external routines in shareable images and Dynamic
Link Libraries (DLLs).

Usage

result = LINKNLOAD(object, symbol [, param1, ..., paramn])

Input Parameters
object — A string specifying the filename, optionally including file path, of the
DLL or shared object file to be linked and loaded.

symbol — A string specifying the function name symbol entry point to be invoked
in the DLL or shared object file.

parami — (optional) The data to be passed as a parameter to the function. Any data
type except structure can be used.

Returned Value
result — A scalar whose default is assumed to be of type longword unless it is
specified with one of the keywords described below.

Keywords
Default — (VMS only) Changes the default object file specification. On VMS,
there are two ways to specify the object parameter. It may be a logical name
(defined in the system logical table with the /EXEC attribute) including the full
path to the file. Or the object parameter may be a filename, without any directory
or extension. In the latter case, the default file specification of SYS$SHARE:.EXE
is applied to the object file name. You may use the Default keyword to change this.
For example:

result = LINKNLOAD(’EXAMPLE’, $
Default = ’SYS$LOGIN:[LIBS].EXE’, symbol, ...)

D_Value — Specifies that the returned scalar is of type double-precision floating
point.

F_Value — Specifies that the returned scalar is of type single-precision floating
point.

528 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Nocall — (UNIX, Windows only) If present and nonzero, LINKNLOAD will not
call the function defined by the object and symbol parameters. LINKNLOAD will
still try to find the object module and load it. Thus, you can use this keyword to do
just the loading of the object module. If used with Unload, the object module is
unloaded without calling the function. This is useful because you can recompile the
object module, unload the old object module, and reload the new one without
exiting the PV-WAVE session.

S_Value — Specifies that the returned scalar is of type string.

Unload — (UNIX, Windows only) If present and nonzero, LINKNLOAD unloads
the object module immediately before returning from the LINKNLOAD
command.

Value — (byte array) Allows you to specify which parameters should be passed by
value, instead of by reference, which is the default. Value must be a byte array with
one element for each parameter in the call. A parameter is passed by value if the
corresponding byte in the Value array is non-zero. Array parameters must always
be passed by reference.

Verbose — (UNIX, Windows only) If present and nonzero, LINKNLOAD prints
status information when an object module is being loaded or unloaded.

Vmscall — When present and nonzero, tells PV-WAVE to use the LIB$CALLG
system routine to call the object. This makes parameter passing significantly more
convenient for FORTRAN programmers working in an OpenVMS environment.
This keyword is ignored on UNIX platforms.

Vmsstrdesc — When present and nonzero, tells PV-WAVE to pass string
parameters as OpenVMS FORTRAN string descriptors. This keyword is ignored
on UNIX platforms.

NOTE In general, LINKNLOAD cannot know what language an object module
being called was created from. The Vmsstrdesc keyword tells LINKNLOAD that
your object module was created from FORTRAN code and that it is expecting
string descriptors.

Discussion
LINKNLOAD provides a simple, yet powerful, mechanism for dynamically
invoking your own code from PV-WAVE on all of its supported operating systems.

For more information on the keywords Unload, Nocall, and Verbose, refer to the
following file:

LINKNLOAD Function 529

(UNIX) $VNI_DIR/wave/demo/interapp/linknload/
lnl_newkeywords.doc

(OpenVMS) VNI_DIR:[WAVE.DEMO.INTERAPP.LINKNLOAD]
LNL_NEWKEYWORDS.DOC

Windows USERS The LINKNLOAD function provides simplified access to
external routines in Dynamic Link Libraries (DLLs). LINKNLOAD calls a func-
tion in a DLL and returns a scalar value. Parameters are passed through PV-WAVE
to the specified external function by reference, thus allowing the external function
to alter values of PV-WAVE variables. It is the simplest method for attaching your
own C code to PV-WAVE.

UNIX and OpenVMS USERS LINKNLOAD calls a function in an external
sharable object and returns a scalar value. It is the simplest method for attaching
your own C code to PV-WAVE.

Parameters are passed through PV-WAVE to the specified external function by
reference, thus allowing the external function to alter values of PV-WAVE
variables.

CAUTION Be careful to ensure that the number, type, and dimension of the
parameters passed to the external function match what it expects (this can most eas-
ily be done from within PV-WAVE before calling LINKNLOAD). Furthermore,
the length of string parameters must not be altered and multi-dimensional arrays
are flattened to one-dimensional arrays.

Accessing the Data in PV-WAVE Variables
Two methods exist for accessing the results generated by PV-WAVE in a user-
written application called with LINKNLOAD.

One of these methods is to use the wavevars function and the other is to use the
C-callable or FORTRAN-callable programming interface.

NOTE For for detailed information on these methods, see the PV-WAVE Appli-
cation Developer’s Guide.

530 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Programming Notes

UNIX USERS For AIX, the symbol entry point must be specified when the exter-
nal shareable object is built, by using the -e flag, and thus the function symbol
parameter to LINKNLOAD has no effect on AIX.

If you run PV-WAVE and call LINKNLOAD and then relink your C function (or
C wrapper) and try to call LINKNLOAD again in the same session, PV-WAVE will
crash. You must exit and then re-run PV-WAVE for the newly linked C routine to
work.

Variables that are shared between PV-WAVE and a C function must be created by
PV-WAVE and their size can not be modified by the C function.

It is possible to pass a constant as a parameter to a C function from PV-WAVE via
LINKNLOAD, but of course the C function can not pass a value back via that
parameter.

Although wavevars returns pointers to the data associated with PV-WAVE’s
variables, it should be kept in mind that these addresses must be treated as
“snapshots” because the data pointer associated with a particular PV-WAVE
variable may change after execution of certain PV-WAVE system commands.

Using LINKNLOAD, care must be taken to ensure that the number, type, and
dimension of the parameters passed to the function match what the function
expects (this can most easily be done from within PV-WAVE before calling
LINKNLOAD). Furthermore, the length of string parameters must not be altered
and multi-dimensional arrays are flattened to one-dimensional arrays.

UNIX/OpenVMS Examples
The following PV-WAVE code demonstrates how to invoke a C function using
LINKNLOAD. For more information on compiling shareable objects, see the
PV-WAVE Application Developer’s Guide.

In this example, parameters are passed to the C external function using the
conventional (argc, argv) UNIX strategy. argc indicates the number of data
pointers which are passed from PV-WAVE within the array of pointers called argv.
The pointers in argv can be cast to the desired type as the following program
demonstrates.

You can find the following listed file in:

$WAVE_DIR/util/linknload/example.c

LINKNLOAD Function 531

#include <stdio.h>

typedef struct complex {

float r, i;

} complex;

long WaveParams(argc,argv)

int argc;

char *argv[];

{

char *b;

short *s;

long *l;

float *f;

double *d;

complex *c;

char **str;

if (argc != 7) {

fprintf(stderr,”wrong # of parameters\n”);

return(0);

}

b = ((char **)argv)[0];

 s = ((short **)argv)[1];

 l = ((long **)argv)[2];

 f = ((float **)argv)[3];

 d = ((double **)argv)[4];

 c = ((complex **)argv)[5];

 str = ((char ***)argv)[6];

 fprintf(stderr,”%d %d %ld %g %g <%g%gi> ’%s’\n”, (int)
b[0],(int)s[0],(long)l[0], f[0],d[0],c[0].r,c[0].i,str[0]);

 return(12345);

}

Accessing the External Function with LINKNLOAD

The following PV-WAVE code demonstrates how the C function defined in the
previous discussion could be invoked.

ln = LINKNLOAD(’example.so’,’WaveParams’, $
byte(1),2,long(3), float(4),double(5), $
complex(6,7),’eight’)

The resulting output is:

1 2 3 4 5 <6,7i> ’eight’

532 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Using the INFO command, you can see that LINKNLOAD returns the scalar value
12345, as expected.

INFO, ln

LN LONG = 12345

The example program works with both scalars and arrays since the actual C
program above only looks at the first element in the array and since PV-WAVE
collapses multi-dimensional arrays to one-dimensional arrays:

ln = LINKNLOAD(’example.so’,’WaveParams’, $
[byte(1)],[[2,3],[4,5]], [long(3)], $
[float(4)],[double(5)],[complex(6,7)], $
[’eight’])

The resulting output is:

 1 2 3 4 5 <6,7i> ’eight’

Windows Examples
Example programs showing how LINKNLOAD is used to pass parameters from
PV-WAVE to an external C function and return results to PV-WAVE can be found
in the directory:

(Windows) <wavedir>\demo\interapp\win32\linknload

Where <wavedir> is the main PV-WAVE directory.

This directory contains an example C program, a PV-WAVE procedure file, a
makefile, and a README file. See the README file for details on running the
example.

For more information on the example and on LINKNLOAD, see the PV-WAVE
Application Developer’s Guide.

Other Examples
For examples showing the use of the keywords Vmscall, Vmsstrdesc, and Value,
refer to the following files online:

(Windows) <wavedir>\demo\interapp\win32\linknload\call*

Where <wavedir> is the main PV-WAVE directory.

See Also
SIZE, wavevars (in the PV-WAVE Application Developer’s Guide)

LIST Function 533

LIST Function
Creates a list array.

Usage

result = LIST(expr1 , ... exprn)

Input Parameters
expri — One or more expressions or variables.

Returned Value
result — A variable of type list.

Keywords
None.

Discussion
A list is an array of expressions or variables. Each element in a list can have a
unique data type and value. The elements in a list can be accessed with subscripts,
in much the same way that elements of an array are accessed.

The elements of a list can be any of the eight basic PV-WAVE data types, or other
structures or arrays of structures, and other lists or associative arrays. Lists can also
be used as structure fields.

Example
This example creates a simple list with four elements: a byte value, a floating-point
value, a string, and a structure. Both INFO and PRINT are used to show the
contents and structure of the list.

lst = LIST(1B, 2.2, ’3.3’, {,a:1, b:lindgen(2)})

; Create the list.

INFO, lst, /Full

; Display information about the list.

LST LIST = List(4)

 BYTE = 1

534 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

 FLOAT = 2.20000

 STRING = ’3.3’

 STRUCT = ** Structure $1, 2 tags, 24 length:

A INT 1

B LONG Array(2)

PRINT, lst

; Print the value of the list.

{ 1 2.20000 3.3{ 1 0 1}}

See Also
ASARR, ASKEYS, ISASKEY

LISTARR Function
Returns a list.

Usage

result = LISTARR(number_elements,[value])

Input Parameters
number_elements — The number of elements the created list should contain. Must
be a scalar expression.

value — (optional) The value with which to initialize each element of the list. May
be any data type.

Returned Value
result — A list with the requested number of elements.

Keywords
None.

Discussion
Values in the list are initialized to 0L unless value is specified.

LN03 Procedure (UNIX/OpenVMS) 535

Example
INFO, LISTARR(2, 10), /Full

LN03 Procedure (UNIX/OpenVMS)
Standard Library procedure that opens or closes an output file for LN03 graphics
output. The file can then be printed on an LN03 printer.

Usage

LN03 [, filename]

Input Parameters
filename — (optional) The name of the file that will contain the LN03 graphics
output.

Keywords
None.

Example
To open a file for LN03 output, enter the following command:

LN03, ’myfile’

where myfile is the name of the file that will be sent to the LN03 printer.

To close the output file, call the procedure without a parameter

LOADCT Procedure
Standard Library procedure that loads a predefined color table.

Usage
LOADCT [, table_number]

Input Parameters
table_number — (optional) A number between 0 and 15; each number is
associated with a predefined color table.

536 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Keywords
Ctfile — Specifies a string containing the name of a color table file to load.

Silent — If present and nonzero, suppresses the message indicating that the color
table is being loaded.

Discussion
Predefined color tables are stored in the file colors.tbl. There are 16
predefined color tables, with indices ranging from 0 to 15, as shown in the
following table.

To see a menu listing of these color tables, call LOADCT with no parameters.

Examples
LOADCT, 3

; Loads the Red Temperature color table.

LOADCT, 11, /Silent

; Loads the Blue/Red color table without displaying a message.

See Also
TVLCT, COLOR_EDIT, MODIFYCT, STRETCH, TEK_COLOR, WgCtTool

Number Name

0 Black and White Linear
1 Blue/White
2 Green/Red/Blue/White
3 Red Temperature
4 Blue/Green/Red/Yellow
5 Standard Gamma-II
6 Prism
7 Red/Purple
8 Green/White Linear
9 Green/White Exponential
10 Green/Pink
11 Blue/Red
12 16 Level
13 16 Level II
14 Steps
15 PV-WAVE Special

LOADCT_CUSTOM Procedure 537

For more information, including a comparison of LOADCT and TVLCT, see the
PV-WAVE User’s Guide.

LOADCT_CUSTOM Procedure
Loads a predefined custom color table.

Usage

LOADCT_CUSTOM [, table_number]

Input Parameters
table_number — (optional) An integer number representing the index of the color
table to load, from 0 to 31. If omitted, a menu of the available color tables is
displayed, and you are prompted to enter a color table number.

Keywords
Silent — If present and non-zero, suppresses the colortable message.

Discussion
LOADCT_CUSTOM loads the selected custom color table by reading the custom
color table file located in your home (login) directory. This file is called
.wg_colors orwg_colors. The procedure WgCeditTool can be used to create
this custom color table file.

The custom color table file has a similar structure to the system color table file
colors.tbl. The custom file can contain up to 32 (0 – 31) color tables.

The title of each table is contained in the first 32-by-32 character bytes. The colors
loaded into the display are saved in the common block COLORS. If the current
device has fewer than 256 colors, the color table data are interpolated to cover the
number of colors in the device.

See Also
LOADCT

538 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

LOAD_HOLIDAYS Procedure
Makes the value of the !Holiday_List system variable available to the date/time
routines.

Usage

LOAD_HOLIDAYS

Parameters
None.

Keywords
None.

Discussion
Run LOAD_HOLIDAYS after you:

• Restore a PV-WAVE session in which you used the CREATE_HOLIDAYS
function. Running this procedure makes the restored !Holiday_List system
variable available to the date/time routines.

• Directly change the value of the !Holiday_List system variable, instead of
using the CREATE_HOLIDAYS procedure.

This procedure is called by the CREATE_HOLIDAYS function. Thus,
CREATE_HOLIDAYS both creates holidays and makes them available to the date/
time routines.

NOTE If all weekdays have been defined as weekend days, an error results.

Example
This example shows how you might directly modify the system variable
!Holiday_List and then run LOAD_HOLIDAYS to make the change available.
Assume that December 26 has been erroneously defined as a holiday and that it is
the first date/time structure in !Holiday_List. To change this holiday to December
25:

!holiday_list(0).DAY = byte(25)

LOAD_OPTION Procedure 539

; Manually change the Day field of the first date/time structure in
; !Holiday_List to the 25th. The Day field of this structure contains a
; byte value.

CAUTION Whenever you directly modify the date in a !DT structure, set the
Recalc field (the last field in the !DT structure) to 1. This causes the Julian date
to be recalculated. If the Julian date is not recalculated, plots or date/time calcula-
tions that use the modified variable may be inaccurate.

!holiday_list(0).RECALC = byte(1)

; Manually set the Recalc field of the structure to 1. This field
; contains a byte value.

LOAD_HOLIDAYS

; Run LOAD_HOLIDAYS so the new holiday value will take effect.

See Also
CREATE_HOLIDAYS, CREATE_WEEKENDS, LOAD_WEEKENDS

For more information, see the PV-WAVE User’s Guide.

LOAD_OPTION Procedure
Explicitly loads an Option Programming Interface (OPI) optional module.

Usage

LOAD_OPTION, option_name

Input Parameters
option_name — (string) The name of the Option to be loaded.

Keywords
Load_Now — If specified and nonzero, all the procedures/functions from the
Option are loaded. By default, the procedures/functions from the Option are loaded
when they are referenced for the first time.

540 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Discussion
The LOAD_OPTION procedure explicitly loads an OPI option. OPI options can
be loaded explicitly by any PV-WAVE user. These optional modules can be written
in C or FORTRAN, and can contain new system functions or other primitives. For
detailed information on creating OPI options, see the PV-WAVE Application
Developer’s Guide.

Example
LOAD_OPTION, ’SAMPLE’

See Also
OPTION_IS_LOADED, SHOW_OPTIONS, UNLOAD_OPTION

LOADRESOURCES Procedure
Loads resources from a resource file.

Usage

LOADRESOURCES, file

Input Parameters
file — The name of the resource file to be loaded.

Returned Value
None.

Keywords
Appdir — A string that specifies the application directory name. This is the
directory in which the application searches for resource files, string resource files,
and icon files. (Default: ’vdatools’)

Subdir — A string specifying a resource file subdirectory. (Default: !Lang, whose
default is ’american’).

LOADRESOURCES Procedure 541

Discussion
By default, the function looks for file first in directories specified by the
environment variable WAVE_RESPATH.

UNIX USERS The WAVE_RESPATH environment variable is a colon-separated
list of directories, similar to the WAVE_PATH environment variable in PV-WAVE.
If not found in a WAVE_RESPATH directory, the directory <wavedir>/xres/
!Lang/vdatools is searched, where <wavedir> is the main PV-WAVE direc-
tory and !Lang represents the value of the !Lang system variable (!Lang default is
’american’).

OpenVMS USERS The WAVE_RESPATH logical is a comma-separated list of
directories and text libraries, similar to the WAVE_PATH logical in PV-WAVE. If
not found in a WAVE_RESPATH directory, the directory
<wavedir>:[XRES.!Lang.VDATOOLS] is searched, where<wavedir> is the
main PV-WAVE directory and !Lang represents the value of the !Lang system vari-
able (!Lang default is ’american’).

Windows USERS The WAVE_RESPATH environment variable is a semicolon-
separated list of directories, similar to the WAVE_PATH environment variable in
PV-WAVE. If not found in a WAVE_RESPATH directory, the directory
<wavedir>\xres\!Lang\vdatools is searched, where <wavedir> is the
main PV-WAVE directory and !Lang represents the value of the !Lang system vari-
able (!Lang default is ’american’).

If Subdir alone is specified, the file is searched for in:

(UNIX) <wavedir>/xres/subdir/vdatools

(OpenVMS) <wavedir>:[XRES.SUBDIR.VDATOOLS]

(Windows) <wavedir>\xres\subdir\vdatools

Where <wavedir> is the main PV-WAVE directory.

If only Appdir is specified, the application searches for resources in the following
directory:

(UNIX) <wavedir>/xres/!Lang/appdir

(OpenVMS) <wavedir>:[XRES.!Lang.APPDIR]

(Windows) <wavedir>\xres\!Lang\appdir

Where <wavedir> is the main PV-WAVE directory.

542 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

If both Subdir and Appdir are specified, the application searches for resources in
the following directory:

(UNIX) <wavedir>/xres/subdir/appdir

(OpenVMS) <wavedir>:[XRES.SUBDIR.APPDIR]

(Windows) <wavedir>\xres\subdir\appdir

Where <wavedir> is the main PV-WAVE directory.

If the file to be loaded is not already in the resource database, it is loaded and added
to the resource database list of files.

NOTE LOADRESOURCES keeps a list of the loaded files so that files aren’t
redundantly loaded.

Example
These calls load resources and strings for a Printer Setup dialog box. This example
assumes that the resource and string files are located in:

(UNIX) <wavedir>/xres/american/vdatools

(OpenVMS) <wavedir>:[XRES.AMERICAN.VDATOOLS]

(Windows) <wavedir>\xres\american\vdatools

Where <wavedir> is the main PV-WAVE directory.

LOADRESOURCES, ’printsetup.ad’

; Load resources.

LOADSTRINGS, ’printsetup.ads’

; Load the strings.

See Also
BUILDRESOURCEFILENAME, LOADSTRINGS,
WwResource (in the PV-WAVE Application Developer’s Guide)

LOADSTRINGS Procedure
Loads strings from a resource file.

LOADSTRINGS Procedure 543

Usage

LOADSTRINGS, file

Input Parameters
file — The name of the string resource file to be loaded.

Keywords
Appdir — A string that specifies the application directory name. This is the
directory in which the application searches for resource files, string resource files,
and icon files. (Default: ’vdatools’)
Subdir — Specifies a subdirectory in which to look for the resource file. (Default:
!Lang, whose default is ’american’)

Discussion
By default, the function looks for file first in directories specified by the
environment variable WAVE_RESPATH.

UNIX USERS The WAVE_RESPATH environment variable is a colon-separated
list of directories, similar to the WAVE_PATH environment variable in PV-WAVE.
If not found in a WAVE_RESPATH directory, the directory <wavedir>/xres/
!Lang/vdatools is searched, where <wavedir> is the main PV-WAVE direc-
tory and !Lang represents the value of the !Lang system variable (!Lang default is
’american’).

OpenVMS USERS The WAVE_RESPATH logical is a comma-separated list of
directories and text libraries, similar to the WAVE_PATH logical in PV-WAVE. If
not found in a WAVE_RESPATH directory, the directory
<wavedir>:[XRES.!Lang.VDATOOLS] is searched, where<wavedir> is the
main PV-WAVE directory and !Lang represents the value of the !Lang system vari-
able (!Lang default is ’american’).

Windows USERS The WAVE_RESPATH environment variable is a semicolon-
separated list of directories, similar to the WAVE_PATH environment variable in
PV-WAVE. If not found in a WAVE_RESPATH directory, the directory
<wavedir>\xres\!Lang\vdatools is searched, where <wavedir> is the
main PV-WAVE directory and !Lang represents the value of the !Lang system
variable (!Lang default is ’american’).

If Subdir alone is specified, the file is searched for in:
(UNIX) <wavedir>/xres/subdir/vdatools

(OpenVMS) <wavedir>:[XRES.SUBDIR.VDATOOLS]

544 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

(Windows) <wavedir>\xres\subdir\vdatools

Where <wavedir> is the main PV-WAVE directory.

If only Appdir is specified, the application searches for resources in the following
directory:
(UNIX) <wavedir>/xres/!Lang/appdir

(OpenVMS) <wavedir>:[XRES.!Lang.APPDIR]

(Windows) <wavedir>\xres\!Lang\appdir

Where <wavedir> is the main PV-WAVE directory.

If both Subdir and Appdir are specified, the application searches for resources in
the following directory:
(UNIX) <wavedir>/xres/subdir/appdir

(OpenVMS) <wavedir>:[XRES.SUBDIR.APPDIR]

(Windows) <wavedir>\xres\subdir\appdir

Where <wavedir> is the main PV-WAVE directory.

If the file to be loaded is not already in the resource database, it is loaded and added
to the resource database list of files.
This procedure functions as a wrapper to the LOADRESOURCES procedure with
the Strings keyword set.

Example
These calls load resources and strings for a Printer Setup dialog box. This example
assumes that the resource and string files are located in:
(UNIX) <wavedir>/xres/american/vdatools

(OpenVMS) <wavedir>:[XRES.AMERICAN.VDATOOLS]

(Windows) <wavedir>\xres\american\vdatools

Where <wavedir> is the main PV-WAVE directory.

LOADRESOURCES, ’printsetup.ad’

; Load resources.

LOADSTRINGS, ’printsetup.ads’

; Load the strings.

See Also
BUILDRESOURCEFILENAME, LOADRESOURCES, STRLOOKUP

LOAD_WEEKENDS Procedure 545

LOAD_WEEKENDS Procedure
Makes the value of the !Weekend_List system variable available to the date/time
routines.

Usage

LOAD_WEEKENDS

Parameters
None.

Keywords
None.

Discussion
Run this procedure after you:

• Restore any PV-WAVE session in which you used the CREATE_WEEKENDS
function. Running this procedure makes the restored !Weekend_List system
variable available to the date/time routines.

• Directly change the value of the !Weekend_List system variable, instead of
using the CREATE_WEEKENDS procedure.

This procedure is called by the CREATE_WEEKENDS function. Thus,
CREATE_WEEKENDS both creates weekends and makes them available to the
date/time routines.

NOTE If all weekdays have been defined as weekend days, an error results.

Example
CREATE_WEEKENDS, ’sat’

; Create the !Weekend_List system variable and define Saturday
; as a weekend.

PRINT, !Weekend_List

0 0 0 0 0 0 1

; Current contents of !Weekend_List system variable.

546 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

!Weekend_List = [1, 0, 0, 0, 0, 0, 1]

; Manually add Sunday to the weekend list.

LOAD_WEEKENDS

; Run LOAD_WEEKENDS so the new weekend value will take effect.

See Also
CREATE_HOLIDAYS, CREATE_WEEKENDS, LOAD_HOLIDAYS

For more information, see the PV-WAVE User’s Guide.

LONARR Function
Returns a longword integer vector or array.

Usage

result = LONARR(dim1, ... , dimn)

Input Parameters
dimi — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value
result — A longword integer vector or array.

Keywords
Nozero — If Nozero is nonzero, the normal zeroing is not performed. This causes
LONARR to execute faster.

Discussion
Normally, LONARR sets every element of the result to zero.

Example
This example creates a 4-by-2 longword integer array. Note that all elements of the
array are initialized to 0L.

a = LONARR(4, 2)

LONG Function 547

; Create a longword integer array.

INFO, a

VARIABLE LONG = Array(4, 2)

PRINT, a

0 0 0 0

0 0 0 0

See Also
BYTARR, FLTARR, INTARR, LINDGEN

LONG Function
Converts an expression to longword integer data type.

Extracts data from an expression and places it in a longword integer scalar or array.

Usage

result = LONG(expr)
This form is used to convert data.

result = LONG(expr, offset, [dim1, ... , dimn])
This form is used to extract data.

Input Parameters
To convert data:

expr — The expression to be converted.

To extract data:
expr — The expression from which to extract data.
offset — The offset, in bytes, from the beginning of expr to where the
extraction is to begin.
dimi — (optional) The dimensions of the result. The dimensions may be
any scalar expression with up to eight dimensions specified.

Returned Value
For data conversion:

result — A copy of expr converted to longword integer data type.

For data extraction:

548 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

result — If offset is used, LONG does not convert result, but allows fields
of data extracted from expr to be treated as longword integer data. If no
dimensions are specified, the result is scalar.

Keywords
None.

Discussion
Conversion usage:

If the values of expr are not within the range of a long integer, a misleading result
occurs and a message may be displayed.

For example, suppose A = 2.0 ^ 31 + 2. The following commands,

B = LONG(A)

C = LONG(–A)

produce the erroneous results of

B = 2147483647

C = –2147483648

In addition, PV-WAVE does not check for overflow during conversion to longword
integer data type.

Example
In this example, LONG is used in two ways. First, LONG is used to convert a
single-precision, floating-point array to type longword. Next, LONG is used to
extract a subarray from the longword array created in the first step.

a = FINDGEN(6) + 0.5

; Create a single-precision, floating-point vector of length 6. Each
; element has a value equal to its one-dimensional subscript plus 0.5.

PRINT, a

0.500000 1.50000 2.50000 3.50000 4.50000 5.50000

b = LONG(a)

; Convert a to type longword.

INFO, b

VARIABLE LONG = Array(6)

; Note that the floating-point numbers in a were truncated by LONG.

PRINT, b

0 1 2 3 4 5

; Extract the last four elements of b, and place them in a.

LUBKSB Procedure 549

c = LONG(b, 8, 2, 2)

; Specify a 2-by-2 long array.

INFO, c

VARIABLE LONG = Array(2, 2)

PRINT, c

2 3

4 5

See Also
BYTE, COMPLEX, DOUBLE, FIX, FLOAT, LINDGEN, LONARR

For more information on data extraction, see the PV-WAVE Programmer’s Guide.

LUBKSB Procedure
Solves the set of n linear equations Ax = b. (LUBKSB must be used with the
procedure LUDCMP to do this.)

Usage

LUBKSB, a, index, b

Input Parameters
a — The LU decomposition of a matrix, created by LUDCMP. Parameter a is not
modified by calling this procedure.

index — A vector, created by LUDCMP, containing the row permutations effected
by the partial pivoting.

b — On input, b contains the vector on the right-hand side of the equation. Must be
of data type FLOAT; other data types will cause incorrect output.

Output Parameters
b — On output, b is replaced by the solution, vector x.

Keywords
None.

550 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Discussion
LUBKSB must be used in conjunction with LUDCMP.

Example
Function INNER_PROD, v1, v2

IF N_ELEMENTS(v1) NE 3 THEN goto, error1

IF N_ELEMENTS(v2) NE 3 THEN goto, error1

sum = 0.0

FOR i=0, 2 DO BEGIN

sum = sum + v1(i) * v2(i)

END

RETURN, sum

error1:

PRINT, ’vectors not 3d’

RETURN, 0

END

arr = FINDGEN(3, 3)

arr(*, 0) = [1.0, -1.0, 3.0]

arr(*, 1) = [2.0, 1.0, 3.0]

arr(*, 2) = [3.0, 3.0, 1.0]

; Solutions to triplet of equations:
; x + 2y + 3z = 3
; -x + y + 3z = 0
; 3x + 3y + z = 6

rightvec = [3.0, 0.0, 6.0]

PRINT, ’ ’

PRINT, ’solving system ’

PRINT, arr, ’ * [x,y,z] = ’, rightvec

PRINT, ’ ’

PRINT, ’ ’

tarr = arr

rvec = rightvec

LUDCMP, tarr, index, b

LUBKSB, tarr, index, rvec

PRINT, ’... solution for ’, rightvec,’ is ’, rvec

s1 = rvec

PRINT, ’ ’

PRINT, ’ ’

PRINT, INNER_PROD(arr(0,*), s1)

LUDCMP Procedure 551

PRINT, INNER_PROD(arr(1,*), s1)

PRINT, INNER_PROD(arr(2,*), s1)

PRINT, ’ ’

PRINT, ’ ’

END

See Also
LUDCMP, MPROVE

LUBKSB is based on the routine of the same name in Numerical Recipes in C: The
Art of Scientific Computing, by Flannery, Press, Teukolsky, and Vetterling,
Cambridge University Press, Cambridge, MA, 1988. It is used by permission.

LUDCMP Procedure
Replaces a real n-by-n matrix, a, with the LU decomposition of a row-wise
permutation of itself. For complex matrices, see the PV-WAVE: IMSL Mathematics
Reference procedure LUFAC.

Usage

LUDCMP, a, index, d

Input Parameters
a — An n-by-n matrix.

Output Parameters
a — On output, a is replaced by the LU decomposition of a row-wise permutation
of itself.

index — The vector which records the row permutation effected by the partial
pivoting. The values returned for index are needed in the call to LUBKSB.

d — An indicator of the number of row interchanges:

Keywords
None.

+1 Indicates the number was even.

–1 Indicates the number was odd.

552 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example
The preferred method of solving the linear set of equations Ax = B is:

LUDCMP, A, indx, D

; Decompose square matrix A.

LUBKSB, A, indx, B

; Use LUBKSB function for forward and back substitution, replacing B with the result x.

See Also
LUBKSB, MPROVE

LUDCMP is based on the routine of the same name in Numerical Recipes in C: The
Art of Scientific Computing, by Flannery, Press, Teukolsky, and Vetterling,
Cambridge University Press, Cambridge, MA, 1988. It is used by permission.

MAKE_ARRAY Function 553

2
Procedure and Function Reference

MAKE_ARRAY Function
Returns an array of specified type, dimensions, and initialization. It provides the
ability to create an array dynamically whose characteristics are not known until run
time.

Usage

result = MAKE_ARRAY([dim1,... , dimn])

Input Parameters

dimi — (optional) The dimensions of the result. This may be any scalar expression
with up to eight dimensions specified.

Returned Value

result — An array of specified type, dimensions, and initialization.

Keywords

Byte — If nonzero, sets the type of the result to byte.

Complex — If nonzero, sets the type of the result to complex single-precision
floating-point.

Dcomplex — If nonzero, sets the type of the result to complex double-precision
floating-point.

Dimension — A vector of 1 to 8 elements specifying the dimensions of the result.

Double — If nonzero, sets the type of the result to double-precision floating-point.

Float — If nonzero, sets the type of the result to single-precision floating-point.

Index — The resulting array is initialized with each element set to the value of its
one-dimensional index.

Int — If nonzero, sets the type of the result to integer.

Long — If nonzero, sets the type of the result to longword integer.

Nozero — If nonzero, the resulting array is not initialized.

Size — A longword vector specifying the type and dimensions of the result. It
consists of the following elements:

554 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

• The first element is equal to the number of dimensions of Value, and is zero if
Value is scalar.

• The next elements contain the size of each dimension.

• The last two elements contain the type code and the number of elements in
Value, respectively. Valid type code values are listed below for the Type
keyword.

String — If nonzero, sets the type of the result to string.

Type — Sets the type of the result to be the type code entered
:

Value — Initializes each element of the resulting array with the given value. Can
be of any scalar type, including structure types.

Discussion

The result type is taken from the Value keyword unless one of the other keywords
that specify a type is also used. In that case, Value is coerced to be the type specified
by this other keyword prior to initializing the resulting array.

NOTE The resulting type cannot be specified if Value is a structure.

If Value is specified, all elements in the resulting array are set to Value. If Value is
not specified, all elements are set to zero. If Index is specified, each element is set
to its index. If Nozero is specified, the resulting array is not initialized.

Type Code Data Type

1 Byte

2 Integer

3 Longword integer

4 Single-precision floating-point

5 Double-precision floating-point

6 Complex single-precision

7 String

12 Complex double-precision

MAKE_ARRAY Function 555

Example

In this example, three different methods are used to create and initialize a 4-by-3
longword integer array.

a = MAKE_ARRAY(Size = [2, 4, 3, 3, 12], $
Value = 5)

; The type of a is determined by the Size keyword.

INFO, a

VARIABLE LONG = Array(4, 3)

PRINT, a

5 5 5 5

5 5 5 5

5 5 5 5

b = MAKE_ARRAY(4, 3, Type = 3, Value = 5)

; The type of b is determined by the Type keyword.

INFO, b

VARIABLE LONG = Array(4, 3)

PRINT, b

5 5 5 5

5 5 5 5

5 5 5 5

; The type of c is determined by the Value keyword.

c = MAKE_ARRAY(4, 3, Value = 5L)

INFO, c

VARIABLE LONG = Array(4, 3)

PRINT, c

5 5 5 5

5 5 5 5

5 5 5 5

See Also

BINDGEN, BYTARR, CINDGEN, COMPLEXARR, DBLARR, DINDGEN,
FINDGEN, FLTARR, INDGEN, INTARR,
LINDGEN, LONARR, SINDGEN, SIZE

556 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

MAP Procedure
Plots a map dataset.

Usage

MAP

Input Parameters

None.

Keywords

Axes — If present and nonzero, draws coordinate axes on the map plot.

CAUTION The Axes keyword labels the points where meridians or parallels cross
the border of a plot. Because of inaccuracies of the reverse projection algorithms
used to accomplish this, the labeling can sometimes be omitted or be incorrect for
wide area plots and certain projection methods. In general, when a smaller area is
plotted, the labeling is correct.

Background — Specifies a solid background color when the Projection keyword
is set to 99 (3D mapping onto sphere). If set to –1, creates a light source shaded
background. The default is 0 (zero), no background.

Boundary — If specified, plots the boundary calculated by the Exact keyword. The
color used is set by the Gridcolor keyword. This keyword has no effect if the Exact
keyword is not set. Boundary is most useful in debugging, or if you wish to identify
the possibly non-rectangular closed area specified by your map bounds. (Default:
off)

Center — (float) Array containing a longitude and latitude value that defines the
center of the geographic area to be displayed. This keyword is an alternative to
using the Range keyword. Use this keyword in conjunction with the Zoom keyword
to specify the center of the area to zoom in on. Default: [–50.0, 0.0].

Color — (integer) Specifies the plot color for lines. Default is !P.Color. If set to
–1, the colors defined in the dataset are used. This keyword can specify a scalar or
an array containing a different color for each line segment or polygon. See the Dis-
cussion section for more information.

MAP Procedure 557

Data — (string) Specifies the name of the map dataset to plot. Datasets provided
with PV-WAVE include World Dataset II (world_db) and USGS Digital Line
Graph Dataset (usgs_db). (Default: world_db)

Exact — If specified, MAP attempts to fit the map area exactly to the latitude/lon-
gitude lines specified by the Range or Center/Zoom keywords. The aspect ratio of
the resulting map is also correct, and the largest map possible that fits in the win-
dow/position is produced. The Exact keyword projects points along the latitude/
longitude boundary specified by the Range or Center/Zoom keywords and uses the
minimum and maximum values of the projected data to establish the data coordi-
nate system. The Exact keyword usually results in very precise map ranges, but can
fail for some projections if a singularity (like one of the poles) exists within the
range specified. If such a singularity exists, then the default range calculation is
used. (Default: off)

File_Path — (string) Specifies the path to a file that will contain the data extracted
from the selected dataset. The data is stored in a binary XDR format, and can be
read in again using the Read_Path keyword.

Filled — If present and nonzero, uses the MAP_POLYFILL procedure to create a
polygon-filled map rather than a line (vector) plot. Of the two map datasets sup-
plied with PV-WAVE, only the usgs_db dataset can be filled. To fill a state, you
must set the COUNTY field to –1 (using the Select keyword). To fill multiple states,
you must make separate calls to MAP.

GridColor — (integer) Specifies the line color of the grid overlay. The GridColor
default is !P.Color.

GridLat — (integer) Specifies the default spacing of latitude lines, measured in
degrees. (Default: 10 degrees)

GridLines — If present and nonzero, overlays a grid on the map projection.

GridLong — (integer) Specifies the default spacing of longitude lines, measured
in degrees. (Default: 15 degrees)

GridStyle — (integer) Specifies the linestyle of the grid overlay, as shown in the
following table:
Gridstyles

Index X Windows Style Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

558 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

The Gridstyle default is !P.Linestyle.

Image — Specifies an image (2D array) to be warped around the map projection
and displayed with the map lines. If the image array is not of type byte, it will be
automatically passed through the BYTSCL procedure before being plotted. The
image will be warped to exactly cover the area specified using the Range keyword.

Parameters — (double) Specifies an array of up to 10 elements containing param-
eters to be passed to a map projection. The only built-in projection methods that
use these parameters are the conic projections. The parameters currently used by
the built-in projections are defined as follows:

parameter(0) — The first secant intersection.
(Default: 33 degrees north)

parameter(1)— The second secant intersection. (Default: 45 degrees
north)

Position — (float) The position of the map within the plot device in normal coor-
dinates. For example, Position = [.1,.1,.9,.9] leaves a border around
the map 1/10 the screen size. The Position default is the value of !P.Position.

Projection — (integer) Specifies the type of projection (see the Discussion section
for a table of projection types). (Default: 1, equidistant cylindrical)

Radius — (float) Specifies a 2D array of the same size as the one specified by the
Image keyword. The radius array will be used to modify the shape of the sphere
used with Projection=99. The size of the array should be normalized to values
between zero and one for best results. This keyword can be used to create a sphere
with geographical relief displayed. The map data may not line up exactly with the
radius of the sphere.

Range — (float) [lon1, lat1, lon2, lat2] Array of four points representing the lower-
left and upper-right longitude/latitude coordinates of the region to be displayed.
Used to specify the exact geographical area to display. An alternative method of
area selection is to use the Center and Zoom keywords.

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

Gridstyles (Continued)

Index X Windows Style Windows Style

MAP Procedure 559

Read_Path — (string) Used to specify the name of a file created with the File_Path
keyword. The data contained in this file is projected and plotted. Specifying this
keyword causes the Data, Select, and Resolution keywords to be ignored.

Resolution — (integer) The effect of this keyword depends on which map dataset
is used, the default world_db dataset or the usgs_db dataset:

(If the world_db dataset is used, the default) Provides a way to speed up
the projection and plotting of large datasets. Specifies the number of data
points to skip when a dataset is plotted. For example, Res=30means skip
every 30th point in the dataset. Specifying a larger value for this keyword
results in faster plotting times, but poorer image quality. Specifying
smaller values results in slower plotting times, but gives improved image
quality. The default value is chosen based on the range of the map and is
optimized for the 300,000 points in the world_db dataset. A reasonable
range of values for the world_db dataset is between one and 30.

(If Data=’USGS_DB’) Resolution is not a measure of how many points to
skip when sampling, as is done with the default map dataset, but a measure
of the minimum distance (in latitude/longitude) between points. Resolu-
tion values should range between 0.01 and 0.2 for good results. The
sampling is not used for county boundaries, or for Hawaii and Alaska. The
code to sample the data is slow, so should be used with the File_Path key-
word of the MAP procedure to save the sampled map, which can be later
displayed with the Read keyword of the MAP procedure. (Default: off)

Save — If present and nonzero, saves the 3D scaling parameters in !P.T to allow
overplotting of other data. This keyword is only used when the Projection keyword
is set to 99 (3D mapping onto a sphere).

Select — (unnamed structure) Specifies a subset of the dataset to plot. See the Dis-
cussion for more information on this keyword.

Stretch — If present and non-zero causes the plot area to be scaled to the actual
range of data points extracted from the dataset. This stretches any subset of data to
occupy the entire plot area. (See the Discussion section for more information.)

User — (string) Specifies the name of a user-defined projection procedure. If this
keyword is used, then the Projection keyword is automatically set to –1.

Zoom — (float) Specifies a factor by which the display is magnified or reduced
around a center point specified with the Center keyword. For example, a factor 2
magnifies the region surrounding the center point by two times. The default value
is 1.0.

560 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Standard Plotting Keywords

The following standard plotting keywords are used with MAP. See Chapter 3,
Graphics and Plotting Keywords for more information.

.

Discussion

When you use the Center and Zoom keywords to specify map bounds, if the center
latitude is either –90 or 90, it is assumed that you want a polar view, and the
longitude range is forced to –180 to 180. In other words the Zoom parameter will
only affect the range of latitudes about the pole and not the longitude range.

Map Projections

You can produce the following map projections with the MAP procedure. To
specify a projection, set the Projection keyword to the corresponding map
projection index number.

Linestyle Line_Fill Spacing Threshold

Pattern NoData Orientation

Fill_Pattern NoErase Thick

PV-WAVE Map Projections

Index Projection Index Projection

1 Equidistant Cylindrical 11 Oblique Azimuthal Equidistant
Oblique

2 Lambert Conformal Conic 12 Polar Azimuthal Equidistant Oblique

3 Cylindrical Mercator 13 Polar Azimuthal Equal-Area

4 Sinusoidal 14 Oblique Azimuthal Equal-Area

5 Albers Equal-Area Conic 15 Transverse Mercator

6 Polyconic 16 Mollweide (Ellipsoid)

7 Polar Stereographic 99 Satellite (3D mapping onto a sphere)

8 Oblique Stereographic –1 User-defined projection
(automatically set if the User
keyword is supplied)

9 Oblique Orthographical 0 No projection

10 Polar Orthographical

MAP Procedure 561

Map Stretch

By default the data area used by MAP is a rectangle scaled to the values specified
in the Range or the Center and Zoom keywords (converted to radians). This usually
gives good results, but there is sometimes a border around the map due to the par-
ticular mapping projection algorithm being used. Specifying Stretch resizes the
plot area to the actual range of the projected data extracted and causes the map to
always fill the entire plot area. This can change the aspect ratio of the map (height
to width ratio), but is useful when a map needs to exactly cover a specified area on
the device, such as when a cylindrically projected map is displayed over an image
which was displayed using the TV command.

Subsetting Datasets

The Select keyword is used to specify subset criteria for the map dataset. Datasets
included with PV-WAVE include World Databank II (world_db) and USGS
Digital Line Graph (usgs_db) datasets.

NOTE The World Databank II dataset is a subset of a public domain dataset pro-
vided by the U.S. Department of Commerce, merged with updated country data
from the National Imagery and Mapping Agency (NIMA).

You can subset the world_db dataset by passing an unnamed structure via the
Select keyword. The following table lists the possible fields and tags of this
structure:

NOTE If the field is set to a null string, all tags are plotted.

Fields and Tags

Fields Tags

GROUP CIL — Coastlines, islands, lakes

BDY — International boundaries

PBY — Primary/First Order (internal) boundaries such as, U.S.
States).

RIV — Major rivers

AREA As of Version 7.0, this field is obsolete. If AREA is specified, it is
ignored.

562 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

You can subset the usgs_db dataset by passing an unnamed structure via the
Select keyword. The following table lists the possible fields and tags of this
structure

:

For example:

MAP, Select={, GROUP:[’CIL’], AREA:’ASIA’}

; World Databank II data is subsetted to plot coastlines, islands, and lakes in Asia.

MAP, Data=’usgs_db’, Range=[-81,39,-75,43],$
/Gridlines, Gridstyle=2, Gridlat=1, $
Gridlong=5, Select={,STATE:’PA’,COUNTY:-1}

; Plot USGS Digital Line Graph data of Pennsylvania.

NOTE If COUNTY is anything but 0, only the first state specified can be plotted.
To plot multiple states/counties, you must make separate calls to MAP.

CAUTION This USGS data is from the USGS 1:2,000,000 Scale Digital Line
Graph CD. Note that some errors exist in the original data. For instance, when fill-
ing counties along coastlines, the filling will be inexact because the original
polygon data for each county did not include the coastline portion.

Map Colors

The colors used when the Color keyword is set to –1 are colors that are assigned
within the map dataset. If you want to use the dataset colors, you may have to use
a custom color palette or the TEK_COLOR procedure. The colors returned by the
datasets that are provided with PV-WAVE are as follows:

Color assignments in the WORLD_DB dataset:

• Coastlines/Islands/Lakes — Color = 1

• Rivers — Color = 2

• International Boundaries — Color = 3

• Primary Boundaries — Color = 4

Fields and Tags

Fields Tags

STATE One or more FIPS codes for the states to plot (two-letter state
abbreviations can also be used — AL, AK, AZ, AR, CA, etc.).

COUNTY One or more FIPS codes for the counties to plot. (–1 draws all
counties; 0 draws no counties).

MAP Procedure 563

Color assignments in the USGS_DB dataset:

• For State plots (COUNTY tag field = 0): Color = State FIPS code

• For County plots: Color = County FIPS code

The colors are modulus the number of display colors if the FIPS codes exceed
!D.N_Colors.

Examples

This example produces a filled map of Idaho. Keywords are used to set the map
range, select the map dataset, subset the dataset, add gridlines and axes.

!P.position = [0.3, 0.1, 0.7, 0.9]

TEK_COLOR

MAP, Range = [-118.0, 40.5, -110.0, 50.0],$
Data = ’usgs_db’, $
Select = {, state:’ID’, county:-1}, $
Thick = 2, /Axes, /Gridlines, $
Gridcolor = 10, Gridstyle = 1, $
Gridlong = 1, Gridlat = 0.5

Figure 2-30 A map of Idaho plotted from the USGS Digital Line Graph Dataset. County
boundaries are also plotted.

File_Path and Read_Path Keywords

The File_Path and Read_Path keywords allow you to create a data subset which
can be read and reused without re-reading and re-subsetting the entire dataset.

564 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

These keywords can greatly increase the performance of your application. To use
these keywords, specify a file pathname when you select a subset of the data, as in
this example:

MAP, DATA=’world_db’, RANGE=[-150, 30, 30, 70], $
SELECT={, GROUP:’cil’}, $
RESOLUTION=20, FILE_PATH=’mymap.dat’

You can now plot this map or subareas of this map without reading the entire
world_db dataset, as in this example:

MAP, Range=[-150, 30, 30, 70], Projection=4,$
Read_Path=’mymap.dat’

See Also

MAP_CONTOUR, MAP_PLOTS, MAP_POLYFILL, MAP_REVERSE,
MAP_VELOVECT, MAP_XYOUTS, USGS_NAMES

For more information on mapping projections and in-depth discussions of algo-
rithms and uses of the projections used with the MAP procedure, refer to:

Map Projections Used by the U.S. Geological Survey, Geological Survey Bulletin
1532, John P. Snyder, Second Edition, 1983.

An Album of Map Projections, U.S. Geological Survey Professional Papers 1453,
John P. Snyder and Philip M. Voxland, 1989.

Both are available from:

USGS ESIC: Open File Report Sales

Box 25286, Building 810

Denver Federal Center

Denver, CO USA 80225

Phone: (303) 236-7476

FAX: (303) 236-4031

MAP_CONTOUR Procedure 565

MAP_CONTOUR Procedure
Draws a contour plot from longitude/latitude data stored in a 2D array.

Usage

MAP_CONTOUR, z [, x, y]

Input Parameters

z — A two-dimensional array containing the longitude/latitude values that make up
the contour surface.

x — (optional) A vector specifying the longitude coordinates for the contour
surface.

y — (optional) A vector specifying the latitude coordinates for the contour surface.

Keywords

Cartesian — When this keyword is set, MAP_CONTOUR first projects the grid of
z values, grids the resulting projected points to a regular grid and performs the con-
touring in cartesian (data coordinate) space. This keyword allows you to get labeled
contours and contours that can encircle a pole in a polar map. (Default: off)

File_Path — (string) The file pathname for a temporary file used by
MAP_CONTOUR. This keyword is optional. See the Discussion section for more
information.

Filled — If present and nonzero, fills the contours.

Iter,
Nghbr — These keywords are used in conjunction with the Cartesian keyword and
control parameters to the FAST_GRID3 function, which is used to perform grid-
ding of the z grid data after applying the map projection.

See the FAST_GRID3 documentation for a description of these parameters.

Pattern — A rectangular array of pixels giving the fill pattern.

Standard Plotting Keywords

The following standard plotting keywords are used with MAP_CONTOUR. See
Chapter 3, Graphics and Plotting Keywords for more information

566 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

.

Discussion

If x and y are provided, the contour is plotted as a function of the longitude and lat-
itude locations specified by x and y. Otherwise, the contour is assumed to occupy
the entire range specified in the last call to the MAP procedure.

Each element of x specifies the longitude coordinate for a column of z. For exam-
ple, X(0) specifies the longitude coordinate for Z(0, *).

Each element of y specifies the latitude coordinate for a row of z.

In addition to line plot overlays, the Filled and Pattern keywords allow contours to
be filled.

Before contours can be filled, they must be closed. This is usually accomplished by
padding the data with zeros or some other value outside the range of the data, as
the following code fragment illustrates, where m and n represent the dimensions of
the original array.
new_array = REPLICATE(MIN(array1), m+2, n+2)

;Create a background array that is two elements larger than

;the original array, array1

new_array(1, 1) = array1

;Insert original data into the new array.

TIP You cannot use the Filled keyword to fill contours when the projection is set
to 99 (Satellite View); however, it is possible to place filled contours on a satellite
projection. To do this, create a 2D image using CONTOUR and
CONTOURFILL, or by using the CONTOUR2 procedure with the Fill keyword,
and then use the Image keyword with the MAP procedure to wrap the image on the
globe.

The MAP_CONTOUR procedure creates a temporary file when it is called that by
default is named wvctmp.dat and placed in your current directory. You can over-
ride this filename and path using the File_Path keyword with MAP_CONTOUR.

C_Annotation C_Thick NLevels

C_Colors Font Path_Filename

C_Charsize Follow Pattern

C_Labels Levels Spline

C_Linestyle Max_Values

MAP_PLOTS Procedure 567

This allows you to specify a string containing the path to a temporary file. This file
is deleted when MAP_CONTOUR is finished plotting.

Example

In this simple example, a 2D array of data is created and superimposed as contours
on a map projection.

data = HANNING(20,20)

; Create a 2D array of data.
MAP, Projection = 4, range = [-150, 30, 30, 70]

MAP_CONTOUR, data, NLevels=10

See Also

CONTOUR, MAP, POLYFILL

MAP_PLOTS Procedure
Plots vectors or points (specified as longitude/latitude data) on the current map
projection.

Usage

MAP_PLOTS, x, y [, outx, outy]

Input Parameters

x — A scalar or vector providing the longitude coordinates of the points to be
connected.

y — A scalar or vector providing the latitude coordinates of the points to be
connected.

Output Parameters

outx — (optional) Returns an array containing the projected longitude data in data
coordinates (radians).

outy — (optional) Returns an array containing the projected latitude data in data
coordinates (radians).

568 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Keywords

Cylinder — If present and nonzero, specifies that lines be drawn treating longitude
and latitude as Cartesian coordinates. This results in a straight line on a cylindrical
projection. This keyword is useful if you want to draw your own latitude lines,
since they will appear to conform to the current projection, rather than as straight
lines or great circle lines.

Distance — Returns in a named variable the distance between the points provided
as input to MAP_PLOTS. If two points are provided, Distance returns a scalar
result. If multiple points are provided as input, Distance returns an array of distance
values.

Km — If present and nonzero, specifies that the distance returned by the Distance
keyword be measured in kilometers. This is the default.

Miles — If present and nonzero, specifies that the distance returned by the Dis-
tance keyword be measured in miles. Default is kilometers.

NoCircle — If present and nonzero, specifies that straight lines be plotted between
points. If set equal to zero (the default), MAP_PLOTS draws great circle lines
between any two specified points.

Standard Plotting Keywords

The following standard plotting keywords are used with MAP_PLOTS. See
Chapter 3, Graphics and Plotting Keywords, for more information.

Discussion

A valid data coordinate system (i.e., projection) must be established before
MAP_PLOTS is called. (A call to MAP can be used to establish this coordinate
system.) Also note that a PV-WAVE graphics window must be open and selected
when the call to MAP_PLOTS is made for the procedure to work correctly.

The coordinates for MAP_PLOTS must be given in longitude and latitude form.

The MAP_PLOTS routine can plot lines as straight lines or as great circle lines,
which appear on most projections as curved lines and represent the minimum dis-
tance between two points on the globe.

Color
Linestyle

Nodata
Psym

Symsize
Thick

MAP_POLYFILL Procedure 569

CAUTION The great circle lines depend on the accuracy of trigonometric func-
tions, which for some very small longitude and latitude values or values close to 90
degrees can result in errors that can cause the great circle lines to be incorrectly
drawn.

Example

This example plots a map, then draws a great circle line between two points on the
map.

MAP, Range = [-150, 30, 30, 70]

MAP_PLOTS, [-105.3, -0.1], [40.0, 51.5],$
Distance = d, /Miles, Color = 5, $
Psym = -2, Thick = 2

See Also

MAP

MAP_POLYFILL Procedure
Fills the interior of a region of the display enclosed by an arbitrary 2D polygon.

Usage

MAP_POLYFILL, x, y

Input Parameters

x — A vector providing the longitude coordinates of the points to be connected.

y — A vector providing the latitude coordinates of the points to be connected.

Standard Graphics Keywords

The MAP_POLYFILL keywords are listed below. For a description of each key-
word, see Chapter 3, Graphics and Plotting Keywords.

Color Linestyle Orientation Spacing

Fill_Pattern Line_Fill Pattern Thick

570 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Z-buffer Specific Keywords

These keywords allow you to warp images over 2D or 3D polygons; the keywords
are valid only when the Z-buffer device is active. For more information these key-
words, refer to the description of the POLYFILL procedure.

Discussion

The polygon is defined by a list of connected vertices stored in x and y. The coor-
dinates must be given in longitude/latitude form.

MAP_POLYFILL uses various filling methods:

• solid fill

• parallel lines

• a pattern contained in an array

• hardware-dependent fill pattern

Solid Fill Method — Most devices can fill with a solid color. Solid fill is per-
formed using the line fill method for devices that don’t have this hardware
capability. Keywords that specify a method are not required for solid filling.

Line Fill Method — Filling using parallel lines is device independent and works
on all devices that can draw lines. Cross-hatching may be obtained with multiple
fillings of differing orientations. The spacing, linestyle, orientation, and thickness
of the filling lines may be specified using the corresponding keywords. The
Line_Fill keyword selects this filling style, but is not required if either the Orien-
tation or Spacing keywords are present.

Patterned Fill Method — The method of patterned filling and the usage of various
fill patterns is hardware dependent. The fill pattern array may be directly specified
with the Pattern keyword for some output devices. If this keyword is omitted, the
polygon is filled with the hardware-dependent pattern index specified by the
Fill_Pattern keyword.

See Also

MAP, POLYFILL

Image_Coordinates Mip

Image_Interpolate Threshold

MAP_REVERSE Procedure 571

MAP_REVERSE Procedure
Converts output from routines like CURSOR and WtPointer from device, normal,
or data coordinates to longitude and latitude coordinates.

Usage

MAP_REVERSE, x, y, lon, lat

Input Parameters

x — A variable containing the value (e.g., column of the current cursor position)
to convert to a longitude value.

y — A variable containing the value (e.g., row of the current cursor position) to
convert to a latitude value.

Output Parameters

lon — A named variable to receive the calculated longitude value.

lat — A named variable to receive the calculated latitude value.

Keywords

Data — If present and nonzero, specifies that data coordinates are the input (the
default).

Device — If present and nonzero, specifies that device coordinates are the input.

Normal — If present and nonzero, specifies that normal coordinates are the input.

Discussion

MAP_REVERSE allows you to create mapping applications that permit user inter-
action. Input (x, y) is received from a procedure that reads the cursor position, such
as CURSOR. MAP_REVERSE converts these values to longitude and latitude val-
ues in the current projection.

You cannot use this routine when the Projection keyword is set to 99 (3D Mapping
onto Sphere) because it is not a projection, but a true 3D representation of the data.

572 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example

The following commands print the longitude and latitude of any point on a map that
you click on with the mouse.

MAP

CURSOR, x, y

MAP_REVERSE, x, y, lon, lat

PRINT, ’Longitude = ’, lon, ’Latitude = ’, lat

See Also

CURSOR, MAP

WtPointer (in the PV-WAVE Application Developer’s Guide)

MAP_VELOVECT Procedure
Draws a two-dimensional velocity field plot on a map, with each directed arrow
indicating the magnitude and direction of the field.

Usage

MAP_VELOVECT, u, v [, x, y]

Input Parameters

u — The X component of the two-dimensional field. Must be a two-dimensional
array of the same size as v.

v — The Y component of the two-dimensional field. Must be a two-dimensional
array of the same size as u.

x — (optional) The abscissa values. Must be a vector of longitude coordinates. The
size of x must equal the first dimension of u and v.

y — (optional) The ordinate values. Must be a vector of latitude coordinates. The
size of y must equal the second dimension of u and v.

Keywords

Color — Sets the color index of vector arrows. If this keyword is omitted, !P.Color
specifies the color index.

MAP_VELOVECT Procedure 573

Dots — If present and nonzero, places a dot at the position of the missing data. Oth-
erwise, nothing is drawn for missing points. Dots is only valid if the Missing
keyword is also specified.

Length — A length factor. The default value is 1.0, which makes the longest (u, v)
vector have a length equal to the length of a single cell.

Missing — A 2D array with the same size as the u and v arrays. It is used to specify
that specific points have missing data.

If the magnitude of the vector at (i, j) is less than the corresponding value in Miss-
ing, then the data is considered to be valid. Otherwise, the data is considered to be
missing.

Thus, one way to set up a Missing array is to initialize all elements to some large
value:

missing_array = FLTARR(n, m) + 1.0E30

Then, if point (i, j) is a missing point, set the corresponding element to a negative
value:

missing_array(i, j) = -missing_array(i, j)

Discussion

MAP_VELOVECT draws a two-dimensional velocity field plot. The arrows indi-
cate the magnitude and the direction of the field.

If missing values are present, you can use the Missing keyword to specify that they
be ignored during the plotting, or the Dots keyword to specify that they be marked
with a dot.

Example

For an example of the MAP_VELOVECT procedure, refer to the following
program:

(UNIX) $VNI_DIR/mapping-1_1/demo/map_test6.pro

(OpenVMS) VNI_DIR:[MAPPING-1_1.DEMO]map_test6.pro

(Windows) %VNI_DIR%\mapping-1_1\demo\map_test6.pro

See Also

MAP

574 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

MAP_XYOUTS Procedure
Draws text on the currently selected graphics device starting at the designated map
coordinate.

Usage

MAP_XYOUTS, x, y, string

Input Parameters

x — Parameter x is the longitude at which the output string should start.

y — Parameter y is the latitude at which the output string should start.

string — The scalar string containing the text that is to be output to the display sur-
face. If this parameter is not of string type, it is converted prior to use.

Standard Plotting Keywords

The following standard plotting keywords are used with MAP_XYOUTS. See
Chapter 3, Graphics and Plotting Keywords, for more information.

Discussion

MAP_XYOUTS is machine-dependent when you are using hardware fonts. This
means that on two different machines, the same commands may produce text that
does not appear the same. To guarantee similar appearance, use software fonts.

UNIX and OpenVMS USERS You may notice that under the X Window System
the size of the software fonts varies from device to device. When you start
PV-WAVE, the PV-WAVE hardware font is set to the current hardware font of the
X server. Not all X servers will have the same default font size because users can
reconfigure the default font and the default font can differ between X servers.
Therefore, you may discover that the hardware font size, and therefore the software
font size, may vary across different workstations. You can avoid this by explicitly
setting the X font using the DEVICE procedure. For example:

Charsize Charthick Color Alignment

Font Orientation Width

MAX Function 575

DEVICE, font=’-adobe-courier-medium-r-normal--14-*’

Example
MAP, RANGE = [-150, 30, 30, 70]

; Plot a map given the specified range.

MAP_XYOUTS, -105.3, 40.0, ’Boulder’, Color=5,$
Charsize = 1.5, Charthick = 2

; Label the city of Boulder, Colorado.

See Also

MAP, USGS_NAMES

MAX Function
Returns the value of the largest element in an input array.

Usage

result = MAX(array [, max_subscript])

Input Parameters

array — The array to be searched.

max_subscript — (optional) The subscript of the maximum element in array:

• If supplied, max_subscript is converted to a long integer containing the index
of the largest element in array.

• If max_subscript is not supplied, the system variable !C is set to the index of
the largest element in the array.

Returned Value

result — The value of the largest element in array. The result is given in the same
data type as array. If the Dimension keyword is used, then the values of result,
max_subscript, and Min will all have the structure of the input array, but with
dimension n collapsed.

576 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Keywords

Dimension — An integer (n ≥ 0) designating the dimension over which the maxi-
mum is taken.

Min — Used to specify a variable to hold the value of the minimum array element.

TIP If you need to find both the minimum and maximum array values, use this
keyword to avoid scanning the array twice with separate calls to MAX and MIN.

Example 1
x = [22, 40, 9, 12]

PRINT, MAX(x)

40

Example 2
x = [3, 4, 5, 6, 7, 8, 9]

maxval = MAX(x, maxindex, Min=minval)

PRINT, maxval

9

PRINT, maxindex

6

PRINT, minval

3

Example 3
a = [[1,1,3,2], [3,4,1,3], [3,0,1,0], [0,1,2,0]] & PM, a

1 3 3 0

 1 4 0 1

 3 1 1 2

 2 3 0 0

PM, MAX(a, d=0)

 3 4 3 2

PM, MAX(a, d=1)

 3

 4

 3

MEDIAN Function 577

 3

a = INDGEN(1, 2, 3, 4, 5)

INFO, MAX(a, d=2)

<Expression> INT = Array(1, 2, 1, 4, 5)

See Also

!C, AVG, EXTREMA, MEDIAN, MIN

MEDIAN Function
Finds the median value of an array, or applies a one- or two-dimensional median
filter of a specified width to an array.

Usage
result = MEDIAN(array [, width])

Input Parameters

array — The array to be processed. May be of any size, dimension, and data type,
except string.

width — (optional) The length of the one- or two-dimensional neighborhood to be
used for the median filter. Must be a scalar value, greater than 1 and less than the
smaller of the dimensions of array. The neighborhood will have the same number
of dimensions as array.

Returned Value

result — The median value for array, or array after a median filter has been applied
to it.
• If width is specified and array is of a byte data type, the result is also a byte

type. All other types are converted to single-precision floating-point, and the
result is floating-point. If width is used, array can have only one or two
dimensions.

• If width is not specified, array may have any valid number of dimensions. It is
converted to single-precision floating-point, and the median value is returned
as a floating-point value.

578 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Keywords

Average — If specified, and the number of elements in array is even, and result
returns the average of the two middle values.

NOTE The Average keyword is ignored when filtering a byte array.

Edge — A scalar string indicating how edge effects are handled. (Default:
’copy’) Valid strings are:

’zero’ — Sets the border of the output image to zero.

’copy’ — Copies the border of the input image to the output image.
(Default)

Same_Type — If set, the output image is the same data type as the input image.

Discussion

The MEDIAN function supports multi-layer band interleaved images. When the
input array is 3D and the width parameter is given, it is automatically treated as an
array of images, array(m, n, p), where p is the number of m-by-n images. Each
image is then operated on separately and an array of the result images is returned.

Median smoothing replaces each point with the median of the one- or two-dimen-
sional neighborhood of the given width. It is similar to smoothing with a boxcar or
average filter, but does not blur edges larger than the neighborhood. In addition,
median filtering is effective in removing “salt and pepper” noise (isolated high or
low values).

The scalar median is simply the middle value, which should not be confused with
the average value (e.g., the median of [1, 10, 4] is 4, while the average is 5).

Example

This example exhibits median filtering of an image that has been corrupted with
noise spikes. (For this procedure to run, PV-WAVE:IMSL Mathematics must be
running.)

OPENR, unit, FILEPATH(’head.img’, Subdir = ’data’), /Get_Lun

; Open the file containing the human head dataset.

head = BYTARR(512, 512)

; Create an array large enough to hold the dataset.

READU, unit, head

FREE_LUN, unit

; Read the data, then close the file and free the file unit number.

MEDIAN Function 579

slice = CONGRID(REFORM(head), 256, 256, /Interp)

; Use REFORM to remove degenerate dimensions, then resize the
; image using the CONGRID function.

WINDOW, 0, Xsize = 768, Ysize = 256

; Create a window large enough to display three images of the
; size of the original image.

LOADCT, 3

; Load the red temperature color table.

TVSCL, slice, 0

; Display the original image in the leftmost portion of the window.

HIST_EQUAL_CT, slice

; Histogram equalize the color table.

.RUN

FOR i = 0, 253, 6 DO BEGIN

rows = RANDOM(256) GT 0.5

k = RANDOM(1)

h = 3 * (k(0) GT 0.5)

FOR j = h, 253, 6 DO BEGIN

IF rows(j) THEN slice(i:i + 2, j:j + 2) = 0

ENDFOR

; This FOR loop creates 3-by-3 isolated holes in the image.

ENDFOR

END

TVSCL, slice, 256, 0

; Display the image with holes in the center portion of the window.

filtered = MEDIAN(slice, 5)

; Median filter the image with holes.

TVSCL, filtered, 512, 0

; Display the median filtered image in the rightmost portion of the window.

580 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Figure 2-31 Original image (left), corrupted image (center), and median filtered image
(right).

See Also

AVG, LEEFILT, MAX, MIN, SMOOTH

MESH Function
Defines a polygonal mesh object that can be used by the RENDER function.

Usage

result = MESH(vertex_list, polygon_list)

Input Parameters

vertex_list — A double-precision floating-point array of 3D points; the array’s size
is 3 * number_of_vertices.

polygon_list — A longword integer 1D array defining the polygons; the array’s
size is number_of_polygons * number_of_edges.

For more information on these two parameters, see .

Returned Value
result — A structure that defines an object consisting of multiple polygons.

MESH Function 581

Keywords
Color — A 256-element double-precision floating-point vector containing the
color (intensity) coefficients of the object. The default is Color(*)=1.0. For
more information, see the section the section Defining Color and Shading in
Chapter 7 of the PV-WAVE User’s Guide.

Kamb — A 256-element double-precision floating-point vector containing the
ambient (flat shaded) coefficients. The default is Kamb(*)=0.0. For more
information, see the section the section Ambient Component in Chapter 7 of the
PV-WAVE User’s Guide.

Kdiff — A 256-element double-precision floating-point vector containing the
diffuse reflectance coefficients. The default is Kdiff(*)=1.0. For more
information, see the section the section Diffuse Component in Chapter 7 of the
PV-WAVE User’s Guide.

Ktran — A 256-element double-precision floating-point vector containing the
specular transmission coefficients. The default is Ktran(*)=0.0. For more
information, see the section the section Transmission Component in Chapter 7 of
the PV-WAVE User’s Guide.

Materials — A byte array of size number_of_polygons defining the materials list.
The purpose of this keyword is similar to that of the Decal keyword for quadric
objects. Its use permits the specification of properties for each polygon where each
polygon specifies an index into the Color, Kamb, Kdiff, and Ktran property arrays.

For more information, see the section Defining Object Material Properties in
Chapter 7 of the PV-WAVE User’s Guide.

Transform — A 4-by-4 double-precision floating-point array containing the local
transformation matrix whose default is the identity matrix. For more information,
see the section the section Setting Object and View Transformations in Chapter 7
of the PV-WAVE User’s Guide.

Discussion

MESH can be used by the RENDER function to render collections of 3D polygons,
such as iso-surfaces, or spatial-structural data.

NOTE Any non-coplanar polygons in a mesh are automatically reduced to trian-
gles by RENDER.

The Transform keyword can be specified to alter the scaling, as well as the orien-
tation and position of the polygons defined by MESH.

582 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Examples
vertices = [[-1.0, -1.0, 1.0],$

[-1.0, 1.0, 1.0],$

[1.0, 1.0, 1.0],$

[1.0, -1.0, 1.0],$

[-1.0, -1.0, -1.0],$

[-1.0, 1.0, -1.0],$

[1.0, 1.0, -1.0],$

[1.0, -1.0, -1.0]]

polygons = [4, 0, 1, 2, 3,$

4, 4, 5, 1, 0,$

4, 2, 1, 5, 6,$

4, 2, 6, 7, 3,$

4, 0, 3, 7, 4,$

4, 7, 6, 5, 4]

T3D, /Reset, Rotate=[15, 30, 45]

cube = MESH(vertices, polygons, Transform=!P.T)

TV, RENDER(cube)

See Also
CONE, CYLINDER, RENDER, SPHERE, VOLUME

For more information, see the section Ray-tracing in Chapter 7 of the PV-WAVE
User’s Guide.

MESSAGE Procedure
Issues error and informational messages using the same mechanism employed by
PV-WAVE system routines.

Usage

MESSAGE, text

Input Parameters

text — A text string containing the message.

MESSAGE Procedure 583

Keywords

Continue — If present and nonzero, causes MESSAGE to return after issuing the
error instead of taking the action specified by the ON_ERROR procedure. This
keyword is useful when it is desirable to report an error and then continue
processing.

Informational — If present and nonzero, specifies that the message is simply
informational text, rather than an error, and that processing is to continue. In this
case, !Err, !Error, and !Err_String are not set. The !Quiet system variable controls
the printing of informational messages.

Ioerror — Indicates that the error occurred while performing I/O. In this case, the
action specified by the ON_IOERROR procedure is executed instead of that spec-
ified by ON_ERROR.

Noname — Usually, the message includes the name of the issuing routine at the
beginning. If Noname is present and nonzero, this name is omitted.

Noprefix — Usually, the message includes the message prefix string at the begin-
ning (as specified by the !Msg_Prefix system variable). If Noprefix is present and
nonzero, this prefix is omitted.

Noprint — If present and nonzero, causes actions to proceed quietly, without the
message being printed to the screen. The error system variables are updated as
usual.

Traceback — If present and nonzero, provides a traceback message giving the
location at which MESSAGE was called. This traceback message follows the out-
put error message.

Discussion

By default, MESSAGE halts execution of your routine; messages are issued as an
error and PV-WAVE takes the action specified by the ON_ERROR procedure.
However, if you specify either the Continue or the Informational, processing of
your routine continues uninterrupted.

As a side-effect of issuing the error, the system variables !Err and !Error are set and
the text of the error message is placed in the system variable !Err_String.

Example 1
Assume the statement:

MESSAGE, ’Unexpected value encountered.’

584 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

is executed in a procedure named CALC. This would cause CALC to halt after the
following message was issued:

% CALC: Unexpected value encountered.

Example 2
Assume the statement:

MESSAGE, ’Value is greater than 1000; ’ + $
’you will lose some accuracy.’, /Noname,$
/Noprefix, /Informational

is executed in a procedure named VERIFY. This would cause the following mes-
sage to be issued:

Value is greater than 1000; you will lose some accuracy.

and execution would continue to the next line of VERIFY.

See Also

!Err, !Err_String, !Msg_Prefix, HAK, ON_ERROR, ON_IOERROR, WAIT

For more information, see Chapter 4, System Variables.

MIN Function
Returns the value of the smallest element in array.

Usage

result = MIN(array [, min_subscript])

Input Parameters

array — The array to be searched.

min_subscript — (optional) The subscript of the smallest element in array:

• If supplied, min_subscript is converted to a long integer containing the one-
dimensional subscript of the smallest element.

• If min_subscript is not supplied, the system variable !C is set to the one-dimen-
sional subscript of the smallest element.

MIN Function 585

Returned Value

result — The value of the smallest element in array. The result is given in the same
data type as array. If the Dimension keyword is used, then the values of result,
min_subscript, and Max will all have the structure of the input array, but with
dimension n collapsed.

Keywords

Max — Used to specify a variable to hold value of the largest array element.

Dimension — An integer (n ≥ 0) designating the dimension over which the mini-
mum is taken.

TIP If you need to find both the minimum and maximum array values, use the Max
keyword to avoid having to scan the array twice using separate calls to MAX and
MIN.

Example 1
x = [22, 40, 9, 12]

PRINT, MIN(x)

9

Example 2
x = [3, 4, 5, 6, 7, 8, 9]

minval = MIN(x, minindex, Max=maxval)

PRINT, minval

3

PRINT, minindex

0

PRINT, maxval

9

Example 3
a = [[1,1,3,2], [3,4,1,3], [3,0,1,0], [0,1,2,0]] & PM, a

 1 3 3 0

 1 4 0 1

 3 1 1 2

586 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

 2 3 0 0

PM, MIN(a, d=0)

 1 1 0 0

PM, MIN(a, d=1)

 0

 0

 1

 0

a = INDGEN(1, 2, 3, 4, 5)

INFO, MIN(a, d=2)

<Expression> INT = Array(1, 2, 1, 4, 5)

See Also

AVG, EXTREMA, MAX, MEDIAN

MINIMIZE Function
Standard Library function that minimizes a real valued function of n real variables.

Usage

x = MINIMIZE(f, l, u, g, i, y)

Input Parameters

f — A string specifying a user supplied function to be minimized. Input is a (m,n)
array of m points in n-space (m variable); output is a (m,p+1) array b, where p is
the number of constraints, b(*,0) contains the objective function values at each of
the m input points, and b(*,j) contains the corresponding values of the j'th
constraint. All constraints must be of the form c(x) ≤ 0.

l — n-element vector of lower bounds for the independent variables

u — n-element vector of upper bounds for the independent variables

g — n-element vector giving an initial guess for the solution

i — An integer limit on the number of iterations

MODIFYCT Procedure 587

Returned Value

x — The n-element solution vector

y — (optional) A (p+1)-element vector containing the objective function value at x
followed by the constraint values at x.

Keywords

d — A string specifying a user-supplied gradient function. Input is the n-element
vector at which to calculate the gradient(s). Output is a (n,p+1) array that contains
the objective function gradient followed by the constraint gradients.

s — An (n,2) array where s(*,0) is the maximum allowable step and s(*,1) is the
minimum allowable step. The default is [[(u-l)/100], [(u-l)/1000]].

Examples

See wave/lib/user/examples/minimize_ex*.pro.

MODIFYCT Procedure
Standard Library procedure that lets you replace one of the PV-WAVE color tables
(defined in the colors.tbl file) with a new color table.

Usage

MODIFYCT, table, name, red, green, blue

Input Parameters

table — The color table number to change. The numbers range from 0 to 15.

name — The name of the modified color table. The string may be a maximum of
32 characters.

red — The red color gun vector. It contains 256 elements.

green — The green color gun vector. It contains 256 elements.

blue — The blue color gun vector. It contains 256 elements.

588 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Keywords

Ctfile — Specifies a string containing the name of a color table file to load.

Discussion

Since any changes to the system color tables will affect all users, this procedure
should be reserved for a single individual at a PV-WAVE site with authorization to
make system modifications. It is also a good idea to make a copy of the
colors.tbl file prior to using MODIFYCT.

See Also

HLS, HSV, HSV_TO_RGB, LOADCT, RGB_TO_HSV

For more information on customizing color tables, see .

MOLEC Function
Standard Library function that creates an image of a ball and stick molecular
model.

Usage

result = MOLEC(filename)

Input Parameters

filename — The name of an ASCII file describing the molecular model. Line 1 in
the file consists of a single integer designating the number (m) of atoms. Each of
the lines 2-(m+1) contains 7 floats describing an atom in terms of centroid,
normalized RGB color components, and diameter. Line m+2 consists of a single
integer equal to the number (n) of bonds; each of the lines (m+3)-(m+n+2)
contains 6 floats describing a bond as endpoint1 followed by endpoint2.

Returned Value

result — A 24-bit image of the molecular model.

MOMENT Function 589

Keywords

h — A scale factor for adjusting atom size. The default is h=1.0.

s — A 2-element vector specifying image size. The default is s=[500,500].

v — A 3-by-4 double-precision floating-point array used to override the
autogeneration of the view to that specified as: [viewpoint, top_left_viewplane,
bottom_left_viewplane, bottom_right_viewplane]. v and !P.T control the 3d view.

k — (output) A 3-by-4 double-precision floating-point array used to return the
automatically calculated view as: [viewpoint, top_left_viewplane,
bottom_left_viewplane, bottom_right_viewplane].

Examples
T3D, /Reset & TV, MOLEC(!data_dir+'molec.dat',h=0.6), true=3

MOMENT Function
Standard Library function that computes moments of an array.

Usage

result = MOMENT(a, i)

Input Parameters

a — An array of n dimensions.

i — A vector of n non-negative real numbers defining moment order.

Returned Value

result — A scalar double equal to:

Keywords

None.

590 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Examples
a = BYTARR(600, 500)

x = INDEX_CONV(a, LINDGEN(N_ELEMENTS(a)))

a(WHERE((x(*,0)-200)^2+(x(*,1)-300)^2 LT 100^2)) = 255

TV, a

CENTROID = [MOMENT(a,[1,0]),MOMENT(a,[0,1])] / MOMENT(a,[0,0])

PLOTS, CENTROID, /DEVICE, COLOR=0, PSYM=2

MONTH_NAME Function
Standard Library function that returns a string or string array containing the names
of the months contained in a date/time variable.

Usage

result = MONTH_NAME(dt_var)

Input Parameters

dt_var — Α date/time variable.

Returned Value

result — A string array containing the name(s) of the months.

Keywords

None.

Discussion

The names of the months are defined as string values in the system variable
!Month_List.

Example
dttoday = TODAY()

PRINT, dttoday

{ 1992 4 1 6 12 57.0000 87493.259 0}

MOVIE Procedure 591

; Create a variable that contains date/time data for today’s date.

m = MONTH_NAME(dttoday)

PRINT, m

April

See Also

!Day_Names, !Month_Names, DAY_NAME, DAY_OF_WEEK

For more information, see the section Working with Date/Time Data in Chapter 8
of the PV-WAVE User’s Guide.

MOVIE Procedure
Standard Library procedure that shows a cyclic sequence of images stored in a
three-dimensional array.

Usage

MOVIE, images [, rate]

Input Parameters

images — A three-dimensional byte array of image data, consisting of nframes
images, each dimensioned n-by-m. Thus, the images array is (n, m, nframes). This
array should be stored with the top row first (i.e., Order=1) for maximum
efficiency.

rate — (optional) The initial rate, in approximate frames per second. If rate is omit-
ted, the inter-frame delay is set at 0.01 second.

Keywords

Order — Specifies the image ordering:

Discussion

The images are displayed in the lower-left corner of the currently selected window.

1 Orders the images from top down (the default).

0 Orders the images from bottom up.

592 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

The rate of display varies with the make of computer, amount of physical memory,
and number of frames.

Available memory also restricts the maximum amount of data that can be displayed
in a loop.

Example

This example uses MOVIE to cycle through cross-sections of a human head. The
Order keyword is used to specify that the images are ordered bottom up. The cross-
sections are contained in a byte array dimensioned (80, 100, 57).

OPENR, unit, FILEPATH(’headspin.dat’, Subdir = ’data’), /Get_Lun

; Open the file containing the cross sections.

head = BYTARR(256, 256, 32)

; Create a three-dimensional byte array large enough to contain all cross-sections.

READU, unit, head

; Read the images.

FREE_LUN, unit

; Close the file and free the file unit number.

LOADCT, 15

; Load a color table.

MOVIE, head, Order = 0

; Cycle through the images.

See Also

TV, TVSCL

MPROVE Procedure 593

MPROVE Procedure
Iteratively improves the solution vector, x, of a linear set of equations, Ax = b. (You
must call the LUDCMP procedure before calling MPROVE.)

Usage

MPROVE, a, alud, index, b, x

Input Parameters

a — An n-by-n matrix containing the coefficients of the linear equation Ax = b.

alud — The LU decomposition of A, an n-by-n matrix, as returned by LUDCMP.

index — The vector of permutations involved in the LU decomposition of A, as
returned by LUDCMP.

b — An n-element vector containing the right-hand side of the set of equations.

x — An n-element vector. On input, it contains the initial solution of the system.

Output Parameters

x — An n-element vector. On output, x contains the improved solution.

Keywords

None.

See Also

LUBKSB, LUDCMP

MPROVE is based on the routine of the same name in Numerical Recipes in C: The
Art of Scientific Computing, by Flannery, Press, Teukolsky, and Vetterling, Cam-
bridge University Press, Cambridge, MA, 1988. It is used by permission.

594 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

MSWORD_CGM_SETUP Procedure
Sets up the CGM driver so that CGM files saved from PV-WAVE can be imported
easily into Microsoft Word.

Usage

MSWORD_CGM_SETUP

Input Parameters

None.

Keywords

None.

Discussion

For information on the CGM driver, see Appendix B: Output Devices and Window
Systems.

Example

SET_PLOT, ’CGM’

DEVICE, File=’myplot.cgm’

MSWORD_CGM_SETUP

PLOT, dist(20)

DEVICE, /Close

NAVIGATOR Procedure 595

NAVIGATOR Procedure
Starts the Navigator.

Usage

NAVIGATOR

Keywords

ConfigFile — A string containing the name of a previously saved Navigator con-
figuration file. You can specify a filename or a complete path name. If you specify
a filename only, the file must be in the current working directory.

Horizontal — If this keyword is specified, the VDA Tool icons are arranged hori-
zontally in the Navigator window.

Highres — Reconfigures the Navigator button bar to display one row of buttons.
This option is only suitable for larger monitors. By default, the Navigator starts
with two rows of buttons.

Lowres — This keyword has been depricated. It has no effect.

Position — Specifies in pixels, the x and y (horizontal and vertical, respectively)
coordinates for the starting location of the upper-left corner of the Navigator
window.

Template — A string containing the name of a template file.

Vertical — If this keyword is specified, the VDA Tool icons are arranged vertically
in the Navigator window.

Discussion

By default, the Navigator displays with two rows of icons. If you wish to display a
long, narrow Navigator with one row of icons, use the Highres keyword.

The Navigator combines multiple VDA Tools into a single application. The Navi-
gator provides tools for:

• importing and exporting data

• displaying 2D plots, images, histograms, surfaces, and contour plots

• animating data

• viewing and subsetting tables of data

596 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

• saving and restoring sessions

• viewing and selecting variables

Template files are saved with the Navigator File=>Save Template As function. A
template contains information that allows you to restore a Navigator with the cus-
tomized defaults that were set when the template file was saved.

Configuration files are saved with the Navigator File=>Save Configuration
function.

NOTE For information on how to use the Navigator, use online Help. Select the
On Window command from the Navigator Help menu to bring up Help on the
Navigator.

Example

This command opens the Navigator with a configuration file and a template file cre-
ated during a previous Navigator session.

NAVIGATOR, ConfigFile=’myconfig.sav’, Template=’mynav.tpl’

See Also

See the PV-WAVE Tutorial for a lesson on using the Navigator.

NEIGHBORS Function
Standard Library function that finds the neighbors of specified array elements.

Usage

result = NEIGHBORS(a, i)

Input Parameters

a — An array of n dimensions.

i — An m-element vector of m one-dimensional indices into a.

N_ELEMENTS Function 597

Returned Value

result — An (m,*) array of one-dimensional indices into a: result(j,*) contains i(j)
and its neighbors.

Keywords

k — A positive integer (less than or equal to n) defining connectivity. Two array
cells are neighbors if they share a common boundary point, and if their centroids
are within √k of each other. The default is k = 1, which implies neighbors share a
common face.

Examples
a = INDGEN(8, 9) & pm, a

pm, fix(NEIGHBORS(a,[0,4,26,47,71]))

pm, fix(NEIGHBORS(a,[0,4,26,47,71],k=2))

See Also

BLOB, BLOBCOUNT, BOUNDARY

N_ELEMENTS Function
Returns the number of elements contained in any expression or variable.

Usage
result = N_ELEMENTS(expr)

Input Parameters
expr — The expression for which the number of elements will be returned.

Returned Value
result — The number of elements contained in any expression or variable.

Scalar expressions always have one element. The number of elements in an array
is equal to the product of its dimensions. If expr is an undefined variable,
N_ELEMENTS will return zero.

598 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Keywords

None.

Example

In this example, N_ELEMENTS is used to determine the number of elements in a
two-dimensional array.
a = INDGEN(3, 2)

; Create a 3-by-2 integer array.
PRINT, a

0 1 2

3 4 5

PRINT, N_ELEMENTS(a)

6

; Display the number of elements in a.

DELVAR, a

; Delete the variable a.

INFO, a

VARIABLE UNDEFINED = <Undefined>

PRINT, N_ELEMENTS(a)

0

See Also
N_PARAMS, N_TAGS, PARAM_PRESENT, SIZE, TAG_NAMES

NINT Function
Converts input to the nearest integer.

Usage

result = NINT(x)

Input Parameters

x — A scalar or array of any PV-WAVE variable type, usually float or double.

NINT Function 599

Keywords

Long — If present and non-zero, NINT returns a long instead of a short (FIX)
integer.

Returned Value

result — The nearest integer to the input value.

Discussion

Instead of truncating the input (as FIX does), first the input is rounded by adding
or subtracting 0.5 (depending on whether the input is greater or less than zero), and
then it is truncated.

If the input is out of the range of integers (for example, if you pass in 1.0d33), an
error message will result and NINT returns garbage.

Add ±0.5 to the input and convert that to a short integer using FIX. If the Long key-
word is used, it’s converted via long. If the input is a FIX, then it’s just passed back.
If it’s a long, it’s also passed back. Strings are converted to bytes before the round-
ing. In the case of complex values, their magnitude is taken. Structures are not
allowed.

Examples
PRINT, NINT(5.1)

5

; Round 5.1 to the nearest integer, which is 5.

PRINT, NINT(5.6)

6

; Round 5.6 up to 6.

PRINT, NINT(-1.9)

-2

; The nearest integer to –1.9 is –2.

PRINT, NINT([0.1, -20.9, 50.9])

0 -21 51

; An array of input floating point numbers returns a similar
; array of the nearest integers.

PRINT, NINT(200000.1)

3392

;NINT returns incorrect results when the input is out of

600 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

; the range of integers.

PRINT, NINT(200000.1, /Long)

200000

; Floating point numbers which are out of the range of fix
; type integers but in the range of long type integers should
; be rounded using the Long keyword.

See Also

FIX, SMALL_INT

NORMALS Function
Standard Library function that computes unit normals on a parametrically defined
surface.

Usage

n = normals (j)

Input Parameters

j — The Jacobian (computed by the JACOBIAN function) on the surface.

Returned Value

n — A 3-element list of 2-dimensional arrays of the same size as those in j: n(i) is
the array describing the distribution of the ith component of the unit normal.

Keywords

None.

Example

See wave/lib/user/examples/normals_ex.pro.

See Also

CURVATURES, EUCLIDEAN, JACOBIAN

N_PARAMS Function 601

N_PARAMS Function
Returns the number of non-keyword parameters used in calling a PV-WAVE pro-
cedure or function.

Usage

result = N_PARAMS()

Parameters

None.

Returned Value

result — The number of non-keyword parameters used in calling a PV-WAVE pro-
cedure or function.

Keywords

None.

Discussion

N_PARAMS is used to determine if user-written procedures or functions were
called with positional (non-keyword) parameters.

See Also

N_ELEMENTS, N_TAGS, PARAM_PRESENT, SIZE, TAG_NAMES

For more information on functions and procedures, see .

602 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

N_TAGS Function
Returns the number of structure tags contained in any expression.

Usage

result = N_TAGS(expr)

Input Parameters

expr — The expression for which the number of structure tags will be returned.

Returned Value

result — The number of structure tags contained in any expression.

Keywords

None.

Discussion

Expressions which are not of structure type are considered to have zero tags.
N_TAGS does not search for tags recursively, so if expr is a structure containing
nested structures, only the number of tags in the outermost structure are counted.

Example
In this example, a structure with three fields is created. Function N_TAGS is
applied to the structure and to each field of the structure. The first two fields of the
structure are not of type structure. The third field of the structure is of type struc-
ture, with two fields.

b = {example, t1: [1, 2, 3], t2: 7.0, $
t3: {field3, t3_t1: 99L, t3_t2: [2, 4, 6]}}

INFO, b, /Structure

** Structure EXAMPLE, 3 tags, 32 length:

; Create the structure.

T1 INT Array(3)

T2 FLOAT 7.00000

T3 STRUCT -> FIELD3 Array(1)

N_TAGS Function 603

PRINT, N_TAGS(b)

3

; Display the number of tags in b.

PRINT, N_TAGS(b.t1)

0

; Display the number of tags in each field of b.

PRINT, N_TAGS(b.t2)

0

PRINT, N_TAGS(b.t3)

2

See Also

N_ELEMENTS, N_PARAMS, SIZE, STRUCTREF, TAG_NAMES

604 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

2
Procedure and Function Reference

ON_ERROR Procedure
Determines the action taken when an error is detected inside a user-written proce-
dure or function.

Usage

ON_ERROR, n

Input Parameters

n — An integer that specifies the action to take. Valid values are:

Keywords

Continue — If specified and nonzero, program execution resumes at the statement
specified by one of the following input parameters:

Example

In this example, a procedure named PROC1 calls a procedure, PROC2, which con-
ditionally calls either procedure PROC3 or PROC4. Procedure PROC3 contains an
error. A call to PRINT from within PROC3 is intended, but a typographical error
results in a nonexistent procedure, PAINT, being called. The ON_ERROR proce-

0 Stop at the statement in the procedure that caused the error.
(This is the default action.)

1 Return all the way back to the main program level.

2 Return to the caller of the program unit which established
the ON_ERROR condition.

3 Return to the program unit which established the
ON_ERROR condition.

0 Continue in the procedure that caused the error.

1 Return to the main program level $MAIN$ and continue.

2 Return to the calling routine that established the
ON_ERROR condition and continue.

3 Return to the program unit that established the ON_ERROR
condition and continue.

ON_ERROR Procedure 605

dure, which is called from PROC2, is passed different input parameter values in
this example to exhibit the action taken when the error in PROC3 is encountered.

The following is a listing of the procedures used in this example:

PRO PROC1

FOR i = 1, 4 DO BEGIN

PROC2, i

ENDFOR

END

PRO PROC2, j

ON_ERROR, 0

; Invoke the ON_ERROR procedure at this point.

IF (j MOD 2) EQ 0 THEN BEGIN

PROC3, j

ENDIF ELSE BEGIN

PROC4, j

ENDELSE

END

PRO PROC3, k

PAINT, k, ’ is even.’

; The call to a nonexistent procedure, PAINT, occurs here.

END

PRO PROC4, m

PRINT, m, ’ is odd.’

END

Note that ON_ERROR has the input parameter 0 in PROC2. If the procedures are
placed in the file errex.pro in your working directory, all of them can be com-
piled with the following command:

.RUN errex

Error Condition 0

Next, run the PROC1 procedure and examine the results:

PROC1

 1 is odd.

% Attempt to call undefined

% procedure/function: PAINT.

% Execution halted at PROC3 <errex.pro(21)>.

% Called from PROC2 <errex.pro(13)>.

606 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

Examine which procedure PV-WAVE returned to by looking at the current nesting
of procedures and functions with the INFO command:

INFO, /Traceback

% At PROC3 <errex.pro(22)>.

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

PV-WAVE stopped at the PROC3 procedure, where the error occurred. This is
where PV-WAVE would have stopped if ON_ERROR had not been called.

Error Condition 1

If the call to ON_ERROR in PROC2 is changed from

ON_ERROR, 0

to

ON_ERROR, 1

then the commands

RETALL

.RUN errex

need to be executed to return to the main program level and recompile the file con-
taining the example procedures.

To execute PROC1 again and check where PV-WAVE returns after the error in
PROC3, issue the following command:

PROC1

 1 is odd.

% Attempt to call undefined

% procedure/function: PAINT.

% Execution halted at PROC3 <errex.pro(21)>.

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

INFO, /Traceback

% At $MAIN$.

Note that PV-WAVE returned to the main program level.

ON_ERROR Procedure 607

Error Condition 3

Next, the call to ON_ERROR in PROC2 is changed from

ON_ERROR, 1

to

ON_ERROR, 3

and the file containing the example procedures is recompiled and executed with the
commands:

RETALL

.RUN errex

Issue the following command to execute PROC1 again:

PROC1

 1 is odd.

% Attempt to call undefined

% procedure/function: PAINT.

% Execution halted at PROC3 <errex.pro(21)>.

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

To see where PV-WAVE has returned, issue the following command:

INFO, /Traceback

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

Note that this time, PV-WAVE returned to PROC2, which is the program unit that
made the call to ON_ERROR.

Error Condition 0 with Continuation

Next, the call to ON_ERROR in PROC2 is changed from

ON_ERROR, 3

to

ON_ERROR, 0, /Continue

and the file containing the example procedures is recompiled and executed with the
commands:

RETALL

608 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

.RUN errex

Issue the following command to execute PROC1 again:

PROC1

1 is odd.

% Attempt to call undefined

% procedure/function: PAINT.

% Error occurred at PROC3 <errex.pro(21)>.

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

3 is odd.

% Attempt to call undefined

% procedure/function: PAINT.

% Error occurred at PROC3 <errex.pro(21)>.

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

To see where PV-WAVE has returned, issue the following command:

INFO, /Traceback

% At $MAIN$.

Note that PV-WAVE has returned to the main program level.

Error Condition 1 with Continuation

If the call to ON_ERROR in PROC2 is changed from

ON_ERROR, 0, /Continue

to

ON_ERROR, 1, /Continue

and the file containing the example procedures is recompiled and executed with the
commands:

RETALL

.RUN errex

Issue the following command to execute PROC1 again:

PROC1

1 is odd.

% Attempt to call undefined

ON_ERROR Procedure 609

% procedure/function: PAINT.

% Error occurred at PROC3 <errex.pro(21)>.

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

To see where PV-WAVE has returned, issue the following command:

INFO, /Traceback

% At $MAIN$.

Note that execution continued on the main program level.

Error Condition 2 with Continuation

Finally, the call to ON_ERROR in PROC2 is changed from

ON_ERROR, 1, /Continue

to

ON_ERROR, 2, /Continue

and the file containing the example procedures is recompiled and executed with the
commands:

RETALL

.RUN errex

Issue the following command to execute PROC1 again:

PROC1

1 is odd.

% Attempt to call undefined

% procedure/function: PAINT.

% Error occurred at PROC3 <errex.pro(21)>.

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

3 is odd.

To see where PV-WAVE has returned, issue the following command:

INFO, /Traceback

% Called from $MAIN$.

NOTE In this example, execution continued in PROC3 after the error, and PROC1
finished executing.

610 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

PRO PROC1

FOR i = 1, 4 DO BEGIN

PROC2, i

ENDFOR

END

PRO PROC2, j

ON_ERROR, 0

; Invoke the ON_ERROR procedure at this point.

IF (j MOD 2) EQ 0 THEN BEGIN

PROC3, j

ENDIF ELSE BEGIN

PROC4, j

ENDELSE

END

PRO PROC3, k

PAINT, k, ’ is even.’

; The call to a nonexistent procedure, PAINT, occurs here.

END

PRO PROC4, m

PRINT, m, ’ is odd.’

END

Note that ON_ERROR has the argument 0 in PROC2. If the procedures are placed
in the fileerrex.pro in your working directory, all of them can be compiled with
the following command:

.RUN errex

Next, invoke the top-level procedure and examine the results:

PROC1

 1 is odd.

% Attempt to call undefined

% procedure/function: PAINT.

% Execution halted at PROC3 <errex.pro(21)>.

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

Examine which procedure PV-WAVE returned to by looking at the current nesting
of procedures and functions with the INFO command:

INFO, /Traceback

ON_ERROR Procedure 611

% At PROC3 <errex.pro(22)>.

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

PV-WAVE stopped at the PROC3 procedure, where the error occurred. This is
where PV-WAVE would have stopped if ON_ERROR had not been called.

If the call to ON_ERROR in PROC2 is changed from

ON_ERROR, 0

to

ON_ERROR, 1

then the commands

RETALL

.RUN errex

need to be executed to return to the main program level and recompile the file con-
taining the example procedures.

To execute PROC1 again and check where PV-WAVE returns after the error in
PROC3, issue the following command:

PROC1

 1 is odd.

% Attempt to call undefined

% procedure/function: PAINT.

% Execution halted at PROC3 <errex.pro(21)>.

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

INFO, /Traceback

% Called from $MAIN$.

Note that PV-WAVE returned to the main program level.

As a final example, the call to ON_ERROR in PROC2 is changed from

ON_ERROR, 1

to

ON_ERROR, 3

and the file containing the example procedures is recompiled and executed with the
commands:

612 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

RETALL

.RUN errex

Issue the following command to execute PROC1 again:

PROC1

 1 is odd.

% Attempt to call undefined

% procedure/function: PAINT.

% Execution halted at PROC3 <errex.pro(21)>.

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

To see where PV-WAVE returned, issue the following command:

INFO, /Traceback

% Called from PROC2 <errex.pro(13)>.

% Called from PROC1 <errex.pro(5)>.

% Called from $MAIN$.

Note that this time, PV-WAVE returned to PROC2, which is the program unit that
made the call to ON_ERROR.

See Also

ON_IOERROR, OPEN (UNIX/OpenVMS), OPEN (Windows), READ,
RETALL, RETURN, STOP, WRITEU

For more information, see the section Error Handling in Procedures in Chapter 9
of the PV-WAVE Programmer’s Guide.

Additional information can be found in .

ON_ERROR_GOTO Procedure 613

ON_ERROR_GOTO Procedure
Specifies a statement to jump to if an error occurs in the current procedure.

Usage

ON_ERROR_GOTO, label

Input Parameters

label — The name of a label statement to jump to.

NOTE Do not put a colon after this parameter.

Keywords

None.

Discussion

The ON_ERROR_GOTO procedure transfers program control to the point in the
program specified by the label parameter after an error occurs. The label parameter
specifies a label, which is an identifier followed by a colon. A label may exist on a
line by itself. Labels are explained in the section Statement Types in Chapter 4 of
the PV-WAVE Programmer’s Guide.

NOTE The label name null has a special use with this procedure. If the name of
the label is null, the effect of ON_ERROR_GOTO is canceled and normal pro-
cessing continues.

If an error occurs, an error code is stored in the system variable !Err. In addition,
the text of the error message is stored in !Err_String.

Example

This example demonstrates how ON_ERROR_GOTO is used to control program
flow after an error is detected.

PRO Proc1

ON_ERROR_GOTO, Proc1_Failed

; If an error occurs here, go to the statement label Proc1_Failed.

614 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

ON_ERROR_GOTO, null

; The effect of ON_ERROR_GOTO is canceled, normal error processing is in
; effect.

RETURN

Proc1_Failed:

PRINT, !Err, !Err_String

END

See Also

ON_ERROR

ON_IOERROR Procedure
Specifies a statement to jump to if an I/O error occurs in the current procedure.

Usage

ON_IOERROR, label

Input Parameters

label — The statement to jump to. Note that label is not a string variable, but is
rather the statement label (without the trailing colon).

Keywords

None.

Discussion

Normally when an input/output error occurs, an error message is printed and pro-
gram execution is stopped. If ON_IOERROR is called and an I/O related error later
occurs in the same procedure activation, control is transferred to the designated
statement with the error code stored in the system variable !Err. The text of the
error message is contained in the system variable !Err_String.

Example
ON_IOERROR, null

; The effect of ON_IOERROR is canceled by using null as the label.

OPEN Procedures (UNIX/OpenVMS) 615

See Also

!Err, !Err_String, ON_ERROR, OPEN (UNIX/OpenVMS),
OPEN (Windows), READ, RETALL, RETURN, STOP, WRITEU

Additional information can be found in .

For more information on system variables, see Chapter 4, System Variables. For
more information on statement labels, see the section Statement Labels in Chapter
4 of the PV-WAVE Programmer’s Guide. For background information, see .

OPEN Procedures (UNIX/OpenVMS)
(OPENR, OPENU, OPENW)

Open a specified file for input/output:

• OPENR (OPEN Read) opens an existing file for input only.

• OPENU (OPEN Update) opens an existing file for input and output.

• OPENW (OPEN Write) opens a new file for input and output.

CAUTION When you use OPENW to create a new file under UNIX, if the file
exists, it is truncated and its old contents destroyed. Under OpenVMS, a new file
with the same name and a higher version number is created.

Usage

OPENR, unit, filename [, record_length]

OPENU, unit, filename [, record_length]

OPENW, unit, filename [, record_length]

Input Parameters

unit — The logical unit number to be associated with the opened file.

filename — The name of the file to be opened. The following differences exist
between the UNIX and OpenVMS versions of PV-WAVE regarding wildcard char-
acters and file extensions:

• Under UNIX, the name may contain any wildcard characters recognized by the
shell specified by the SHELL environment variable. However, it is faster not to

616 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

use wildcards because PV-WAVE doesn’t use the shell to expand filenames
unless it has to. No wildcard characters are allowed under OpenVMS.

• Under OpenVMS, filenames that do not have a file extension are assumed to
have the .DAT extension. No such processing of filenames occurs under
UNIX.

record_length — (optional — OpenVMS Only) Specifies the file record size in
bytes. This parameter is required when creating new fixed-length files, and is
optional when opening existing files:

• If present when creating variable length record files, it specifies the maximum
allowed record size.

• If present and no file organization keyword is specified, fixed-length records
are implied.

NOTE Due to limitations in RMS, the length of records must always be an even
number of bytes. Therefore, odd record lengths are automatically rounded up to the
nearest even boundary.

Keywords

Append — If present and nonzero, causes the file to be opened with the file pointer
at the end of the file, ready for data to be appended. (Normally, the file is opened
with the file pointer at the beginning of the file.) Under UNIX, use of Append pre-
vents OPENW from truncating existing file contents.

Block — (OpenVMS only) If present and nonzero, specifies that the file should be
processed using RMS block mode. In this mode, most RMS processing is bypassed
and PV-WAVE reads and writes to the file in disk block units. Such files can be
accessed only via unformatted I/O commands.

Files created in block mode can be accessed only in block mode. Block mode files
are treated as an uninterpreted stream of bytes in a manner similar to UNIX stream
files.

NOTE With some controller/disk combinations, RMS does not allow transfer of
an odd number of bytes.

Default — (OpenVMS only) A scalar string providing a default file specification
from which missing parts of filename are taken. For example, to make .log be the

OPEN Procedures (UNIX/OpenVMS) 617

default file extension and open a new file named data, you might enter the follow-
ing when you open the file:

OPENW, ’data’, Default=’.log’

Delete — If present, causes the file to be deleted when it is closed.

CAUTION Delete will cause the file to be deleted even if it was opened for read-
only access. In addition, once a file is opened with this keyword, there is no way to
cancel its operation.

Error — If present and nonzero, specifies a named variable into which the error
status should be placed. (If an error occurs in the attempt to open filename,
PV-WAVE normally takes the error handling action defined by ON_ERROR and/
or ON_IOERROR.)

The OPEN procedures always return to the caller without generating an error mes-
sage when Error is present. A nonzero error status indicates that an error occurred.
The error message can then be found in the system variable !Err_String.

For example, statements similar to the following can be used to detect errors:

OPENR, 1, ’demo.dat’, Error=err

; Try to open the file demo.dat.

IF (err NE 0) then PRINTF, -2, !Err_String

; If err is nonzero, something happened, so print the error message
; to the standard error file (logical unit –2).

Extendsize — (OpenVMS only) If present and nonzero, specifies the number of
disk blocks by which filename should be extended.

File extension is a relatively slow operation, and it is desirable to minimize the
number of times it is done. In order to avoid the unacceptable performance that
would result from extending a file a single block at a time, OpenVMS extends its
size by a default number of blocks in an attempt to trade a small amount of wasted
disk space for better performance.

• Extendsize is often used in conjunction with the Initialsize and
Truncate_On_Close keywords.

Fixed — (OpenVMS only) Specifies that the file has fixed-length records. The
Record_Size parameter is required when opening new fixed-length files. For
example:

OPENW, 1, ’data’, /Fixed, 512

618 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Fortran — (OpenVMS only) Specifies that FORTRAN-style carriage control will
be used when you create a new file.

F77_Unformatted — (UNIX only) If present and nonzero, specifies that
PV-WAVE is to read and write extra information in the same manner as F77. This
allows data to be processed by both FORTRAN and PV-WAVE.

Unformatted, variable-length record files produced by UNIX FORTRAN programs
contain extra information along with the data in order to allow the data to be prop-
erly recovered. This is necessary because FORTRAN is based on record-oriented
files, while UNIX files are simple byte streams that do not impose any record
structure.

Get_Lun — If present and nonzero, calls the GET_LUN procedure to set the value
of unit before the file is opened. Thus, the two statements:

GET_LUN, unit

OPENR, unit, ’data.dat’

can be written as:

OPENR, unit, ’data.dat’, /Get_Lun

Initialsize — (OpenVMS only) Specifies the initial size of the file allocation in
blocks. This keyword is often used in conjunction with the Extendsize and
Truncate_On_Close keywords.

Keyed — (OpenVMS only) Specifies that the file has indexed organization.

List — (OpenVMS only) Specifies that carriage return carriage control will be used
when you create a new file. If no other carriage control keyword is specified, List
is the default.

More — (Under OpenVMS, allowed only with stream files.) If present and non-
zero, and the specified filename is a terminal, formats all output to the specified unit
in a manner similar to the UNIX more command. Output pauses at the bottom of
each screen, at which point you can press one of the following keys:

For example, the following statements show how to output a file named
text.dat to the terminal:

OPENR, inunit, ’test.dat’, /Get_Lun

; Open the text file.

<Space> Causes the next page of text to be displayed.

<Return> Causes the next line of text to be displayed.

<Q> Suppresses all following output.

<H> Displays the list of available options at this point.

OPEN Procedures (UNIX/OpenVMS) 619

OPENW, outunit, ’/dev/tty’, /Get_Lun, /More

; Open the terminal as a file.

line = ’’ & readf, inunit, line

; Read the first line.

while not eof(inunit) do begin

printf, outunit, line

readf, inunit, line

; While there is text left, output it.

ENDWHILE

FREE_LUN, inunit & FREE_LUN, outunit

; Close the files and deallocate the units.

None — (OpenVMS only) Specifies that explicit carriage control will be used
when you create a new file. This means that OpenVMS does not add any carriage
control information to the file, and you must explicitly add any desired carriage
control to the data being written to the file.

Print — (OpenVMS only) If present, sends the file to SYS$PRINT (the default
system printer) when it is closed.

Segmented — (OpenVMS only) Specifies that the file has OpenVMS FORTRAN-
style segmented records. Segmented records allow logical records to exist with
record sizes that exceed the maximum possible physical record sizes supported by
OpenVMS. Segmented record files are useful primarily for passing data between
FORTRAN and PV-WAVE programs.

Shared — (OpenVMS only) If present, allows other processes read and write
access to the file in parallel with PV-WAVE. If Shared is not present, read-only
files are opened for read sharing and read/write files are not shared.

CAUTION It is not a good idea to allow shared write access to files open in
RMS block mode. In block mode, OpenVMS cannot perform the usual record
locking which avoids file corruption. It is therefore possible for multiple writers to
corrupt a block mode file. This same warning also applies to fixed-length-record
disk files, which are also processed in block mode.

Stream — (OpenVMS only) Specifies that the file will be opened in stream mode.

Submit — (OpenVMS only) If present, specifies that the file will be submitted to
SYS$BATCH (the default system batch queue) when it is closed.

Truncate_On_Close — (OpenVMS only) If present, causes any unused disk space
allocated to the file to be freed when the file is closed. This keyword can be used to
get rid of excess allocations caused by the Extendsize and Initialsize keywords.

620 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Truncate_On_Close has no effect if the Shared keyword is present, or if the file is
open for read-only access.

Variable — (OpenVMS only) Specifies that the file has variable-length records. If
the record_size parameter is present, this keyword specifies the maximum record
size. Otherwise, the only limit is that imposed by RMS (32,767 bytes). If no file
organization is specified, variable-length records are the default.

Width — Specifies the desired width for output. If this keyword is not present,
PV-WAVE uses the following rules to determine where to break lines:

• If the output file is a terminal, the terminal width is used.

• Under OpenVMS, if the file has fixed-length records or a maximum record
length, the record length is used.

• If neither condition above applies, a default of 80 columns is used.

XDR — (Under OpenVMS, allowed only with stream files.) If present and non-
zero, opens the file for unformatted XDR (eXternal Data Representation) input/
output via the READU and WRITEU procedures.

Using this keyword makes binary data portable across different machine architec-
tures by reading and writing all data in a standard format. When a file is open for
XDR access, the only I/O data transfer procedures that can be used with it are
READU and WRITEU.

If you open an XDR file with OPENU, you must use the Append keyword in the
OPENU call to move the file pointer to the end of the file. By default, when an
existing XDR file is opened with OPENU, the I/O transfer is set for writing, and
the file pointer is set to the beginning of the file.

Example

This example uses OPENR to open the head.img file for reading. This file is in
the subdirectory data, under the main PV-WAVE distribution directory. The
image is read from the file, and the file is closed.

OPENR, unit, FILEPATH(’head.img’, Subdir = ’data’), /Get_Lun

; Open head.img for reading.

ct = BYTARR(512, 512)

; Create a 256-by-256 byte array to hold the image.

READU, unit, ct

; Read the image.

FREE_LUN, unit

; Close head.img and free the file unit number associated with it.

OPEN Procedures (Windows) 621

TVSCL, ct

; Display the image.

See Also

!Err, !Err_String, FREE_LUN, GET_LUN, ON_ERROR,
ON_IOERROR, POINT_LUN, READ, WRITEU

For background information, see Chapter 8, Working with Data Files, in the
PV-WAVE Programmer’s Guide.

For more information on XDR, see .

OPEN Procedures (Windows)
(OPENR, OPENU, OPENW)

Open a specified file for input/output:

• OPENR (OPEN Read) opens an existing file for input only.

• OPENU (OPEN Update) opens an existing file for input and output.

• OPENW (OPEN Write) opens a new file for input and output.

Usage

OPENR, unit, filename

OPENU, unit, filename

OPENW, unit, filename

Input Parameters

unit — The logical unit number to be associated with the opened file.

filename — The name of the file to be opened.

Keywords

Append — If present and nonzero, causes the file to be opened with the file pointer
at the end of the file, ready for data to be appended. (Normally, the file is opened
with the file pointer at the beginning of the file.)

Delete — If present, causes the file to be deleted when it is closed.

622 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

CAUTION Delete will cause the file to be deleted even if it was opened for read-
only access. In addition, once a file is opened with this keyword, there is no way to
cancel its operation.

Error — If present and nonzero, specifies a named variable into which the error
status should be placed. (If an error occurs in the attempt to open filename,
PV-WAVE normally takes the error handling action defined by ON_ERROR and/
or ON_IOERROR.)

The OPEN procedures always return to the caller without generating an error mes-
sage when Error is present. A nonzero error status indicates that an error occurred.
The error message can then be found in the system variable !Err_String.

For example, statements similar to the following can be used to detect errors:

OPENR, 1, ’demo.dat’, Error=err

; Try to open the file demo.dat.

IF (err NE 0) then PRINTF, -2, !Err_String

; If err is nonzero, something happened, so print the error message
; to the standard error file (logical unit –2).

Get_Lun — If present and nonzero, calls the GET_LUN procedure to set the value
of unit before the file is opened. Thus, the two statements:

GET_LUN, unit

OPENR, unit, ’data.dat’

can be written as:

OPENR, unit, ’data.dat’, /Get_Lun

String_Xdr — If present and nonzero, interprets the XDR strings in READU,
WRITEU procedures as standard XDR strings (string length encoded as an
unsigned integer) followed by the “length” bytes of the string. By default, XDR
strings in PV-WAVE are interpreted as string length encoded as two unsigned inte-
gers followed by the “length” bytes of the string.

Width — Specifies the desired width for output. If this keyword is not present,
PV-WAVE uses the following rules to determine where to break lines:

• If the output file is a terminal, the terminal width is used.

• If the output file is not a terminal, a default of 80 columns is used.

XDR — If present and nonzero, opens the file for unformatted XDR (eXternal Data
Representation) input/output via the READU and WRITEU procedures.

OPEN Procedures (Windows) 623

Using this keyword makes binary data portable across different machine architec-
tures by reading and writing all data in a standard format. When a file is open for
XDR access, the only I/O data transfer procedures that can be used with it are
READU and WRITEU.

Example

This example uses OPENR to open the head.img file for reading. This file is in
the subdirectory data, under the main PV-WAVE distribution directory. The
image is read from the file, and the file is closed.

OPENR, unit, FILEPATH(’head.img’, $

Subdir = ’data’), /Get_Lun

; Open head.img for reading.
ct = BYTARR(512, 512)

; Create a 256-by-256 byte array to hold the image.
READU, unit, ct

; Read the image.
FREE_LUN, unit

; Close head.img and free the file unit number associated with it.
TVSCL, ct

; Display the image.

See Also

FREE_LUN, GET_LUN, ON_ERROR, ON_IOERROR,
POINT_LUN, READ, WRITEU

System Variables: !Err, !Err_String

For background information, see Chapter 8, Working with Data Files, in the
PV-WAVE Programmer’s Guide.

For more information on XDR, see .

624 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

OPENURL Procedure
Opens a file on the Internet to be accessed (through Java) using PV-WAVE.

Usage

OPENURL, url, Unit = unit

Input Parameters

url — A string containing a Uniform Resource Locator (URL) for the document
(file) to be read.

Keywords

Proxy — A string containing the host name of a proxy server (firewall) if required
by your network; or, of the form ’hostname:nn’, where nn is a number spec-
ifying the port number of the proxy server.

Unit — The unit returned from the call, as for the PV-WAVE OPENR, and the
READF and READU procedures.

Discussion

NOTE Java software must be available in your path and its location must be in the
operating-system search path before you start PV-WAVE. (You should be able to
run a Java program by typing java and the program name at the OS prompt.)

The OPENURL procedure spawns a Java process to open and read an URL any-
where on the Internet. It then passes the data to an open unit, which can be
processed by a READF or READU procedure call.

Windows USERS Make sure that one of the environment variables TMP or
TEMP is set to a writable directory to enable temporary file writing.

Example

For other examples of using PV-WAVE across the Internet, see the demonstrations
under the following directories:

OPENURL Procedure 625

(UNIX) <wavedir>/demo/web

(OpenVMS) <wavedir>:[DEMO.WEB]

(Windows) <wavedir>\demo\web

where <wavedir> is the main PV-WAVE directory.

This example procedure uses OPENURL, keeping the file in unit while reading and
writing the file to standard output until no more strings are found.

PRO URL_DEMO, url = url

IF N_ELEMENTS(url) EQ 0 THEN $
url = ’http://www.vni.com’

; Verify that the URL exists.

OPENURL, url, unit = unit

str = ’’

ON_IOERROR, done

WHILE 1 DO BEGIN
READF, unit, str
PRINT, str

ENDWHILE

; Reading and writing the content of the URL file.

done:

END

See Also

HTML_* routines, OPEN procedures, READ procedures

626 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

OPLOT Procedure
Plots vector data over a previously drawn plot.

Usage

OPLOT, x [, y]

Input Parameters
x — A vector. If only one parameter is supplied, x is plotted on the y-axis as a func-
tion of point number.

y — (optional) A vector. If two parameters are supplied, y is plotted as a function
of x.

Keywords

OPLOT keywords let you control many aspects of the plot’s appearance. These
keywords are listed below. For a description of each keyword, see Chapter 3,
Graphics and Plotting Keywords.

Discussion

OPLOT differs from PLOT only in that it does not generate a new axis. Instead, it
uses the scaling established by the most recent call to PLOT and simply overlays a
plot of the data on the existing axis. Each call to PLOT establishes the plot window
(the region of the display enclosed by the axes), the axis types (linear or log), and
the scaling. This information is saved in the system variables !P, !X, and !Y, and
used by subsequent calls to OPLOT.

Background Noclip T3d [XYZ]Tickformat

Channel Nodata Thick [XYZ]Ticklen

Charsize Noerase Tickformat [XYZ]Tickname

Charthick Normal Ticklen [XYZ]Ticks

Clip Nsum Title [XYZ]Tickv

Color Polar [XYZ]Charsize [XYZ]Title

Data Position [XYZ]Gridstyle [XYZ]Type

Device Psym [XYZ]Margin YLabelCenter

Font Save [XYZ]Minor YNozero

Gridstyle Solid_Psym [XYZ]Range ZValue

Linestyle Subtitle [XYZ]Style

OPLOT Procedure 627

Example
In this example, 10 random points are plotted as square markers using the PLOT
procedure. Procedure OPLOT is then used to plot a cubic spline interpolant to the
random points. The square markers at the random points remain in the plotting
window when the interpolant is plotted because OPLOT draws over what is already
in the plotting window. This example uses the PV-WAVE:IMSL Mathematics
Toolkit and PV-WAVE:IMSL Statistics Toolkit functions CSINTERP, RANDO-
MOPT, RANDOM, and SPVALUE.

RANDOMOPT, Set = 45321

; Create a vector of 10 random values.

x = RANDOM (10)

PLOT, x, Psym = 6

; Plot the random points as a function of vector index. Use square
; marker symbols to represent the data points.

pp = CSINTERP(FINDGEN(10), x)

ppval = SPVALUE(FINDGEN(100)/10, pp)

; Compute the cubic spline interpolant.

OPLOT, FINDGEN(100)/10, ppval

; Plot the interpolant over the marker symbols (see).

Figure 2-32 Overplotting a plot.

See Also
OPLOTERR, PLOT, PLOTERR
For more information, see Chapter 4, Displaying 2D Data, in the PV-WAVE User’s
Guide.

628 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

OPLOTERR Procedure
Standard Library procedure that overplots symmetrical error bars on any plot
already output to the display device.

Usage

OPLOTERR, x, y, error [, psym]

Input Parameters

x — A real vector containing the x-coordinates of the data to plot. If not present, x
is assumed to be a vector of the same size as y and to have integer values beginning
at 0 and continuing to the size of y – 1.

y — A real vector containing the y coordinates of the data to plot.

error — A vector containing the symmetrical error bar values at every element in y.

psym — (optional) Specifies the plotting symbol to use. It corresponds to the sys-
tem variable !Psym. If not specified, the default is 7 (the symbol “X”).

Keywords

None.

Example 1

To plot error bars over the x and y vectors, with symbols at the data values, use the
following commands:

x = [1, 2, 3, 4]

y = [2, 1, 3, 2]

PLOT, x, y

error = [0.5, 0.25, 1, 0]

psym = 6

OPLOTERR, x, y, error, psym

This produces the plot shown in .

OPLOTERR Procedure 629

Figure 2-33 In this example, OPLOTERR was used to plot error bars over the x and y vec-
tors, using the square symbol at the data values.

Example 2

This example plots a B-spline interpolant to some scattered data. The data points,
along with error bars extending one unit on either side of the data points, are then
plotted on top of the interpolant. This example uses the PV-WAVE:IMSL Mathe-
matics Toolkit function BSINTERP.

x = INDGEN(7) + 1

; Generate the abscissas.

y = [2, 4, 5, 7, 6, 8, 12]

; Create a vector of ordinates.

bs = BSINTERP(x, y)

; Compute the B-spline interpolant.

bsval = SPVALUE(FINDGEN(100)/5, bs)

; Plot the interpolant.

PLOT, FINDGEN(100)/5, bsval, XRange = [0, 8], YRange = [0, 13]

err = MAKE_ARRAY(7, Value = 1)

; Create the error bar vector.

OPLOTERR, x, y, err, 6

; Overplot the data points, using square marker symbols and the
; error bars (see).

630 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Figure 2-34 Scattered data interpolant with overplotted data points and symmetric error
bars.

See Also

ERRPLOT, PLOTERR

System Variables: !P.Psym

OPTION_IS_LOADED Function
Checks if a specified Option Programming Interface (OPI) optional module is cur-
rently loaded.

Usage

result = OPTION_IS_LOADED (option_name)

Input Parameters

option_name — (string) The name of the OPI option to check.

Output Parameters

result — A value indicating the status of the given OPI option.

1 Indicates the OPI option is currently loaded.

0 Indicates the OPI option is not loaded.

ORDER_BY Function 631

Keywords

None.

Discussion

OPI options can be loaded explicitly by any PV-WAVE user using the
LOAD_OPTION procedure. These optional modules can be written in C or FOR-
TRAN, and can contain new system functions or other primitives. For detailed
information on creating OPI options, see the PV-WAVE Application Developer’s
Guide.

Example
IF NOT OPTION_IS_LOADED(’SAMPLE’) THEN $

LOAD_OPTION, ’SAMPLE’

See Also

LOAD_OPTION, SHOW_OPTIONS, UNLOAD_OPTION

ORDER_BY Function
Sorts the rows in a PV-WAVE table variable to create a new table.

Usage

result = ORDER_BY(in_table, 'col_1 [ASC | DESC] [, col_2 [ASC | DESC]] ...
[, col_n [ASC | DESC]]')

NOTE The entire second parameter is a string and must be enclosed in quotes.
Also, note that the vertical bar (|) means “or” in this usage. In this case, you can use
either ASC or DESC, but not both.

Input Parameters

in_table — An input PV-WAVE table variable to be sorted.

col_i — The column(s) on which the sort is to be performed. If more than one col-
umn is specified, then result is sorted first by col_1, then col_2, and so on.

632 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

ASC — Requires that the rows of the result are sorted in ascending order for that
column. If no sort order is specified, ASC is the default.

DESC — Requires that the rows of the result are sorted in descending order for that
column.

Returned Value

result — The resulting PV-WAVE table variable, containing the same rows as
in_table, but in the requested sort order.

Keywords

None.

Discussion

The ORDER_BY function produces similar output to the Order By option of the
QUERY_TABLE function, but ORDER_BY has a more compact and convenient
syntax.

Example

Consider the following table variable (prop_trx), which contains information about
property transactions. Property type, location, amount, and transaction date are all
recorded.

TRX_ID PROP_TYPE PROP_XGRID PROP_YGRID TRX_AMT TRX_DATE

1 2BR_HOUSE 1.45096 2.34159 142166.00 04/20/2005 02:00:37

2 3BR_CONDO 1.30454 1.12332 108730.00 05/23/2010 11:06:15

3 4+BR_HOUSE 0.41492 0.67620 273141.00 08/05/1997 06:22:53

4 4+BR_HOUSE 3.52749 0.91387 267949.00 02/25/2010 06:55:33

5 2BR_HOUSE 1.56556 0.46332 193346.00 02/22/1997 12:32:35

6 1BR_HOUSE 2.33187 2.94950 128165.00 04/01/1993 09:46:35

7 4+BR_HOUSE 1.74596 3.32184 229348.00 05/20/2005 00:15:39

8 3BR_HOUSE 4.38503 1.13107 203425.00 07/11/2001 11:17:37

9 4+BR_HOUSE 4.20096 0.90143 376974.00 05/04/1991 23:06:53

10 STUDIO 0.50743 1.31675 39148.00 05/26/1999 19:01:01

We execute an ORDER_BY function, to sort first by property type, and then by
transaction date:

ORDER_BY Function 633

prop_trx = ORDER_BY(prop_trx, ’prop_type, trx_date’)

Now, the rows in prop_trx have been reordered:

 TRX_ID PROP_TYPE PROP_XGRID PROP_YGRID TRX_AMT TRX_DATE

6 1BR_HOUSE 2.33187 2.94950 128165.00 04/01/1993 09:46:35

5 2BR_HOUSE 1.56556 0.46332 193346.00 02/22/1997 12:32:35

1 2BR_HOUSE 1.45096 2.34159 142166.00 04/20/2005 02:00:37

2 3BR_CONDO 1.30454 1.12332 108730.00 05/23/2010 11:06:15

8 3BR_HOUSE 4.38503 1.13107 203425.00 07/11/2001 11:17:37

9 4+BR_HOUSE 4.20096 0.90143 376974.00 05/04/1991 23:06:53

3 4+BR_HOUSE 0.41492 0.67620 273141.00 08/05/1997 06:22:53

7 4+BR_HOUSE 1.74596 3.32184 229348.00 05/20/2005 00:15:39

4 4+BR_HOUSE 3.52749 0.91387 267949.00 02/25/2010 06:55:33

10 STUDIO 0.50743 1.31675 39148.00 05/26/1999 19:01:01

Notice that, for properties of the same type, the rows are ordered by ascending date.

See Also

GROUP_BY, QUERY_TABLE, UNIQUE

For more information on BUILD_TABLE, see .

For information on reading data into variables, see .

634 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

2
Procedure and Function Reference

PADIT Function
Pads an array with variable thickness.

Usage

c = PADIT(a, [b])

Input Parameters
a — An n-dimensional array.

b — (optional) A scalar with which to pad the array; if b is omitted then each pad
layer is a copy of its underlying layer.

Returned Value
c — The padded version of parameter a.

Keywords
t — An n-by-2 array of integers: t(m,0) and t(m,1) are the bottom and top pad thick-
nesses for dimension m of a; the default is to pad each side with one layer.

Example
a = INDGEN(2, 3) & PM, a

 0 2 4

 1 3 5

 PM, PADIT(a)

 0 0 2 4 4

 0 0 2 4 4

 1 1 3 5 5

 1 1 3 5 5

 PM, PADIT(a, 6)

 6 6 6 6 6

 6 0 2 4 6

 6 1 3 5 6

 6 6 6 6 6

See Also
VOL_PAD

PALETTE Procedure 635

PALETTE Procedure
Standard Library procedure that lets you interactively create a new color table
based on the RGB color system.

Usage

PALETTE [, colors_out]

Input Parameters

None.

Output Parameters

colors_out — (optional) Contains the color values of the final color table in the
form of a two-dimensional array that has the number of colors in the color table as
the first dimension and the integer 3 as the second dimension.

The values for red are stored in the first row, the values for green are stored in the
second row, and those for blue in the third row; in other words:

red = colors_out(*, 0)

green = colors_out(*, 1)

blue = colors_out(*, 2)

Keywords

None.

Discussion

PALETTE works only on displays with window systems. It creates an interactive
window that lets you use the mouse to create a new color table. This window is
shown in .

636 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Figure 2-35 The PALETTE window lets you use the mouse to create a new color table
interactively.

The PALETTE window contains the following items:

• Color Ramp — Displays the current color table.

• Slider Bars — Used to adjust the color values of the selected color index.

• Color Index Grid — Contains a representation of each color index that com-
prise the current color table. There are three rectangular slider bars for the red,
green, and blue color vectors. The grid is used to select a color index to adjust
and to create a new color ramp. The number of color indices that appear in the
grid depend on the number of colors selected with the WINDOW procedure.

• Control Button Area — Contains buttons for selecting Help, Undo Current
Color, and Undo All. To select a button, click it with the left mouse button.

The Help button displays information about the procedure in the main
PV-WAVE window

The Undo All button resets all color indices to their default values.

color ramp

current color index

slider bars

color index grid

control button area

PALETTE Procedure 637

The Undo Current Color button resets the currently selected color index to its
default value.

You can modify any number of color indices, or produce an interpolation between
two modified color indices. The default color table is the currently loaded color
table.

For information on using the PALETTE window, select the Help button and follow
the online instructions provided.

Example 1
TVSCL, LINDGEN(256, 256)

PALETTE, rgb_array

— Modify the color table to your liking and exit the procedure. —

SAVE, filename = ’my_colortable’, rgb_array

LOADCT, 2

RESTORE, ’my_colortable’

rgb_array = REFORM(rgb_array, $
N_ELEMENTS(rgb_array)/3, 3)

TVLCT, rgb_array(*, 0), rgb_array(*, 1), rgb_array(*, 2)

Example 2
TVSCL, LINDGEN(256, 256)

PALETTE

— Modify the color table to your liking and exit the procedure. —

TVLCT, r, g, b, /Get

SAVE, filename = ’my_colortable_2’, r, g, b

LOADCT, 8

RESTORE, ’my_colortable_2’

TVLCT, r, g, b

See Also

COLOR_CONVERT, COLOR_EDIT, COLOR_PALETTE,
MODIFYCT, WgCeditTool

For more ideas about what can be done with color tables, see .

638 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

PARAM_PRESENT Function
Tests if a parameter was actually present in the call to a procedure or function.

Usage

result = PARAM_PRESENT(parameter)

Input Parameters

parameter — One of the formal parameters as given in the function or procedure
definition.

Returned Value

result — A nonzero value (true) if the parameter was present in the call to the cur-
rent procedure or function. Returns a zero value (false) if the parameter was not
present.

Keywords

None.

Discussion

PARAM_PRESENT compliments the KEYWORD_SET and N_ELEMENTS
functions. PARAM_PRESENT lets you distinguish between the two cases in
which KEYWORD_SET returns FALSE, and the two cases when N_ELEMENTS
returns zero (0).

With KEYWORD_SET

The KEYWORD_SET function returns FALSE:

1) When the keyword was set to zero or an undefined variable.

2) When the keyword was not used in the call.

PARAM_PRESENT distinguishes between these cases by returning TRUE in case
1 and FALSE in case 2.

PARAM_PRESENT Function 639

With N_ELEMENTS

The N_ELEMENTS function returns zero (0) in two cases;

1) When the keyword or parameter was present but is an undefined
variable.

2) When the keyword or parameter was not present in the call.

PARAM_PRESENT distinguishes between these two cases by returning TRUE in
case 1 and FALSE in case 2.

Example
The following example demonstrates the expected results when the functions
PARAM_PRESENT, KEYWORD_SET, and N_ELEMENTS are used in a
procedure.

PRO test, Key = k

IF (PARAM_PRESENT(k)) THEN $
PRINT, ’Key is present’ $

ELSE PRINT, ’Key is not present’

IF (KEYWORD_SET(k)) THEN $
PRINT, ’Key is set’ $
ELSE PRINT, ’Key is NOT SET’

PRINT, ’Number of elements in Key = ’, N_ELEMENTS(k)

END

WAVE> test

Key is not present

Key is NOT SET

Number of elements in Key = 0

WAVE> test, Key = 0

Key is present

Key is NOT SET

Number of elements in key = 1

WAVE> test, Key = a

Key is present

Key is NOT SET

Number of elements in key = 0

WAVE> a = 10

WAVE> test, Key = a

Key is present

Key is SET

Number of elements in Key = 1

640 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

See Also

KEYWORD_SET, N_ELEMENTS, N_PARAMS

For more information on parameter checking, see .

PARSEFILENAME Procedure
Extracts specified parts of a full file pathname.

Usage

PARSEFILENAME, pathname

Input Parameters

pathname — A string containing a full file pathname.

Keywords

Extension — If set, returns the filename extension (for example, .pro).

Filename — If set, returns a string containing the file root name with its extension
(for example, boulder.img).

Fileroot — If set, returns a string containing the filename without its extension.

Path — If set, returns a string containing the full pathname without the filename.

Separator — If set, specifies a single-char string to use as a directory separator.
The default separator is platform-specific:

(UNIX) ’/’

(OpenVMS) ’]’

(Windows) ’\’

Discussion

The PARSEFILENAME procedure takes a string containing a path and/or a file-
name and returns its constituent components (path, filename, file root, and
extension) in variables specified using the keywords.

For example, on a UNIX system the file file_mine.pro consists of the file root
file_mine and the extension pro.

PIE Procedure 641

Example

The following example demonstrates PARSEFILENAME with a UNIX pathname:

full = ’/home/work/data/testimage.tif’

PARSEFILENAME, full, Fileroot = root, $
Path = path, Filename = name, $
Extension = extension

INFO, path, root, name, extension

PATH STRING = ’/home/work/data/’
ROOT STRING = ’testimage’
NAME STRING = ’testimage.tif’
EXTENSION STRING = ’tif’

See Also

CHECKFILE

PIE Procedure
Displays data as a pie chart.

Usage

PIE, data [, labels]

Input Parameters

data — An array containing the data to plot as a pie chart.

labels — (optional) A string array of labels for the legend. The array must contain
the same number of elements as data. If this parameter is not supplied, no legend
is displayed.

Keywords

Colors — Sets an array of color indices specifying colors for the slices. If there are
more slices than array elements, the colors are repeated. By default, the colors are
chosen sequentially from the color table, excluding black and white. If Line_Fill is
specified, the default color is !P.Color.

642 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Line_Fill — If nonzero, a line fill algorithm is used to fill the slices. This keyword
can also be set to an array of ones and zeroes to apply line filling to specific slices.
(Default: no line filling)

Fill_Thick — A floating point scalar or array specifying the thickness of fill lines.
If set to a scalar value, all slices receive the same line thickness. If set to an array,
line thicknesses are mapped, in sequential slices, to the value of each array index.
A thickness of 1 is normal, two is double-wide, and so on. (Default: !P.Thick)

NOTE This keyword has no effect unless Line_Fill is set.

Fill_Orientation — A floating-point scalar or array specifying the orientation of
fill lines, in degrees counterclockwise from the horizontal. If set to a scalar, the ori-
entation of fill lines in all slices is the same. If set to an array, the orientations are
mapped, in sequential slices, to the value of each array index. (Default: each slice
is set to a unique angle)

NOTE This keyword has no effect unless Line_Fill is set.

Fill_Linestyle — An integer or integer array specifying the style of fill lines. If set
to a scalar, all slices are filled with the same linestyle. If set to an array, the linestyle
of each slice is mapped, in sequential slices, to the value of each array index.
(Default: !P.Linestyle)

NOTE This keyword has no effect unless Line_Fill is set.

Valid linestyle indices are shown in the following table:

Index X Windows Style Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

PIE Procedure 643

Fill_Spacing — A floating point scalar or array specifying the space, in centime-
ters, between fill lines. If a set to a scalar, the spacing between lines in all slices is
the same. If set to an array, the spacing for each slice is mapped, in sequential
slices, to the value of each array index. (Default: one percent of the width of the
graphics window)

NOTE This keyword has no effect unless Line_Fill is set.

Fill_Background — An integer or integer array specifying the background color
behind fill lines. If set to a scalar, the specified color applies to all of the slices. If
set to an array, the colors for each slice are mapped, sequentially, to the value of
each array index. Set this keyword to –1 to specify no background. (Default: no
color behind fill lines)

NOTE This keyword has no effect unless Line_Fill is set.

Text_Color — An integer specifying the color index for the text used in titles and
legends. (Defaults: !P.Color)

Outline_Color — An integer specifying the color index used for the outline of the
pie slices and for the box around the legend. (Default: !P.Color)

NoLegend_Box — If nonzero, do not draw a box around the legend.

Legend_Position — Specifies the corner in which to place the legend. Choices are:

TIP If you do not want a legend to appear, do not specify the labels input
parameter.

Percent_Label — If nonzero, each slice is labeled with its percentage of the total
pie. If the slice is too small so that the text won’t fit, then it is not labeled. You can-
not specify both the Percent_Label and Value_Label keywords.

Value_Label — If nonzero, each slice is labeled with its value from the data array.
If the slice is too small so that the text won’t fit, then it is not be labeled. You may
not specify both the Percent_Label and Value_Label keywords.

0 Northwest corner (Default)

1 Northeast corner

2 Southwest corner

3 Southeast corner

644 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Label_Colors — Colors used for the slice labels, if one of Percent_Label or
Value_Label is set. May be a scalar or an array. If If set to a scalar, the specified
color applies to all of the slices. If set to an array, the colors for each slice are
mapped, sequentially, to the value of each array index. (Default: !P.Color)

Explode — An array of ones and zeroes specifying which (if any) slices should be
“exploded” (drawn away from the center of the pie circle). This array must have
the same number of elements as data. (Default: not exploded)

Offset_Explode — A scalar specifying the offset from the center of the circle for
exploded slices. The value is a fraction of the circle radius. (Default: 0.1)

Shadow_Color — An integer specifying the color index for a shadow under the cir-
cle. (Default: no shadow)

Offset_Shadow — A scalar specifying the offset from the center of the pie circle
for the shadow. The value is a fraction of the circle radius. (Default: 0.05)

Slice_Start_Ang — A floating point value specifying the angle, in degrees clock-
wise from the vertical, where to start drawing the first slice—the slice represented
by data(0). (Default: 0 (vertical)).

Slice_Reverse_Direction — If nonzero, draws slices in counterclockwise order
rather than in the default direction, clockwise.

Other PIE keywords are listed below. For a description of each keyword, see Chap-
ter 3, Graphics and Plotting Keywords.

Discussion

PIE and PIE_CHART produce similar looking graphics. PIE includes a legend
option and always ensures that label text and graphics fall within the plot window.

A legend for the colored pie slices is displayed in one corner, and labels (percent
or data value) may be displayed on the slices.

If the legend occupies a significant portion of the plot area, there may not be
enough room for the pie chart. The pie may be drawn very small, or it may overlap
the legend. Use a smaller character size or a larger window.

Some combinations of shadowing and explosion may cause the pie to be slightly
smaller than you may consider optimal. Sometimes, the shadow may overlap the

Charsize Noerase Title

Font Subtitle [XY]Margin

PIE Procedure 645

corner of the legend box. Try moving the legend to the left side (set the keyword
Legend_Position to 0 or 2).

Negative values in data produce unwanted plotting results (some slices are plotted
backwards); therefore, the absolute value of data is plotted. All labels, however,
will display the correct negative values.

You can use !P.Multi, !P.Position, and !P.Region with PIE.

Examples
; Create data

data = FLTARR(4)

data(0) = 32

data(1) = 22

data(2) = 11

data(3) = 35

; Create labels

strg = STRARR(4)

strg(0)=’Renault’

strg(1)=’Peugeot’

strg(2)=’Citroen’

strg(3)=’Others’

title = ’!18French automobile market shares’

; Create pie chart

PIE, data, strg, /Line_fill, Title=title, Fill_background=1, $
/Percent_label, Text_color=1

646 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Figure 2-36 A pie chart with line-filled slices, a legend, and a title. Each slice is labeled with
its percentage of the total pie.

See Also

PIE_CHART

PIE_CHART Procedure
Displays data as a pie chart.

Usage

PIE_CHART, data, xcenter, ycenter, radius

Input Parameters

data — An array of data values to be displayed as a pie chart.

PIE_CHART Procedure 647

xcenter, ycenter — Specifies the x and y coordinates of the center of the pie chart,
by default in normal coordinates.

radius — Specifies the size of the radius of the pie, by default in normal
coordinates.

Keywords

Device — If nonzero, the pie chart is drawn in device coordinates. (Default: normal
coordinates)

Label — A string array specifying the labels for each slice. The array must contain
the same number of elements as data. If a slice is too small to display text, the label
is not drawn. (Default: no labels)

Font — An integer specifying a PV-WAVE font command. For example, 3 is the
command for the font Complex Roman. Do not put an exclamation mark (!) in
front of the font command. For a complete list of font commands, see Chapter 10:
Using Fonts in the PV-WAVE User’s Guide. (Default: current font)

Charsize — Sets the overall character size for annotation. A Charsize of 1.0 is the
normal; a size of 2.0 is twice as big, and so on. (Default: !P.Charsize)

Tposition — An integer or integer array specifying where to draw labels for the
individual slices.

Tcolor — An integer array specifying colors for the labels. The colors for each
label are mapped, sequentially, to the value of each array index.

Tperct — If nonzero, the percentage for each slice is displayed. (Default: the per-
centage is not displayed)

Tvalue — If nonzero, the value of each slice is displayed. (Default: the values are
not displayed)

Tborder — If nonzero, a border is drawn around each label. (Default: no border)

Tbord_color — An integer specifying the color index for the label border.
(Default: !P.Color)

0 Draw the label inside the slice.

1 Draw the label outside the slice. Draw the label text horizon-
tally.

2 Draw the label outside the slice. Align the angle of the label
text with the slice.

648 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Shade — A floating point value specifying the percent of displacement for a
shadow under the pie chart. By default, the shadow is offset in the direction of 315
degrees. (Default: zero displacement)

Explode — A floating point scalar or array specifying how far from the center to
offset or “explode” the pie slices. This value is specified as a percentage of the pie
radius. If a scalar, all slices are offset by the same amount. If set to an array, the
offset for each slice is mapped, sequentially, to the value of each array index.
(Default: no offset)

Color — For a description of this keyword, see Chapter 3, Graphics and Plotting
Keywords.

Discussion

PIE and PIE_CHART produce similar looking graphics. PIE includes a legend
option and always ensures that label text and graphics fall within the plot window.

This procedure creates a pie chart at a specified position within the graphics win-
dow. You can add text labels and colors to individual slices of the pie. In addition,
pie slices can be offset or “exploded” from the center, and slices can be given shad-
ows for a three-dimensional look.

You can display up to 30 slices; however fewer than 15 is recommended for the best
display. Labels are not displayed in any slices that are too small. If data for a par-
ticular slice represents less than 0.01% of the overall dataset, the slice is not drawn
and an informational message appears.

PIE_CHART Procedure 649

Examples
data = fltarr(4)

data(0) = 32

data(1) = 22

data(2) = 11

data(3) = 35

strg = strarr(4)

; Create labels

; ---------------

strg(0)=’Renault’

strg(1)=’Peugeot’

strg(2)=’Citroen’

strg(3)=’Others’

title = ’!18French automobile market shares’

; Create the window

; -----------------

WINDOW, /Free, Xsize=800, Ysize=800

; Initialize a white background

; -----------------------------

loadct,13

!p.color=0

!P.Background=!d.n_colors-1

ERASE,!P.Background

; Plot the chart

; --------------

PIE_CHART, data, .5, .5, .25, /Tperc, Explode=[.05,0,0,.1], $
Shade=0.04, Tpos=[1,1,1,1], /Tborder, Color=[60,120,140,200],$
Label=strg, Font=’3’, Charsize=1.5

XYOUTS, .5,.9, Title, Charsize=3, Charthick=2, Align=.5, $
/Normal, Color=0

650 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Figure 2-37 An exploded pie chart with labels and a title.

See Also

PIE

PLOT Procedures 651

PLOT Procedures
(PLOT, PLOT_IO, PLOT_OI, PLOT_OO)

Produce a 2D graph of vector parameters:

PLOT produces a simple XY plot.

PLOT_IO produces an XY plot with logarithmic scaling on the y-axis.

PLOT_OI produces an XY plot with logarithmic scaling on the x-axis.

PLOT_OO produces an XY plot with logarithmic scaling on both the x- and y-axes.

Usage

PLOT, x [, y]

PLOT_IO, x [, y]

PLOT_OI, x [, y]

PLOT_OO, x [, y]

Input Parameters

x — A vector. If only one parameter is supplied, x is plotted on the y-axis as a func-
tion of point number.

y — (optional) A vector. If two parameters are supplied, y is plotted as a function
of x.

Keywords

Keywords let you control many aspects of a plot’s appearance. Valid keywords for
the four PLOT procedures are listed below. For a description of each keyword, see
Chapter 3, Graphics and Plotting Keywords.

Background Noclip Week_Boundary

Box Nodata [XYZ]Charsize

Channel Noerase [XYZ]Gridstyle

Charsize Normal [XYZ]Margin

Charthick Nsum [XYZ]Minor

Clip Polar [XYZ]Range

652 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example 1

This example shows the most common way to use the PLOT procedure.

x = FINDGEN(37) * 10

y = SIN(x * !Dtor)

; Create a sine wave from 0 to 360 degrees.

PLOT, y

; Plot the sine wave using the default values for the plotting
; keywords.

PLOT, x, y, XRange=[0, 360], Title = ’SIN(X)’,$
XTitle = ’degrees’, YTitle = ’sin(x)’

; Plot the sine wave against the x values, change the range of
; the x-axis, and add labels. Notice that PV-WAVE rounds the
; requested range values on the axis to values that give a nice
; looking plot—in this case 0 to 400.

PLOT, x, y, XRange = [0, 360], XStyle = 1, $
XTicks = 6, XMinor = 6, XTitle = $
’!8degrees’, YTitle = ’!8sin(x)!3’, $
Title = ’!17SIN(X)’

; Use keywords to get the desired style and to add fonts to
; the labels.

PLOTS, [0, 360], [0, 0]

; Plot a base line at 0.

Color Position [XYZ]Style

Compress Psym [XYZ]Tickformat

Data Solid_Psym [XYZ]Ticklen

Device Start_Level [XYZ]Tickname

DT_Range Subtitle [XYZ]Ticks

Font Symsize [XYZ]Tickv

Gridstyle T3d [XYZ]Title

Linestyle Thick [XYZ]Type

Max_Levels Tickformat YLabelCenter

Month_Abbr Ticklen YNozero

Title ZValue

PLOT Procedures 653

TEK_COLOR

; Set up a predefined color table called tek_color.

POLYFILL, x(0:18), y(0:18), Color = 6

; Fill under the positive half of the curve with solid magenta.

z = COS(x * !Dtor)

; Calculate the cosine of x.

OPLOT, x, z, Linestyle = 2, Color = 3, Thick =4

; Plot the cosine using a thick, dashed line and a different color.

Example 2

This example creates a logarithmic plot.

x = [100, 5000, 20000, 50000, 70000L]

y = [100, 10000, 1100000L, 100000L, 200000L]

; Create the data.

PLOT_OO, x, y, Ticklen = 0.5, Gridstyle = 1,$
Tickformat = ’(I7)’, Title = ’TEST PLOT’, $
YRange = [1.e2, 1.e7], YStyle = 1

; Plot the data on a log-log plot, with dotted grid lines. Use a
; format of I7 for the plot labels.

max_y = MAX(y)

; Get the maximum value of y.

x_max_y = x(WHERE(y EQ max_y))

; Get the value for x when y is at its maximum.

XYOUTS, x_max_y(0), max_y+1.e5, ’Test Max’, $
Alignment = 0.5

; Print Test Max centered at the maximum point.

Example 3

In this example, the cubic spline interpolant to the function

f(x) = 1000sin(1/x2) + cos(10x)

over the interval [1, 21] is plotted using PLOT_IO. This example uses the
PV-WAVE:IMSL Mathematics function CSINTERP.

x = FINDGEN(101)/5 + 1

; Generate the abscissas.

y = 1000 * SIN(1/x^2) + COS(10 * x)

; Generate the function values.

654 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

pp = CSINTERP(x, y)

; Compute the cubic spline interpolant.

ppval = SPVALUE(FINDGEN(1001)/50 + 1, pp)

PLOT_IO, FINDGEN(1001)/50 + 1, ppval

: Plot the result with logarithmic scaling on the y-axis (see
;).

Figure 2-38 A plot of the cubic spline interpolant of function f(x) using PLOT_IO.

Example 4

This example uses the PV-WAVE:IMSL Mathematics SPVALUE function.

x = FINDGEN(100) * 10

; Generate the abscissas.

y = x + 100 * COS(0.05 * x)

; Generate the function values.

pp = CSINTERP(x, y)

; Compute the cubic spline interpolant.

ppval = SPVALUE(FINDGEN(1000), pp)

PLOT_OI, FINDGEN(1000), ppval, XRange = [10, 1000]

; Plot the result with logarithmic scaling on the x-axis
; (see).

PLOT Procedures 655

Figure 2-39 Semi-logarithmic scaling of f(x) using PLOT_OI.

Example 5

This example creates a polar plot.

theta = (FINDGEN(200)/100) * !Pi

r = 2 * SIN(4 * theta)

; Create the data.

PLOT, r, theta, /Polar, XStyle=4, YStyle=4, $
Title=’POLAR PLOT TEST’

; Display a polar plot, disabling the box-style axes.

AXIS, 0, 0, XAxis=0

; Draw an x-axis at the point 0, 0 with tick marks going down.

AXIS, 0, 0, YAxis=0

; Draw a y-axis at the point 0, 0 with tick marks going left.

 Example 6

This example creates a plot with multiple axes.

temperature = [50., 40., 35., 60., 40.]

pressure = [1025, 1020, 1015, 1026, 1022]

; Create the data.

PLOT, temperature, YRange=[20., 70], $
YTitle = ’Degrees Fahrenheit’, $
XTitle = ’Sample Number’, $
Title = ’Sample Data’, XMargin = [8, 8], $
YStyle = 8, Color = 16

; Plot temperature against scale on the left axis.

AXIS, YAxis=1, YRange=[1000, 1040], YStyle=1,$

656 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

YTitle = ’Air Pressure’, /Save, Color = 16

; Create the axis for air pressure.

OPLOT, pressure, Linestyle = 2, Color = 6

; Plot air pressure against scale on the right axis.

LEGEND, [’temperature’, ’air pressure’], $
[16, 6], [0, 2], [0, 0], 2.4, 1005, 2

; Display a legend.

Example 7

This example creates a plot with a Date/Time x-axis.

x = VAR_TO_DT(1992,1,1)

; Create a date-time array with the first day of 1992.

x = DTGEN(x, 12, /Month)

; Create an array of date lines with one value for each month.

y = RANDOMU(seed, 12) * 1000

; Create an array of data values ranging from 0 to 1000.

PRINT, !Month_Names

hold_month_names = !Month_Names

; Print the current names for months, and then save them.

FOR i = 0, 11 DO !Month_Names(i) = $
STRMID(!Month_Names(i), 0, 3)

; Change the names to be 3-letter abbreviations for the months.

ylabels = STRARR(6)

FOR i = 0, 5 DO ylabels(i) = ’$’ + $
STRTRIM(string(100L * i * 2), 2)

; Create labels on the y-axis that start with a '$'.

PLOT, x, y, /Month_Abbr, /Box, $
Title=’Test Date Plot’, YRange=[0, 1000],$
YStyle=1, YTickname=ylabels, YTicks=5,$
YTitle=’In thousands’, YGridstyle=1, $
YTicklen=0.5

; Plot the data.

!Month_Names = hold_month_names

; Restore !Month_names to the original.

See Also

AXIS, OPLOT, OPLOTERR, PLOTERR, PLOTS, XYOUTS

For background information, see Chapter 4, Displaying 2D Data, in the PV-WAVE
User’s Guide.

PLOTERR Procedure 657

PLOTERR Procedure
Standard Library procedure that plots data points with accompanying symmetrical
error bars.

Usage

PLOTERR, [x,] y, error

Input Parameters

x — (optional) A real vector containing the x-coordinates of the data to plot. If not
present, x is assumed to be a vector of the same size as y and to have integer values
beginning at 0 and continuing to the size of y – 1.

y — A real vector containing the y-coordinates of the data to plot.

error — A vector containing the error bar values of every point to be plotted.

Keywords

Psym — The plotting symbol to use. If not specified, the default is 7 (the symbol
“X”). Psym corresponds to the system variable !Psym. See Chapter 3, Graphics
and Plotting Keywords, for a complete description of the Psym graphics keyword.

Type — Specifies the type of plot to produce. Valid values are:

Discussion

PLOTERR produces a plot of y versus x, with error bars drawn from y – error to y
+ error.

0 X Linear, Y Linear (the default)

1 X Linear, Y Log

2 X Log, Y Linear

3 X Log, Y Log

658 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example

Assume that vector y contains the data values to be plotted, and that error is the
vector containing the error bar values. The commands to plot the data points with
accompanying symmetrical error bars are:

y = [2, 1, 3, 3, 1]

error = [0.0, 0.5, 1.0, 0.5, 0.0]

PLOTERR, y, error, Psym = 4

To overplot a line through the error bar, enter the following command:

OPLOT, y

This produces the plot shown in :

Figure 2-40 In this example, PLOTERR was first used to plot data points with their accom-
panying symmetrical error bars, and then OPLOT was used to overplot a line through the
error bar.

See Also

ERRPLOT, OPLOT, OPLOTERR, PLOT

PLOT_FIELD Procedure 659

PLOT_FIELD Procedure
Standard Library procedure that plots a two-dimensional velocity field.

Usage

PLOT_FIELD, u, v

Input Parameters

u — A 2D array giving the field vector at each point along the x-axis.

v — A 2D array giving the field vector at each point along the y-axis.

Keywords

Aspect — The aspect ratio of the final plot; that is, the ratio of the length of x-axis
to the length of the y-axis. (Default: 1)

Length — The length of the longest field vector, expressed as a fraction of the plot-
ting area. (Default: 0.1)

N — The number of arrows to draw. (Default: 200)

Title — A string containing the title of the plot. The default title is “Velocity Field”.

YLabelCenter — Controls whether the top and bottom major tick labels on a Y axis
will be positioned within the boundaries of the axis box or centered across from the
corresponding major tick.

Discussion

PLOT_FIELD picks N points at random and traces a path from each point along
the field. The length of the path is proportional to Length and the field vector mag-
nitude at that point.

CAUTION Extra care must be taken if you run the PLOT_FIELD and VEL pro-
cedures in the same PV-WAVE session. Each procedure calls a routine named
ARROWS, but the ARROWS routines are slightly different. If you get an error in
the ARROWS routine when you are using PLOT_FIELD, recompile
PLOT_FIELD (by typing .run PLOT_FIELD), and then try again.

660 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example
u = FLTARR(21, 21)

v = FLTARR(21, 21)

; Create the arrays.

.RUN

; After you type .RUN, the prompt WAVE> will change to a dash (–)
; to indicate that you may enter a complete program unit.
FOR j = 0, 20 DO BEGIN

FOR i = 0, 20 DO BEGIN

x = 0.05 * FLOAT(i)

z = 0.05 * FLOAT(j)

u(i, j) = -SIN(!Pi * x) * COS(!Pi * z)

v(i, j) = COS(!Pi * x) * SIN(!Pi * z)

ENDFOR

ENDFOR

END

; This procedure puts values into the array. The last END exits you
; from programming mode, compiles and executes the procedure,
; and then returns you to the WAVE prompt.

PLOT_FIELD, u, v, Title = ’Velocity Field’

; Display the velocity field with default values ().

Figure 2-41 Velocity field displayed with default values.

PLOT_FIELD, u, v, N = 400, Title = ’Velocity Field’

; Display the velocity field using 400 arrows (see).

PLOT_FIELD Procedure 661

Figure 2-42 Velocity field displayed with 400 arrows.

PLOT_FIELD, u, v, Aspect = .7, Length = .4,$
N = 20, Title = ’Example of PLOT_FIELD’

; Display the velocity field with individual modifications (shown
; in).

Figure 2-43 Velocity field modified with various keywords.

See Also

VEL, VELOVECT

662 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

PLOT_HISTOGRAM Procedure
Plots a histogram.

Usage

PLOT_HISTOGRAM, variable

Input Parameters

variable — A 1D array containing histogram data. The array cannot be of type
complex, string, or structure.

Keywords

Axiscolor — (integer) Specifies the index of the axis color.

Binsize — Specifies the width of the bins displayed in the histogram.

Fillcolor — (integer) Specifies the index of the color used to fill the histogram.

Filled — If present and nonzero, the histogram is filled with color.

Noaxis — If present and nonzero, no axes are drawn.

Stepped — If present and nonzero, the histogram is plotted as “steps” rather than
as “bars”.

Title — A string containing a title for the histogram plot.

Xmax — The maximum value for which histogram data is plotted. Any data that
falls above this value will be clipped.

Xmin — The minimum value for which histogram data is plotted. This corresponds
to the leftmost point on the x-axis where the plot begins. By default, this minimum
is set to zero. If there are negative values in your histogram data, you may need to
adjust this value to shift the data to the left. Otherwise, the plot will start at the
origin.

Xverts — A 1D array containing the x-vertices of the bottom of each bar in the his-
togram plot is returned. Two paired-elements are returned for each bar.

PLOT_HISTOGRAM Procedure 663

Additional Keywords

Additional keywords let you control many aspects of a plot’s appearance. Valid
keywords for the PLOT_HISTOGRAM procedure are listed below. For a descrip-
tion of each keyword, see Chapter 3, Graphics and Plotting Keywords.

Discussion

A histogram is a graph that allows you to visualize quantitative trends in large
amounts of data. Histograms are different from bar charts because each “bar” in a
histogram represents the results of a statistical sampling of the data, whereas each
bar in a bar chart represents a discrete data element. In a histogram, data points do
not map to “bars” on the graph one-to-one as they do in a bar chart.

Each “bar” in a histogram is called a bin and the width of each bin represents a
range in the independent variable’s values. The height of each bin represents the
number of data points in the original variable that fall within the bin width — that
is, that fall within the specified range of the independent variable.

This routine is used to render the graphics for the WzHistogram VDA Tool.

Data suitable for use as input to this procedure can be produced with the HISTO-
GRAM function. For example:

hist_data = HISTOGRAM(original_data)

PLOT_HISTOGRAM, hist_data

The vertices for the eighth bar in a graph (b=8), can be obtained by using the fol-
lowing values returned by the Xverts keyword:

Xverts(i) and Xverts(i+1), where i = b*2

Example

The following commands generate and plot histogram data. Keywords are used to
color the histogram plot.

dist_data = DIST(20)

hist_data = HISTOGRAM(dist_data)

Background Noerase [XY]Ticklen

Clip Thick [XY]Title

Color [XY]Range [XY]Type

Nodata [XY]Style

664 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

TEK_COLOR

PLOT_HISTOGRAM, hist_data, /Filled, Color=3, Axiscolor=2

See Also

HISTOGRAM, WzHistogram

PLOTS Procedure
Plots vectors or points on the current graphics device in either two or three
dimensions.

Usage

PLOTS, x [, y [, z]]

Input Parameters

x — A vector parameter providing the x-coordinates of the points to be connected.

If only one parameter is specified, x must be an array of either two or three vectors:
(2,*) or (3,*). In this special case, x(0,*) is taken as the x values, x(1,*) is taken as
the y values, and x(2,*) is taken as the z values.

y — (optional) A vector parameter providing the y-coordinates of the points to be
connected.

z — (optional) If present, a vector parameter providing the z-coordinates of the
points to be connected. If z is not specified, x and y are used to draw lines in two
dimensions. z has no effect if the keyword T3d is not specified and the system vari-
able !P.T3d = 0.

Keywords

Keywords let you control many aspects of the plot’s appearance. PLOTS keywords
are listed below. For a description of each keyword, see Chapter 3, Graphics and
Plotting Keywords.

Channel Fill_Pattern Orientation Spacing

Clip Linestyle Pattern Symsize

PLOTS Procedure 665

Discussion

A valid data coordinate system must be established before PLOTS is called. (A call
to PLOT can be used to establish this coordinate system.) Also note that a
PV-WAVE window must be open and selected when the call to PLOTS is made for
the procedure to work correctly.

The coordinates for PLOTS can be given in data, device, or normalized form using
the Data, Device, or Normal keywords.

Example 1
WINDOW

xdata = [.1, .2, .5, .8, .9, .5]

ydata = [.3, .6, .9, .6, .3, .1]

PLOTS, xdata, ydata

PLOTS, xdata, ydata, /Normal

PLOTS, xdata, ydata, Symsize=5.0, Psym=-1,$
/Normal

Figure 2-44 Connected lines drawn with PLOTS.

Color Line_Fill PClip T3d

Data Noclip Psym Thick

Device Normal Solid_Psym Z

666 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example 2

This example plots a curve in R2. Notice that PLOT is first called to set up the two-
dimensional coordinate system. Normally, PLOT would be called to perform the
entire plot, but for demonstration purposes, PLOTS is used to complete the plot
once the coordinate system has been defined.

PLOT, FINDGEN(2), /Nodata, $
XRange = [-1, 1], YRange = [-1, 1]

; Set up the axes using PLOT.

p = FINDGEN(1000)/999

; Generate data.

x = p * SIN(50 * p)

y = p * COS(50 * p)

PLOTS, x, y

Figure 2-45 Plot of curve in R2using PLOTS .

Example 3

This example plot a curve in R3. Notice that SURFACE is called initially to set up
the three-dimensional coordinate system. It is also important to note that keywords
Nodata and Save are used when calling SURFACE, and keyword T3d is used in the
call to PLOTS.

SURFACE, FINDGEN(2, 2), /Nodata, /Save, $
XRange = [-1, 1], YRange = [-1, 1], $
ZRange = [0, 1]

z = FINDGEN(1000)/999

PM Procedure 667

x = z * SIN(50 * z)

y = z * COS(50 * z)

PLOTS, x, y, z, /T3d

Figure 2-46 Line plot in IR3.

See Also

OPLOT, PLOT

For additional examples, see the section Clipping PV-WAVE Graphics in Chapter
4 of the PV-WAVE User’s Guide and the section Procedure Used to Draw a House
in Chapter 5 of the PV-WAVE User’s Guide.

PM Procedure
Performs formatted output of matrices to the standard output stream (logical file
unit –1).

Usage

PM, expr1, ..., exprn

Input Parameters

expri — Expression to be output.

668 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Keywords

Format — If not specified, PV-WAVE uses its default rules for formatting the out-
put. Keyword Format allows the format to be specified in precise detail, using
FORTRAN-style specifications.

Title — If present, specifies a character string to be used as the title of the output
matrix. Only one title is printed, regardless of the number of expressions sent to
PM.

Discussion

Procedure PM formats output to the standard output stream of matrices stored in
the PV-WAVE linear algebra matrix-storage mode. This procedure is designed to
be used when working with matrices read by the procedures RM or RMF or other
matrices using the PV-WAVE matrix-storage scheme.

By using keywords, the form of the output matrix can be customized. Keyword
Title can be used to specify a character string to be used as a title. Keyword Format
is provided to allow for explicitly formatted output.

Example

In this example, a 2-by-3 matrix is read using the matrix-reading procedure RM
and the results are printed using the matrix-printing procedure PM.

RM, a, 2, 3

; Read in a 2-by-3 matrix.

row 0: 11 22 33

row 1: 40 50 60

PM, a

11.0000 22.0000 33.0000

40.0000 50.0000 60.0000

; Output the matrix to standard output.

See Also

PMF, RM, RMF

See for more information.

PMF Procedure 669

PMF Procedure
Performs formatted output of matrices to a specified file unit.

Usage

PMF, unit, expr1, ..., exprn

Input Parameters

unit — File unit to which the output is sent.

expri — Expression to be output.

Keywords

Format — If not specified, PV-WAVE uses its default rules for formatting the out-
put. Keyword Format allows the format to be specified in precise detail, using
FORTRAN-style specifications.

Title — Specifies a character string to be used as the title of the output matrix. Only
one title is printed, regardless of the number of expressions sent to PMF.

Discussion

Procedure PMF formats output to a specified file unit of matrices stored in the
PV-WAVE linear algebra matrix-storage mode. This procedure is designed to be
used when working with matrices read by the procedures RM or RMF or other
matrices using the PV-WAVE matrix-storage scheme.

Using keywords, the form of the output matrix can be customized. Keyword Title
can be used to specify a character string to be used as a title. Keyword Format is
provided to allow for explicitly formatted output.

Example

This example reads a 2-by-3 matrix using the matrix-reading procedure RM and
prints the results to standard output, (unit = –1), using the matrix-printing proce-
dure PMF.

RM, a, 2, 3

; Read matrix.

row 0: 11 22 33

670 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

row 1: 40 50 60

PMF, -1, a

11.0000 22.0000 33.0000

40.0000 50.0000 60.0000

; Output the matrix to standard output.

See Also

PM, RM, RMF

See for more information.

POINT_LUN Procedure
Allows the current position of the specified file to be set to any arbitrary point in
the file.

Usage

POINT_LUN, unit, position

Input Parameters

unit — The file unit (logical unit number) for which the file position will be set.
This keyword can be set to either unit or –unit. If –unit is specified, the current posi-
tion of the file pointer is returned in the output parameter position.

position — A positive integer specifying the position of the file pointer as a byte
offset from the start of the file.

Output Parameters

position — If –unit is specified, the current position of the file pointer (in bytes) is
returned in the position parameter. See the Example section.

Keywords

None.

POINT_LUN Procedure 671

Discussion

POINT_LUN is for the PV-WAVE programmer who wants explicit control over
positioning for reading or writing within a given file. It is seldom used for general
file I/O operations.

OpenVMS USERS To use POINT_LUN to specify a byte offset in an OpenVMS
file, you must use the Block keyword in the OPEN procedure when you open the
file. For example:

OPENR, 1, ’File.dat’, /Block

POINT_LUN, 1, 25B

Example

In this example, POINT_LUN is used to move about within an unformatted file of
integers.

a = INDGEN(100)

; Create an integer vector of length 100 that is initialized to the values
; of its one-dimensional subscripts.

OPENW, unit, ’ptlun.dat’, /Get_Lun

; Open a file called ptlun.dat for writing.

WRITEU, unit, a

; Write the 100-element integer vector as unformatted binary data to
; the file ptlun.dat.

POINT_LUN, -unit, pos

PRINT, ’Current offset into ptlun.dat is’, $
pos, ’ bytes.’

Current offset into ptlun.dat is 200 bytes.

; Retrieve and display the current position within ptlun.dat.

POINT_LUN, unit, 0

; Rewind the file to the beginning.

b = INTARR(2)

; Read two integers from the beginning of the file into a two-element
; integer array, b.

READU, unit, b

PRINT, b

0 1

POINT_LUN, -unit, pos

; Since two integers were just read, each of length 2 bytes, the

672 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

; current position within the file should be 4 bytes offset from
; beginning. Retrieve current position.

PRINT, ’Current offset into ptlun.dat is’, pos, ’ bytes.’

Current offset into ptlun.dat is 4 bytes.

FREE_LUN, unit

; Close the file and free the file unit number.

See Also

FREE_LUN, FSTAT, GET_LUN, OPEN (UNIX/OpenVMS),
OPEN (Windows), READ, WRITEU

For more information, see the section Positioning File Pointers in Chapter 8 of the
PV-WAVE Programmer’s Guide.

POLY Function
Standard Library function that evaluates a polynomial function of a variable.

Usage

result = POLY(x, coefficients)

Input Parameters

x — The variable that is evaluated. May be a scalar or array.

coefficients — A vector containing one more element than the degree of the poly-
nomial function. These elements are the coefficients of the polynomial equation
that is used by POLY.

Returned Value

result — The values calculated from the polynomial function of x.

Keywords

None.

POLY_2D Function 673

Discussion

POLY evaluates a polynomial function of a variable according to the formula:

result = c0 + c1x + c2x2 + ... + cn–1xn–1

where n is the dimension of the polynomial c, and c0 through cn–1 are the
coefficients.

POLY returns a variable with the same dimensions as x. Each element of the result
is equal to the computed value of c0 + c1x + c2x2 + cixi for each element of x.

The POLY function can be used in conjunction with POLY_FIT and POLYFITW,
which both return the coefficients of a polynomial function fitted through data.

Example
x = 2

c = [1, 2, 3]

func = POLY(x, c)

PRINT, func

17

See Also

POLY_2D, POLY_FIT, POLYFITW

POLY_2D Function
Performs polynomial warping of images.

Usage

result = POLY_2D(array, coeffx, coeffy [, interp [, dimx, ..., dimy]])

Input Parameters

array — The array to be processed. Must be two-dimensional. Can be of any basic
type except string.

674 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

coeffx — The x coefficients.

coeffy — The y coefficients.

interp — (optional) If present and nonzero, specifies that the bilinear interpolation
method is to be used in the resampling. Otherwise, the nearest neighbor method is
used.

dimx — (optional) If present, specifies the number of columns in the resulting array.
Otherwise, the output has the same number of columns as array.

dimy — (optional) If present, specifies the number of rows in the resulting array.
Otherwise, the output has the same number of rows as array.

Returned Value

result — A two-dimensional array containing the warped image. It is of the same
data type as array.

Keywords

Missing — Specifies the output value for points whose x ′ , y ′ is outside the bounds
of array. (If this keyword is not used, these values are extrapolated from the nearest
pixel of array.)

Discussion

POLY_2D performs a geometrical transformation in which the resulting array is
defined by:

g(x,y) = f(x ′, y ′) = f [a(x,y), b(x,y)]

where g(x,y) represents the pixel in the output image at coordinate (x, y), and
f(x ′, y ′) is the pixel at (x ′, y ′) in the input image that is used to derive g(x, y).

The functions a(x, y) and b(x, y) are polynomials in x and y of degree n, and specify
the spatial transformation:

x' a x y,() coeff xi j,
x jyi

j 0=

n

∑
i 0=

n

∑= =

POLY_2D Function 675

where n is the degree of the polynomials that are being used to produce the warp-
ing, and coeffx and coeffy are arrays containing the polynomial coefficient. Each
array must contain (n + 1)2 elements.

For example, for a linear transformation, coeffx and coeffy must contain four ele-
ments and may be either a 2-by-2 array or a 4-element vector. Cxi,j contains the
coefficient used to determine x ′, and is the weight of the term xjyi.

The nearest neighbor interpolation method is not linear, because new values that
are needed are merely set equal to the nearest existing value of image. For more
information on bilinear interpolation, see the BILINEAR function.

Bilinear interpolation can be time-consuming. For example, it requires about twice
as much time as does the nearest neighbor method, even if you are working with a
linear case (in other words, if n equals 1).

TIP The POLYWARP function may be used to fit (x ′, y ′) as a function of (x, y)
and return the coefficient arrays Cx and Cy.

The POLY_2D function supports multi-layer band interleaved images. When the
input array is three-dimensional, it is automatically treated as an array of images,
array(m, n, p), where p is the number of m by n images. Each image is then oper-
ated on separately and an array of the result images is returned.

Example

Some simple linear (degree one) transformations are shown in the following table:

P0,0 P1,0 P0,1 P1,1 Q0,0 Q1,0 Q0,1 Q1,1 Effect

0 0 1 0 0 1 0 0 Identity

0 0 0.5 0 0 1 0 0 Stretch x by a
factor of 2

0 0 1 0 0 2.0 0 0 Shrink y by a
factor of 2

z 0 0 0 0 0 0 0 Shift left by
z pixels

y' b x y,() coeff yi j,
x jyi

j 0=

n

∑
i 0=

n

∑= =

676 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

See Also

BILINEAR, POLY, POLY_FIT, POLYWARP

For details on interpolation methods. see .

POLY_AREA Function
Standard Library function that returns the area of an n-sided polygon, given the
vertices of the polygon.

Usage

result = POLY_AREA(x, y)

Input Parameters

x — An n-element real vector containing the x-coordinates of each vertex in the
polygon.

y — An n-element real vector containing the y-coordinates of each vertex in the
polygon.

Returned Value

result — The area of the polygon, returned as a floating-point value.

Keywords

None.

Discussion

POLY_AREA assumes that the input polygon has n vertices with n sides, and that
the edges connect the vertices in the order [(x1, y1), (x2, y2), ... , (xn, yn), (x1, y1)].
The last vertex must be connected to the first.

0 1 0 0 0 0 1 0 Transpose

P0,0 P1,0 P0,1 P1,1 Q0,0 Q1,0 Q0,1 Q1,1 Effect

POLY_C_CONV Function 677

Example 1
x = [1, 3, 2]

y = [1, 1, 4]

area = POLY_AREA(x, y)

PRINT, area

3.00000

Example 2
x = [2, 4, 4, 2]

y = [1, 1, 2, 2]

PRINT, POLY_AREA(x, y)

2.00000

See Also

POLYFILL, POLYFILLV, POLYSHADE

POLY_C_CONV Function
Returns a list of colors for each polygon, given a polygon list and a list of colors
for each vertex.

Usage

result = POLY_C_CONV(polygon_list, colors)

Input Parameters

polygon_list — An array containing a list of polygons. For more information, see
the section Vertex Lists and Polygon Lists in Chapter 7 of the PV-WAVE User’s
Guide.

colors — A vertex-based color list.

678 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Returned Value

result — An integer vector containing the list of colors, one color for each input
polygon. (In other words, the result contains the same number of colors as the num-
ber of polygons in polygon_list.)

Keywords

None.

Discussion

POLY_C_CONV is useful for converting a vertex-based color list to a polygon-
based list. For example, the SHADE_VOLUME procedure returns a list of polygon
colors when the Shades keyword is used. This list has one color per vertex. The
POLY_PLOT procedure, however, requires a color list with one color per polygon.

Example

This example program displays data warped onto an irregular sphere.
PRO sphere_demo2

radii = RANDOMU(s, 60, 60)

radii = SMOOTH((radii + 1.0), 2)

POLY_SPHERE, radii, 60, 60, vertex_list, $
polygon_list

; Define the sphere as a list of polygons.

p_colors = BYTSCL(DIST(60), Top=127)

; Define the shading colors for the sphere.

WINDOW, 0, Colors=128, XPos=16, YPos=384

LOADCT, 1

CENTER_VIEW, Xr=[-2.0, 2.0], $
Yr=[-2.0, 2.0], Zr=[-2.0, 2.0], $
Ax=(-75.0), Az=(-90.0), Zoom=0.99

; Set up the viewing window and load the color table.

TVSCL, POLYSHADE(vertex_list, polygon_list, $
/T3d, Shade=p_colors)

; Construct a shaded surface representation of the data and
; display it using POLYSHADE.

WINDOW, 1, Colors = 128, XPos = 256, YPos = 64

; Create a new window for a new plot.

pg_num = POLY_COUNT(polygon_list)

POLY_COUNT Function 679

; Count the number of polygons in the sphere.

vertex_list = POLY_NORM(vertex_list)

vertex_list = POLY_TRANS(vertex_list, !P.T)

vertex_list = POLY_DEV(vertex_list, 640, 512)

; Transform the polygon vertices from data coordinates to device
; coordinates.

p_colors = POLY_C_CONV(polygon_list, p_colors(*))

; Convert the colors from a vertex-based list to a polygon-based
; list.

POLY_PLOT, vertex_list, polygon_list, $
 pg_num, 640, 512, p_colors, 0, -1

; Plot the sphere using POLY_PLOT.
END

For another POLY_C_CONV example, see the poly_demo1 demonstration pro-
gram in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

POLY_PLOT, POLYSHADE, SHADE_VOLUME

POLY_COUNT Function
Returns the total number of polygons contained in a polygon list.

Usage

result = POLY_COUNT(polygon_list)

Input Parameters

polygon_list — An array containing a list of polygons. For more information, see
the section Vertex Lists and Polygon Lists in Chapter 7 of the PV-WAVE User’s
Guide.

680 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Returned Value

result — The total number of polygons contained in the specified polygon list.

Keywords

None.

Discussion

The value returned by POLY_COUNT is suitable for input as the pg_num param-
eter used in the POLY_PLOT procedure.

Example

See the Example section in the description of the POLY_C_CONV routine.

For another example, see the sphere_demo3 demonstration program in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

POLY_PLOT

POLY_DEV Function
Returns a list of 3D points converted from normal coordinates to device
coordinates.

Usage

result = POLY_DEV(points [,winx, winy])

Input Parameters

points — A (3, n) array of points (or vertices) to transform.

POLY_DEV Function 681

winx, winy — (optional) The maximum x and y dimension, respectively, in device
coordinates. If these parameters are omitted, the values of !D.X_Size and
!D.Y_Size are used.

Returned Value

result — The list of 3D points that has been converted from normal coordinates to
device coordinates. The list is in long integer format.

Keywords

None.

Example

The program in this example displays a perspective view of a surface from a view-
point within the data.

PRO poly_demo1

winx = 1000

winy = 750

; Specify the window size.

imgx = 477

imgy = 512

; Specify the image size.

elev_dat = BYTARR(imgx, imgy)

OPENR, 1, !Data_Dir + ’bldr_elev.dat’

READU, 1, elev_dat

CLOSE, 1

; Read in the elevation image data.

landsat = BYTARR(imgx, imgy)

OPENR, 1, !Data_Dir + ’bldr_img7.dat’

READU, 1, landsat

CLOSE, 1

; Read in the Landsat image data.

imgx = 120

imgy = 125

elev_dat = CONGRID(FLOAT(elev_dat), imgx, $
imgy, /Interp)

; Shrink the elevation data to a 120-by-125 array.

landsat = BYTSCL(CONGRID(FLOAT(landsat), $

682 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

imgx, imgy, /Interp), Top = 127)

; Shrink the Landsat image to a 120-by-125 array and scale the
; image into the range of 0 – 127.

zscale = 0.08

; Define the Z compression factor.

viewpoint = [105.0, 70.0, (5.0 * zscale)]

viewvector = [-10.0, -2.5, -0.75]

perspective = 0.06

izoom = 11.0

viewup = [0.0, 1.0]

viewcenter = [0.5, 0.5]

xr = [0, (imgx - 1)]

yr = [0, (imgy - 1)]

zr = [MIN(elev_dat), MAX(elev_dat)]

; Define the view parameters.

elev_dat = elev_dat * zscale

; Compress the elevation data.

SET_VIEW3D, viewpoint, viewvector, $
perspective, izoom, viewup, $
viewcenter, winx, winy, xr, yr, zr

; Set up a 3D view based on eye-point and view vector.

PRINT, "Building polygons ..."

POLY_SURF, elev_dat, vertex_list, $
polygon_list, pg_num

; Generate the polygons representing the surface.

vertex_list = vertex_list

PRINT, "Normalizing coordinates ..."

vertex_list = POLY_NORM(vertex_list)

; Convert the polygon vertices from data coordinates to normal
; coordinates.

PRINT, "Transforming coordinates ..."

vertex_list = POLY_TRANS(vertex_list, !P.T)

; Transform the new coordinates.

PRINT, "Changing to device coordinates ..."

vertex_list = POLY_DEV(vertex_list, winx, $
winy)

; Convert the normal coordinates to device coordinates.

WINDOW, XSize=winx, YSize=winy, XPos=10, $
YPos=50, Colors=128

; Set up a new window for plotting.
PRINT, "Plotting ..."

POLYFILL Procedure 683

landsat = POLY_C_CONV(polygon_list, landsat)

; Create an array containing one color for each polygon.
POLY_PLOT, vertex_list, polygon_list, $

pg_num, winx, winy, landsat, -1, -1

; Plot the surface.

END

For other examples of POLY_DEV, see the sphere_demo2, sphere_demo3,
and vol_demo4 demonstration programs in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

POLY_NORM, POLY_TRANS

For more information, see the section Coordinate Conversion in Chapter 7 of the
PV-WAVE User’s Guide, and the section Three Graphics Coordinate Systems in
Chapter 4 of the PV-WAVE User’s Guide.

POLYFILL Procedure
Fills the interior of a region of the display enclosed by an arbitrary 2D or 3D
polygon.

Usage

POLYFILL, x [, y [, z]]

Input Parameters

x — A vector parameter providing the x-coordinates of the points to be connected.

If only one parameter is specified, x must be an array of either two or three vectors:
(2,*) or (3,*). In this special case, x(0,*) is taken as the x values, x(1,*) is taken as
the y values, and x(2,*) is taken as the z values.

y — (optional) A vector parameter providing the y-coordinates of the points to be
connected.

684 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

z — (optional) If present, a vector parameter providing the z-coordinates of the
points to be connected. If z is not present, x and y are used to draw lines in two
dimensions. z has no effect if the keyword T3d is not specified and the system vari-
able !P.T3d = 0.

Keywords

Keywords let you control many aspects of the plot’s appearance. POLYFILL key-
words are listed below. For a description of each keyword, see Chapter 3, Graphics
and Plotting Keywords.

Z-buffer Specific Keywords

These keywords allow you to warp images over 2D or 3D polygons; the keywords
are valid only when the Z-buffer device is active. For more information on the Z-
buffer, see Appendix B, Output Devices and Window Systems.

Image_Coordinates — To warp an image over a polygon, pass the image into
POLYFILL with the Pattern keyword, and specify a (2, n) array containing the
image space coordinates that correspond to each of the n vertices with the
Image_Coordinates keyword.

Image_Interpolate — When present and nonzero, specifies that bilinear interpola-
tion is used instead of the nearest-neighbor method of sampling.

Mip — When present and nonzero, produces improved transparency by Maximum
Intensity Projection. Rather than setting an arbitrary threshold value, a pixel is set
in the Z-buffer, regardless of its depth, if its intensity is greater than the current
pixel in the buffer.

Threshold — Pixels less than the Threshold value are not drawn, producing a trans-
parent effect.

Channel Fill_Pattern Normal Spacing

Clip Linestyle Pattern Symsize

Color Line_Fill PClip T3d

Data Noclip Psym Thick

Device Orientation

POLYFILL Procedure 685

Discussion

The polygon is defined by a list of connected vertices stored in x, y, and z. The coor-
dinates can be given in data, device, or normalized form using the Data, Device, or
Normal keywords.

POLYFILL uses various filling methods:

• solid fill

• parallel lines

• a pattern contained in an array

• hardware-dependent fill pattern

Solid Fill Method — Most devices can fill with a solid color. Solid fill is per-
formed using the line fill method for devices that don’t have this hardware
capability. Keywords that specify a method are not required for solid filling.

Line Fill Method — Filling using parallel lines is device independent and works
on all devices that can draw lines. Cross-hatching may be obtained with multiple
fillings of differing orientations. The spacing, linestyle, orientation, and thickness
of the filling lines may be specified using the corresponding keywords. The
Line_Fill keyword selects this filling style, but is not required if either the Orien-
tation or Spacing keywords are present.

Patterned Fill Method — The method of patterned filling and the usage of various
fill patterns is hardware dependent. The fill pattern array may be directly specified
with the Pattern keyword for some output devices. If this keyword is omitted, the
polygon is filled with the hardware-dependent pattern index specified by the
Fill_Pattern keyword.

Example 1

In this example, POLYFILL is used to create and fill a square, triangle, and penta-
gon with different patterns. Device coordinates are used for these polygons.

a = INTARR(10, 10)

; Create fill pattern for square. This will be an X pattern.

FOR i = 0, 9 DO a(i, i) = !D.N_Colors - 1

a = a + ROTATE(a, 1)

POLYFILL, [225, 375, 375, 225], $
[275, 275, 425, 425], /Device, Pattern = a

; Create square and fill it with the pattern in variable a
; ().

b = INTARR(10, 10)

686 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

; Create fill pattern (horizontal lines) for triangle.

b(*, 2) = !D.N_Colors - 1

b(*, 7) = !D.N_Colors - 1

POLYFILL, [40, 180, 110], [50, 50, 200], $
/Device, Pattern = b

; Create triangle and fill it with the pattern in variable b
; ().

c = INTARR(10, 10)

; Create fill pattern (vertical lines) for pentagon.

c(2, *) = !D.N_Colors - 1

c(7, *) = !D.N_Colors - 1

POLYFILL, [420, 560, 560, 490, 420], $
[50, 50, 130, 200, 130], /Device, $
Pattern = c

; Create pentagon and fill it with the pattern in variable c
; ().

Figure 2-47 Pattern-filled polygons.

POLYFILL Procedure 687

Example 2

This example uses POLYFILL to draw the faces of cubes that are stacked on top of
each other in pyramid fashion. The width and length of the base of the stack is equal
to numcubes. This value is an argument passed to the procedure that draws the
cubes.

The SURFACE procedure is used to establish a three-dimensional transformation
matrix that determines the view. The T3d keyword is used with POLYFILL so that
the transformation matrix established by SURFACE is used.

PRO cubes, numcubes

; Argument numcubes is the number of cubes to place along the base.

COMMON com1, size, colr1, colr2, colr3

size = 1.0D/numcubes

; Determine size, which is the width, height, and length of each cube.
; Note that everything is normalized to lie between 0 and 1.

LOADCT, 3

; Load red temperature color table.

SURFACE, FLTARR(2, 2), /Nodata, XStyle = 4, $
YStyle = 4, ZStyle = 4, XRange = [0, 1], $
YRange = [-1, 0], ZRange = [0, 1], /Save

; Establish three-dimensional transformation using SURFACE.
; The Nodata keyword permits the use of a dummy
; two-dimensional array to be passed to SURFACE. Setting
; XStyle, YStyle, and ZStyle to 4 causes the axes to be invisible.
; The ranges are set here, and the transformation is saved.

colr1 = FIX(!D.N_Colors/2.0)

colr2 = (FIX((!D.N_Colors - colr1)/2.0) + $
colr1) MOD !D.N_Colors

colr3 = (FIX((!D.N_Colors - colr2)/2.0) + $
colr1) MOD !D.N_Colors

; Determine available colors to use.

z = 0

FOR i = FIX(numcubes), 1, -1 DO BEGIN

x = (FIX(numcubes) - i) * size

y = -size

z = z + size

; Draw the cubes by layer, starting at the bottom.
FOR j = 1, i - 1 DO BEGIN

draw_cube, x, y, z

; Draw the cubes along the left edge of the current layer.

688 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

y = y - size

ENDFOR

x = (i - 1) * size + x

FOR j = 1, i DO BEGIN

DRAW_CUBE, x, y, z

x = x - size

; Draw the cubes along the right edge of the current layer.
ENDFOR

ENDFOR

END

PRO draw_cube, x, y, z

; Draw a cube.

COMMON com1, size, colr1, colr2, colr3

left_face, x, y, z, colr1

right_face, x, y, z, colr2

top_face, x, y, z, colr3

END

PRO left_face, x, y, z, colr

COMMON com1, size

POLYFILL, [x, x, x, x], [y, y, y + size, $
y + size], [z, z - size, z - size, z], $
/T3d, Color = colr

; Use POLYFILL to draw the left face of a cube.

END

PRO right_face, x, y, z, colr

COMMON com1, size

POLYFILL, [x, x + size, x + size, x], $
[y, y, y, y], [z, z, z - size, z - size], $
/T3d, Color = colr

; Use POLYFILL to draw the right face of a cube.

END

PRO top_face, x, y, z, colr

COMMON com1, size

POLYFILL, [x, x + size, x + size, x], $
[y, y, y + size, y + size], [z, z, z, z], $
/T3d, Color = colr

; Use POLYFILL to draw the top face of a cube.

END

POLYFILL Procedure 689

If this procedure is contained in a file named cubes.pro in your directory, it can
be compiled with the following command:

.RUN cubes

The number of levels in the pyramid height is equal to the number passed to cubes.
If the procedure is run with the command:

cubes, 8

then a pyramid with eight levels is created (see).

Figure 2-48 Example of three-dimensional polygon filling.

See Also

POLY_AREA, CONTOUR2

690 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

POLYFILLV Function
Returns a vector containing the subscripts of the array elements contained inside a
specified polygon.

Usage

result = POLYFILLV(x, y, sx, sy [, run_length])

Input Parameters

x — A vector containing the x subscripts of the vertices that define the polygon.

y — A vector containing the y subscripts of the vertices that define the polygon.

sx — The number of columns in the array surrounding the polygon.

sy — The number of rows in the array surrounding the polygon.

run_length — (optional) If present and nonzero, returns a vector of run lengths,
rather than subscripts. Each element with an even subscript result contains the
length of the run, and the following element contains the starting index of the run.

For large polygons, using run_length can save considerable space.

Returned Value

result — A vector containing the subscripts of the array elements contained inside
a polygon defined by x and y.

Keywords

None.

Discussion

POLYFILLV is useful in defining, analyzing, and displaying regions of interest
within a two-dimensional array.

The x and y parameters are vectors containing the subscripts of the vertices that
define the polygon in the coordinate system of the two-dimensional sx-by-sy array.

POLY_FIT Function 691

The sx and sy parameters define the number of columns and rows in the array
enclosing the polygon. At least three points must be specified, and all points should
lie within the limits:

0 ≤ xi < sx and 0 ≤ yi < sy for all i

The polygon is defined by connecting each point with its successor and the last
point with the first.

Example

This example determines the mean and standard deviation of the elements within a
triangular region defined by the vertices at pixel coordinates (100, 100), (200, 300),
and (300, 100), inside a 512-by-512 array called data.

x = [100, 200, 300]

y = [100, 300, 100]

; Define triangle’s coordinates.

p = data(POLYFILLV(x, y, 512, 512))

; Get the subscripts of the elements in the polygon.

std = STDEV(p, mean)

; Use the STDEV function to obtain the mean and standard deviation
; of the selected elements.

See Also

POLY_AREA

POLY_FIT Function
Standard Library function that fits an n-degree polynomial curve through a set of
data points using the least-squares method.

Usage

result = POLY_FIT(x, y, deg [, yft, ybd, sig, mat])

Input Parameters

x — The vector containing the independent x-coordinates of the data.

692 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

y — The vector containing the dependent y-coordinates of the data. Must have the
same number of elements as x.

deg — The degree of the polynomial to be fitted to the data.

Output Parameters

yft — (optional) The vector containing the calculated y values.

ybd — (optional) The vector containing the error estimate of each point. (The error
estimate is equal to one standard deviation.)

sig — (optional) The standard deviation of the function, expressed in the units of
the y direction.

mat — (optional) The correlation matrix of the coefficients.

Returned Value

result — The vector containing the coefficients of the polynomial equation which
best approximates the data.

Keywords

None.

Discussion

POLY_FIT uses a least-squares method for determining the equation of the curve,
which minimizes the error at each point of the curve. This function is useful for
showing the relationship between two variables.

POLY_FIT returns a vector with a length of deg + 1. For example, if you had
requested a polynomial of degree 3, the fitted curve would have the equation:

f(x) = result(3)x3 + result(2)x2 + result(1)x + result(0)

The yft parameter is in a format that can be readily displayed as a curve alongside
the input curve, thereby allowing you to compare the two curves.

Example
x = FINDGEN(9)

y = [5., 4., 3., 2., 2., 3., 5., 6., 7.]

; Create the data.

POLY_FIT Function 693

TEK_COLOR

; Load a color table.

PLOT, x, y, Title=’POLY_FIT EXAMPLE’

; Plot the data.

coeff_1_deg = POLY_FIT(x, y, 1, yfit)

; Fit with a first-order polynomial.

OPLOT, x, yfit, Color=3

; Overplot the calculated values on the original plot.

coeff_3_deg = POLY_FIT(x, y, 3, yfit)

; Fit with a third-order polynomial.

OPLOT, x, yfit, Color=2

; Overplot the calculated values on the original plot.

coeff_5_deg = POLY_FIT(x, y, 5, yfit)

; Fit with a fifth-order polynomial.

OPLOT, x, yfit, Color=6

; Overplot the calculated values on the original plot.

labels = [’Original data’,$
’Fit with first order polynomial’,$
’Fit with third order polynomial’,$
’Fit with fifth order polynomial’]

LEGEND, labels, [255, 3, 2, 6], [0, 0, 0, 0], $
[0, 0, 0, 0], 4., 1.5, .3

; Put a legend on the plot.

See Also

CURVEFIT, FUNCT, GAUSSFIT, POLYFITW, REGRESS, SVDFIT

694 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

POLYFITW Function
Standard Library function that fits an n-degree polynomial curve through a set of
data points using the least-squares method.

Usage

result = POLYFITW(x, y, wt, deg [, yft, ybd, sig, mat])

Input Parameters

x — The vector containing the independent x-coordinates of the data.

y — The vector containing the dependent y-coordinates of the data. Must have the
same number of elements as x.

wt — The vector of weighting factors for determining the weighting of the least-
squares fit. Must have the same number of elements as x. Normalize this parameter
for best results.

deg — The degree of the polynomial to be fitted to the data.

Output Parameters

yft — (optional) The vector containing the calculated y values.

ybd — (optional) The vector containing the error estimate of each point. (The error
estimate is equal to one standard deviation.)

sig — (optional) The standard deviation of the function, expressed in the units of
the y direction.

mat — (optional) The correlation matrix of the coefficients.

Returned Value

result — The vector containing the coefficients of the polynomial equation that
best approximates the data. It has a length of deg + 1.

Keywords

None.

POLYFITW Function 695

Discussion

POLYFITW is similar to the POLY_FIT function, except that it permits the weight-
ing of data points. Weighting is useful when you want to correct for potential errors
in the data you are fitting to a curve. The weighting factor, wt, adjusts the parame-
ters of the curve so that the error at each point of the curve is minimized. For more
information, see the section Weighting Factor on page 180 in Volume 1 of this
Reference.

Example
x = FINDGEN(9)

y = [5., 4., 3., 2., 2., 3., 5., 6., 7.]

; Create the data.

TEK_COLOR

PLOT, x, y, Title=’POLYFITW EXAMPLE’

; Load a color table and plot the original data.

wt = FLTARR(9) + 1.0

coeff_no_wt = POLYFITW(x, y, wt, 1, yfit)

; Fit with a first-order polynomial, without weighting.

OPLOT, x, yfit, Color=3

; Overplot the calculated values on the original plot.

wt = 1.0/y

coeff_stat_wt = POLYFITW(x, y, wt, 1, yfit)

; Fit with statistical weighting.

OPLOT, x, yfit, Color=2

; Overplot the calculated values on the original plot.

labels=[’Original data’, ’Fit with no weighting’,$
’Fit with statistical weighting’]

LEGEND, labels, [255, 3, 2], [0, 0, 0], $
[0, 0, 0], 4., 1.5, .3

; Put a legend on the plot.

See Also

CURVEFIT, FUNCT, GAUSSFIT, POLY_FIT, REGRESS, SVDFIT

696 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

POLY_MERGE Procedure
Merges two vertex lists and two polygon lists together so that they can be rendered
in a single pass.

Usage

POLY_MERGE, vertex_list1, vertex_list2, polygon_list1,
polygon_list2, vert, poly, pg_num

Input Parameters

vertex_list1 — The first vertex list.

vertex_list2 — The second vertex list.

polygon_list1 — The first polygon list.

polygon_list2 — The second polygon list.

NOTE For more information, see the section Vertex Lists and Polygon Lists in
Chapter 7 of the PV-WAVE User’s Guide.

Output Parameters

vert — A new variable consisting of vertex_list1 and vertex_list2 merged together.

poly — A new variable consisting of polygon_list1 and polygon_list2 merged
together and modified so that it is compatible with vert.

pg_num — The total number of polygons in the merged list.

Keywords

Edge1 — A vector containing the edge colors for the first polygon list.

Edge2 — A vector containing the edge colors for the second polygon list.

Edge_List — The edge colors for the merged list.

Fill1 — A vector containing the fill colors for the first polygon list.

Fill2 — A vector containing the fill colors for the second polygon list.

Fill_List — The fill colors for the merged list.

POLY_NORM Function 697

Opaque1 — A vector containing the translucency factors for the first polygon list.
(A translucency factor of 0 is completely clear. The higher the translucency factor,
the more opaque the polygon.)

Opaque2 — A vector containing the translucency factors for the second polygon
list.

Opaque_List — The translucency factors for the merged list.

Discussion

The merged lists returned by POLY_MERGE are suitable for input into
POLYSHADE or POLY_PLOT, where they may be rendered in a single pass.

Example

See the sphere_demo3 demonstration program in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

POLY_PLOT, POLYSHADE

POLY_NORM Function
Returns a list of 3D points converted from data coordinates to normal coordinates.

Usage

result = POLY_NORM(points)

Input Parameters

points — A (3, n) array of points (or vertices) to transform.

698 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Returned Value

result — The list of 3D points that has been converted from data coordinates to nor-
mal coordinates.

Keywords

None.

Discussion

POLY_NORM uses the system variables !X.S, !Y.S, and !Z.S to do the conversion.
(These system variables are described in Chapter 4, System Variables.)

Example

See the Example section in the description of the POLY_C_CONV routine.

For other examples, see the poly_demo1, sphere_demo3, and vol_demo4
demonstration programs in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

POLY_DEV, POLY_TRANS

For more information, see the section Coordinate Conversion in Chapter 7 of the
PV-WAVE User’s Guide, and the section Three Graphics Coordinate Systems in
Chapter 4 of the PV-WAVE User’s Guide.

POLY_PLOT Procedure 699

POLY_PLOT Procedure
Renders a given list of polygons.

Usage

POLY_PLOT, vertex_list, polygon_list, pg_num, winx, winy,
fill_colors, edge_colors, poly_opaque

Input Parameters

vertex_list — A (3, n) array containing the 3D coordinates of each vertex. Must be
in device coordinates.

TIP To obtain device coordinates from data coordinates, use the POLY_NORM,
POLY_TRANS, and POLY_DEV functions, in that order.

polygon_list — An array containing the number of sides for each polygon and the
subscripts into the vertex_list array.

For more information on the above two parameters, see .

pg_num — The total number of polygons to plot.

winx, winy — The x and y dimensions, respectively, of the current plot window in
device coordinates.

NOTE The winx and winy parameters are ignored if the Image keyword is present.

fill_colors — The color(s) to fill the polygons with:

• If fill_colors contains fewer than pg_num elements, then all polygons are filled
with the color specified by the first element in fill_colors.

• Otherwise, each polygon is filled with the corresponding color found in
fill_colors(i).

• To prevent polygon fill, set fill_colors to –1. For example, fill_colors could
contain:

255 Fill the first polygon with color 255.

200 Fill the second polygon with color 200.

–1 Don’t fill the third polygon.

700 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

edge_colors — The color(s) to draw the polygon edges with. edge_colors works in
the same manner as fill_colors.

To suppress the plotting of polygon edges, set edge_colors to –1.

NOTE Polygon edges are not plotted if the Image keyword is present.

poly_opaque — The translucency factor to use for plotting each polygon:

• If poly_opaque contains fewer than pg_num elements, then all polygons are
plotted with the translucency factor specified by the first element in
poly_opaque.

• Otherwise, each polygon is plotted with the corresponding translucency factor
found in poly_opaque(i).

• To prevent translucency, set poly_opaque to –1.

A translucency factor of 0 is completely clear. The higher the translucency factor,
the more opaque the polygon is. If the maximum value found in Image is 255 and
if the maximum color value found in fill_colors is also 255, then a translucency fac-
tor of 255 is completely opaque.

NOTE The Image keyword must be used for poly_opaque to take effect.

Keywords

Image — On input, a 2D array containing the image on which to plot the polygons:

• If Image is not present, then the polygons are plotted immediately as generated
in the current graphics window.

• If Image is present, then no polygon edges are plotted and the winx and winy
parameters are ignored.

On output, Image contains the original image with the polygons plotted on it. This
image may then be displayed using TV or other similar routines.

ZClip — If this keyword is present and nonzero, then polygons that do not have at
least one vertex in front of the view point are not plotted.

0 Fill the fourth polygon with color 0.

POLY_PLOT Procedure 701

Discussion

POLY_PLOT renders a list of polygons. It is slower than the alternative procedure
POLYSHADE, but it is more flexible:

• POLY_PLOT can draw the edges of the polygons, unlike POLYSHADE.

• POLY_PLOT does not fail if one or more polygons have a vertex outside the
current plot window, unlike POLYSHADE.

POLY_PLOT uses a simple back-to-front sorting method to determine the polygon
plotting order. It does not render polygons with light source shading, but it can plot
opaque and translucent polygons. You can also specify the fill color and edge color
for each polygon.

Example

See the Example section in the description of the POLY_DEV function.

For other examples, see the sphere_demo2, sphere_demo3, and
vol_demo4 demonstration programs in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

POLY_C_CONV, POLY_DEV, POLY_NORM, POLYSHADE, POLY_TRANS

702 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

POLYSHADE Function
Constructs a shaded surface representation of one or more solids described by a set
of polygons.

Usage

result = POLYSHADE(vertices, polygons)

result = POLYSHADE(x, y, z, polygons)

Input Parameters

vertices — A (3, n) array containing the x-, y-, and z-coordinates of each vertex.
Coordinates may be in either data or normalized coordinates, depending on which
keywords are present.

x, y, z — The x-, y-, and z-coordinates of each vertex may alternatively be specified
as three individual array expressions; x, y, and z must all contain the same number
of elements.

polygons — An integer or longword array containing the indices of the vertices of
each polygon. The vertices of each polygon should be listed in counterclockwise
order when observed from outside the surface. The vertex description of each poly-
gon is a vector of the form [n, i0, i1, ... , in – 1], and the array polygons is the
concatenation of the lists of each polygon.

For example, to render a pyramid consisting of four triangles, polygons will contain
16 elements, made by concatenating four 4-element vectors of the form [3, V0, V1,
V2]. V0, V1, and V2 are the indices of the vertices describing each triangle.

Returned Value

result — A 2D byte array containing the shaded image.

Keywords

Data — Indicates that the vertex coordinates are in data units, the default coordi-
nate system.

Mesh — When present and nonzero, a wire-frame mesh is drawn over the poly-
gons, and they are not shaded.

POLYSHADE Function 703

Normal — Indicates that coordinates are in normalized units, within the 3D (0,1)
cube.

Poly_Shades — Similar to the Shades keyword, except one shade per polygon is
passed to POLYFILL rather than one shade per vertex.

Shades — An array expression, of the same number of elements as vertices, con-
taining the color index at each vertex. The shading of each pixel is interpolated
from the surrounding Shades values. For most displays, this keyword should be
scaled into the range of bytes. If this keyword is omitted, light source shading is
used.

T3d — Enables the 3D to 2D transformation contained in the homogeneous 4-by-
4 matrix !P.T. If this keyword is set, the system variable !P.T must contain a valid
transformation matrix.

XSize — The number of columns in the output image array. If omitted, sets the
number of columns equal to the x resolution of the currently selected display
device.

YSize — The number of rows in the output image array. If omitted, sets the number
of rows equal to the y resolution of the currently selected display device.

CAUTION If you are using a PostScript or other high resolution graphics device,
you should explicitly specify the XSize and YSize parameters. Making the output
image of full device size (the default) will result in an insufficient memory error.

Discussion

Note that you must set up a 3D coordinate system prior to calling POLYSHADE.

POLYSHADE constructs the shaded surface using the scan line algorithm. The
shading model is a combination of diffuse reflection and depth cueing. Polygons
are shaded in one of two ways:

• With constant shading, where each polygon is given a constant intensity.

• With Gouraud shading, where the intensity is computed at each vertex and then
interpolated over the polygon.

TIP Use the SET_SHADING procedure to control the direction of the light source
and other shading parameters.

704 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example

Function POLYSHADE is often used in conjunction with procedure
SHADE_VOLUME for volume visualization. This example creates a volume
dataset and renders an isosurface from that dataset.

vol = FLTARR(20, 20, 20)

; Create a 3D single-precision, floating-point array.

FOR x = 0, 19 DO FOR y = 0, 19 $
DO FOR z = 0, 19 DO $
vol(x, y, z) = SQRT((x-10)^2 + (y-10)^2 + $
(z-10)^2) + 1.5 * COS(z)

; Create the volume dataset.

SHADE_VOLUME, vol, 7, v, p

; Find the vertices and polygon at a contour level of 7.

SURFACE, FLTARR(2, 2), /Nodata, /Save, $
XRange = [0, 20], YRange = [0, 20], $
ZRange = [0, 20], XStyle = 4, YStyle = 4, $
ZStyle = 4

; Set up an appropriate 3D transformation.

image = POLYSHADE(v, p, /T3d)

; Render the image. Note that the T3d keyword has been set so that
; the 3D transformation established by SCALE3 is used.

TV, image

; Display the image.

Figure 2-49 Isosurface at level 7 of volume dataset from example.

POLY_SPHERE Procedure 705

See Also

RENDER24, SET_SHADING

System Variables: !P.T

For additional information on defining a coordinate system, see .

POLY_SPHERE Procedure
Generates the vertex list and polygon list that represent a sphere.

Usage

POLY_SPHERE, radius, px, py, vertex_list, polygon_list

Input Parameters

radius — If radius is a scalar value, then all the polygons are generated at this
radius.

If radius is a 2D (m, n) array, then the radius of each polygon is generated at the
corresponding radius. The radius array is scaled to the dimensions (px, py) before
use.

You can use the array returned by the GRID_SPHERE function as radius values.

px — A scalar value specifying the number of polygons around the equator.

py — A scalar value specifying the number of polygons around the meridian.

Output Parameters

vertex_list — A (3, n) array of polygon vertices.

polygon_list — The list of vertices for each polygon.

For more information, see the section Vertex Lists and Polygon Lists in Chapter 7
of the PV-WAVE User’s Guide.

Keywords

Degrees — If Degrees is present and nonzero, then the values for XMin, XMax,
YMin, and YMax are in degrees instead of radians.

706 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

XMax — The longitude of the right edge of the portion of the polygon mesh you
want to use (where on the sphere the polygon mesh is to be extracted). Should be
in the range –π to +π radians (–180 to +180 degrees). The value is assumed to be
in radians unless the Degrees keyword is set.

If XMax is omitted, a longitude of π is mapped to the right edge of the polygon
mesh for the entire sphere (when viewed from outside the sphere).

XMin — The longitude of the left edge of the portion of the polygon mesh you
want to use (where on the sphere the polygon mesh is to be extracted). Should be
in the range –π to +π radians (–180 to +180 degrees). The value is assumed to be
in radians unless the Degrees keyword is set.

If XMin is omitted, a longitude of –π is mapped to the left edge of the polygon mesh
for the entire sphere (when viewed from outside the sphere).

YMax — The latitude of the top edge of the polygon mesh. Should be in the range
–π/2 to +π/2 radians (–90 to +90 degrees). The value is assumed to be in radians
unless the Degrees keyword is set.

If YMax is omitted, a latitude of π/2 is mapped to the top edge of the polygon mesh
for the entire sphere (when viewed from outside the sphere).

YMin — The latitude of the bottom edge of the portion of the polygon mesh you
want to use (where on the sphere the polygon mesh is to be extracted). Should be
in the range –π/2 to +π/2 radians (–90 to +90 degrees). The value is assumed to be
in radians unless the Degrees keyword is set.

If YMin is omitted, a latitude of –π/2 is mapped to the bottom edge of the polygon
mesh for the entire sphere (when viewed from outside the sphere).

Discussion

The vertex_list and polygon_list generated by POLY_SPHERE are suitable for use
with the POLYSHADE and POLY_PLOT rendering procedures.

To generate the polygons for a portion of a sphere, rather than an entire sphere, use
the XMin, XMax, YMin, and YMax keywords. For example, to work with the central
portion of the country from a map of the United States, you might use:

XMin=-110, XMax=-100, YMin=35, YMax=45

Example
PRO sphere_demo1

; This program displays an image warped onto a sphere.

POLY_SPHERE Procedure 707

xval = 512

yval = 512

img = BYTARR(xval, yval)

OPENR, 1, !Data_Dir + ’mandril.img’

READU, 1, img

CLOSE, 1

xval = 128

yval = 128

img = REBIN(img, xval, yval)

; Read in the image and shrink it to a 128-by-128 array.

POLY_SPHERE, 1.0, xval, yval, vertex_list, $
polygon_list

; Define the sphere as a list of polygons.
WINDOW, 0, Colors=128

LOADCT, 4

CENTER_VIEW, Ax=(-75.0), Az=(-90.0), Zoom=0.9

; Set up the viewing window and load the color table.

TVSCL, POLYSHADE(vertex_list, polygon_list, /T3d, Shade=img)

; Display the shaded surface representation of the data warped
; onto the sphere.

TVSCL, img

; Display the original image in the corner of the window.

END

For other examples, see the grid_demo5, sphere_demo2, and
sphere_demo3 demonstration programs in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

GRID_SPHERE, POLYSHADE, POLY_SURF

708 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

POLY_SURF Procedure
Generates a 3D vertex list and a polygon list, given a 2D array containing z values.

Usage

POLY_SURF, surf_dat, vertex_list, polygon_list, pg_num

Input Parameters

surf_dat — A 2D array containing z values. The 3D polygon vertices are generated
from this data.

Output Parameters

vertex_list — A (3, n) array containing the 3D coordinates of the polygon vertices.

polygon_list — A 1D array containing the number of sides for each polygon, as
well as the subscripts into the vertex_list array for the vertices of each polygon.

pg_num — The total number of polygons defined by vertex_list and polygon_list.
This parameter can be used as input into POLY_PLOT.

Keywords

None.

Discussion

POLY_SURF generates a list of polygons from a 2D array that contains Z values.
All the polygons generated have four sides (and four vertices).

• The vertex_list array returned is suitable for input into the POLY_TRANS,
POLY_NORM, POLY_DEV, POLY_PLOT and POLYSHADE procedures.

• The polygon_list array returned is suitable for input into the POLY_PLOT and
POLYSHADE procedure. For more information, see .

Example

See the Example section in the description of the POLY_DEV routine.

See Also

POLY_SPHERE

POLY_TRANS Function 709

POLY_TRANS Function
Returns a list of 3D points transformed by a 4-by-4 transformation matrix.

Usage

result = POLY_TRANS(points, trans)

Input Parameters
points — A (3, n) array of points (or vertices) to transform.

trans — A (4, 4) array to transform the points with.

Returned Value

result —A list of 3D points transformed by a 4-by-4 transformation matrix.

Keywords
None.

Discussion
You can use the T3D, CENTER_VIEW, SET_VIEW3D, and VIEWER proce-
dures to build the transformation matrix. The 4-by-4 matrix most often used is the
system viewing matrix !P.T. For more information, see .

Example
See the Example section in the description of the POLY_DEV routine.

For other examples, see the sphere_demo2, sphere_demo3, and
vol_demo4 demonstration programs in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

POLY_DEV, POLY_NORM

For more information, see the section Coordinate Conversion in Chapter 7 of the
PV-WAVE User’s Guide.

710 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

POLYWARP Procedure
Standard Library procedure that calculates the coefficients needed for a polynomial
image warping transformation.

Usage

POLYWARP, xd, yd, xin, yin, deg, xm, ym

Input Parameters

xd — The vector containing the x-coordinates to be fit as a function of (xin, yin).

yd — The vector containing the y-coordinates to be fit as a function of (xin, yin).

xin — The vector containing the independent x-coordinates. Must have the same
number of points as xd.

yin — The vector containing the independent y-coordinates. Must have the same
number of points as yd.

deg — The degree of the polynomial to be fitted to the data. The number of coor-
dinate pairs formed by xin and yin must be greater than or equal to (deg + 1)2.

Output Parameters

xm — A (deg + 1)-by-(deg + 1) array containing the coefficients of xd as a function
of (xin, yin).

ym — A (deg + 1)-by-(deg + 1) array containing the coefficients of yd as a function
of (xin, yin).

Keywords

None.

Discussion

POLYWARP calculates its transformation coefficients using the polynomial least-
squares method. It returns the coefficients of the polynomial functions which best
approximate the data:

• The xm polynomial array pertains to the x direction.

• The ym polynomial array pertains to the y direction.

POLYWARP Procedure 711

POLYWARP determines the coefficients Ax(i, j) and Ay(i, j) of these two polyno-
mial functions:

and

where Ax = xm and Ay = ym.

NOTE The xm (x-coefficients) and ym (y-coefficients) can be used as input for the
POLY_2D function. POLY_2D performs the actual warping of the image, using
the x and y transformation coefficients that you provide.

Example
image = BYTSCL(DIST(300))

WINDOW, XSize=300, YSize=300

TV, image

; Create a test image and display it.

xin = [100, 200, 200, 100]

yin = [200, 200, 100, 100]

XYOUTS, 100, 200, ’0’, /Device

XYOUTS, 200, 200, ’1’, /Device

XYOUTS, 200, 100, ’2’, /Device

XYOUTS, 100, 100, ’3’, /Device

; Create arrays describing four independent control points and plot
; these points on top of the image. These points describe a square,
; and represent the position of points in a calibration image.

xd = INTARR(4)

yd = INTARR(4)

FOR i=0,3 DO BEGIN

Xdep Ax i j,()Xindep
j Y indep

i

i j,

deg

∑=

dep Ay i j,()Xindep
j Y indep

i

i j,

deg

∑=

712 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

PRINT, ’Pick warped point ’, i

CURSOR, xt, yt, /Device

WAIT, 0.5

xd(i) = xt

yd(i) = yt

ENDFOR

; Pick four dependent warping control points from the image; these
; points represent the calibration points as actually measured by an
; instrument, which, due to distortion, has warped them.

deg = 1

POLYWARP, xd, yd, xin, yin, deg, xm, ym

; Perform linear (first degree) warping. POLYWARP will return xm
; and ym, the coefficients of the polynomial functions which describes
; this warping.

interp = 1

result = POLY_2D(image, xm, ym, interp)

; Apply the polynomial functions calculated with POLYWARP to the
; first image, using bilinear interpolation.

TVSCL, result

; Display the resulting image, which represents the image after
; correcting for instrument distortion.

See Also

POLY_2D

For more information on image processing, see Chapter 5, Displaying 3D Data, in
the PV-WAVE User’s Guide.

For additional information, see the section Geometric Transformations in Chapter
6 of the PV-WAVE User’s Guide.

POPD Procedure 713

POPD Procedure
Standard Library procedure that pops a directory from the top of a last-in, first-out
directory stack.

Usage

POPD

Parameters

None.

Keywords

None.

Discussion

POPD changes the current working directory to the directory saved on the top of
the directory stack. The stack is maintained by the PUSHD and POPD procedures.
This top directory is then removed from the stack. (If you try to pop from an empty
stack, an error message is displayed.)

Directories that have been pushed onto the stack are removed by the POPD proce-
dure. The last directory pushed onto the stack is the first directory popped out of it.
There is no limit to how deep directories may be stacked.

Example

In this example, PUSHD is used to change the current working directory. The cur-
rent working directory is pushed onto the directory stack before moving to the
subdirectory. Procedure POPD is used to change the current working directory to
the directory at the top of the directory stack. Thus, you are returned to the original
working directory. Procedure PRINTD is used to view the current working direc-
tory and the directory stack before and after the execution of PUSHD and POPD.

UNIX Examples
PRINTD

; Display the current working directory and the directory stack.

714 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

PUSHD, ’sub1/data’

; Push the current working directory onto the directory stack, and
; move to the subdirectory /sub1/data.

PRINTD

; Display the current working directory and the directory stack.
; Note that the top of the stack contains the previous working
; directory.

POPD

; Move to the directory at the top of the directory stack. In this case,
; you are moved back to the original working directory.

PRINTD

; Display the current working directory and the directory stack.

OpenVMS Examples
PRINTD

; Display the current working directory and the directory stack.

PUSHD, ’[.sub1.data]’

; Push the current working directory onto the directory stack, and
; move to the subdirectory [.sub1.data] (OpenVMS).

PRINTD

; Display the current working directory and the directory stack.
; Note that the top of the stack contains the previous working
; directory.

POPD

; Move to the directory at the top of the directory stack. In this case,
; you are moved back to the original working directory.

PRINTD

; Display the current working directory and the directory stack.

Windows Examples
PRINTD

; Display the current working directory and the directory stack.

PUSHD, ’sub1\data’

; Push the current working directory onto the directory stack, and
; move to the subdirectory \sub1\data.

PRINTD

; Display the current working directory and the directory stack.
; Note that the top of the stack contains the previous working
; directory.

PRIME Function 715

POPD

; Move to the directory at the top of the directory stack. In this case,
; you are moved back to the original working directory.

PRINTD

; Display the current working directory and the directory stack.

See Also

CD, PRINTD, PUSHD

PRIME Function
Standard Library function that returns all positive primes less than or equal to a sca-
lar input.

Usage

result = PRIME(value)

Input Parameters

value — The scalar input.

Returned Value

result — A vector containing all positive primes less than or equal to value.

Keywords

None.

Examples
PRINT, PRIME(10)

See Also

FACTOR, GCD, LCM

716 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

PRINT Procedures
(PRINT, PRINTF)

Perform output of ASCII data:

• PRINT performs output to the standard output stream (file unit –1).

• PRINTF requires the output file unit to be specified.

Usage

PRINT, expr1, ... , exprn

PRINTF, unit, expr1, ... , exprn

Input Parameters

unit — The file unit to which the output will be sent.

expri — The expressions to be output.

Keywords

Format — Allows the format of the output to be specified in precise detail, using
a FORTRAN-style specification. FORTRAN-style formats are described in the
PV-WAVE Programmer’s Guide.

If the Format keyword is not present, PV-WAVE uses its default rules for format-
ting the output. These rules are described in the section Free Format Output in
Chapter 8 of the PV-WAVE Programmer’s Guide.

Example

In this example, PRINTF is used to write 10 integers to a file. The integers are then
read from the file and displayed using the PRINT procedure. The Format keyword
is used with the PRINT procedure to place one space after each integer as it is writ-
ten to the screen.

nums = INDGEN(10)

; Create a 10-element integer vector that is initialized to the values of
; its one-dimensional subscripts.

OPENW, unit, ’printex.dat’, /Get_Lun

; Open the printex.dat file for writing.

PRINTF, unit, nums

; Write the integers in nums to the file.

PRINTD Procedure 717

POINT_LUN, unit, 0

; Rewind the file to the beginning.

n = INTARR(10)

; Create a 10-element integer vector.

READF, unit, n

; Read the contents of printex.dat into n.

PRINT, n, Format = ’(10(i1, 1x))’

0 1 2 3 4 5 6 7 8 9

; Display the formatted contents of variable n.

FREE_LUN, unit

; Close the file and free the file unit number.

See Also

DT_PRINT

PRINTD Procedure
Standard Library procedure that lists the directories located in the directory stack,
and the current working directory.

Usage

PRINTD

Input Parameters

None.

Keywords

None.

Example

See the example for POPD.

See Also

CD, POPD, PUSHD

718 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

PRODUCT Function
Returns the product of all elements in an array.

Usage

result = PRODUCT(array)

Input Parameters

array — An array.

Returned Value

result — A scalar value equal to the product of all the elements in array.

Keywords

None.

Discussion

If array is of type single- or double-precision floating point, or single- or
double-precision complex, the result will be of the same type. If array is of any
other type, PRODUCT returns a single-precision floating-point result.

Examples
PM, PRODUCT([2,3,4])

PROFILE Function
Standard Library function that extracts a profile from an image.

Usage

result = PROFILE(image)

Input Parameters

image — The input image array. May be any type except string or complex.

PROFILE Function 719

Returned Value

result — A floating-point vector containing the profile data points. It is of the same
data type as image.

Keywords

Nomark — If set to 1, inhibits marking the selected line on the image display.

XStart — The starting x location of the lower-left corner of the image in the
window.

YStart — The starting y location of the lower-left corner of the image in the
window.

Discussion

To use PROFILE, mark two endpoints on the image display with the cursor by
clicking on any mouse button. PROFILE then extracts the values of the image ele-
ments along a line connecting the endpoints and returns these values as a floating-
point vector.

Example
This example uses the PROFILE function to retrieve a vector of image values.

OPENR, unit, FILEPATH(’aerial_demo.img’, Subdir = ’data’), /Get_Lun

; Open the file containing the image.

img = BYTARR(512, 512)

; Create an array large enough to hold the image.

READU, unit, img

; Read the image data.

WINDOW, 0, XSize = 512, YSize = 512

; Create a window to display an image from the file.

TV, img

; Display the first image from the file.

HIST_EQUAL_CT, img

vals = PROFILE(img)

; Retrieve a profile from the file.

INFO, vals

; Examine the type and number of elements in the returned vector.

FREE_LUN, unit

; Close the file and free the file unit number.

720 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

See Also

PROFILES, TV, TVSCL

PROFILES Procedure
Standard Library procedure that lets you interactively draw row or column profiles
of the image displayed in the current window. The profiles are displayed in a new
window, which is deleted when you exit the procedure.

Usage

PROFILES, image

Input Parameters

image — The image array displayed in the current window. May be any data type
except string or complex. The profile graphs are made from this array.

Keywords

Order — Controls the direction of image transfer. Set to 1 to have image written
top-down. Set to 0 to have image written bottom-up. The default is the current
value of the system variable !Order.

Sx — The starting x value of the image within the window. If omitted, 0 is assumed.

Sy — The starting y value of the image within the window. If omitted, 0 is assumed.

Wsize — The size of the new profile window as a fraction or multiple of the default
size, which is 640-by-512.

Discussion

To use PROFILES, place the cursor in the original image window. Move the cursor
so that the row or column profile is updated interactively. Press the left mouse but-
ton to toggle between displaying a row or column profile. Press the right mouse
button to exit the procedure.

Example

To create a profile window for the image found in file cereb_demo.img, change
to the following directory:

PROFILES Procedure 721

(UNIX) <wavedir>/data

(OpenVMS) <wavedir>:[DATA]

(Windows) <wavedir>\data

Where <wavedir> is the main PV-WAVE directory.

To display the image in the window, enter:

cereb = BYTARR(512, 512)

; Create a 512-by-512 byte array called cereb.

OPENR, 1, !Data_Dir + ’cereb_demo.img’

; Open the file for reading using a logical unit number of 1.

READU, 1, cereb

; Read data from the file into the variable cereb.

TVSCL, cereb

; Display the image.

PROFILES, cereb

; Display the profile window.

Figure 2-50 Profile plot taken from the image.

722 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

See Also

PROFILE

PROMPT Procedure
Standard Library procedure that sets the interactive prompt.

Usage

PROMPT, string

Input Parameters

string — A scalar string defining the new prompt.

Keywords

None.

Discussion

PROMPT sets the interactive prompt to string, and also changes the value of the
system variable !Prompt to that string.

If no parameter is supplied, the prompt string reverts to WAVE>.

Example
WAVE> PROMPT, ’YOU_RANG?> ’

YOU_RANG?> PROMPT

WAVE>

See Also

System Variables: !Prompt

PSEUDO Procedure 723

PSEUDO Procedure
Standard Library procedure that creates a pseudo color table based on the hue,
lightness, saturation (HLS) color system.

Usage

PSEUDO, ltlo, lthi, stlo, sthi, hue, lp [, rgb]

Input Parameters

ltlo — The starting color lightness or intensity, expressed as 0 to 100 percent. Full
lightness (the brightest color) is 100 percent.

lthi — The ending color lightness or intensity, expressed as 0 to 100 percent.

stlo — The starting color saturation, expressed as 0 to 100 percent. Full saturation
(undiluted or pure color) is expressed as 100 percent.

sthi — The ending color saturation, expressed as 0 to 100 percent.

hue — The starting hue. It ranges from 0 to 360 degrees, with red equal to 0, green
equal to 120, and blue equal to 240.

lp — The number of loops of hue to make in the color cone. Does not have to be
an integer.

Output Parameters

rgb — (optional) A 256-by-3 integer output array containing the red, green, and
blue vector values loaded into the color tables. The red vector is equal to
RGB(*, 0), the green vector is RGB(*, 1), and the blue vector is RGB(*, 2).

Keywords

None.

Discussion

The pseudo-color mapping generated by PSEUDO is done by the following three
steps:

724 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

❑ Map the HLS coordinate space to the lightness, absorbance, saturation (LAS)
coordinate space.

❑ Find n colors (in this case 256) spread out along a helix that spans this LAS
space. These colors are supposedly a near maximal entropy mapping for the
eye, given a particular n.

❑ Map the LAS coordinate space into the red, green, blue (RGB) coordinate
space.

The result, given n desired colors, is that n discrete values are loaded into the red
color vector, n discrete values are loaded into the green color vector, and n discrete
values are loaded into the blue color vector.

See Also

HLS, LOADCT, TVLCT

For background information about color systems, see .

PUSHD Procedure
Standard Library procedure that pushes a directory onto the top of a last-in, first-
out directory stack.

Usage

PUSHD [, directory]

Input Parameters

directory — A scalar string specifying the path of the new working directory.

If not specified, or if specified as a null string, pushes the current directory onto the
stack, and the new working directory is changed to the user’s home directory.

Keywords

None.

PUSHD Procedure 725

Discussion

Directories that have been pushed onto the stack by PUSHD can be removed with
POPD. The last directory pushed onto the stack is the first directory popped out of
it. There is no limit to how deep directories may be stacked.

Example

See the example for POPD.

See Also

CD, POPD, PRINTD

726 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

2
Procedure and Function Reference

QUERY_TABLE Function
Subsets a table created with the BUILD_TABLE function.

Usage

result = QUERY_TABLE(table,
' [Distinct] * | col1 [alias] [, ... , coln [alias]]
[Where cond]
[Group By colg1 [,... colgn]] |
[Order By colo1 [direction][, ... , colon [direction]]] ')

Note that the entire second parameter is a string and must be enclosed in quotes.
Also, note that the vertical bar (|) means “or” in this usage. For instance, use either
“*” or “coli [alias] [, ..., coln [alias]]”, but not both.

Input Parameters

table — The original table (created with the BUILD_TABLE function) on which
the query is performed.

* — An optional wildcard character that includes all columns from the original
table in the resulting table.

Distinct — A qualifier that removes duplicate rows from the resulting table.

coli — The list of columns that you want to appear in the resulting table. Use the
asterisk (*) wildcard character to select all columns in the original table. The col
names can be arguments to the calculation functions used with the Group By
clause.

alias — Changes the input table’s column name, coli, to a new name in the output
table. If no alias is specified, the input table’s column name is used in the resulting
table.

Where cond — A clause containing a conditional expression, cond, that is used to
specify the rows to be placed in the resulting table. The expression can contain
Boolean and/or relational operators.

Group By colgi — A clause specifying one or more columns by which the rows
are grouped in the resulting table. Normally, the grouped rows are data summaries
containing results of calculation functions (Sum, Avg, etc.) applied to the columns.
(Group By and Order By clauses are mutually exclusive: they cannot be used in the
same function call.)

QUERY_TABLE Function 727

Order By coloi — Name of the column(s) to be sorted (ordered) in the resulting
table. The first column named is sorted first. The second column named is sorted
within the primary column, and so on. (Group By and Order By clauses are mutu-
ally exclusive: they cannot be used in the same function call.)

direction — Either Asc (the default) or Desc. Asc sorts the column in ascending
order. Desc sorts the column in descending order. If neither are specified, the col-
umn is sorted in ascending order.

Returned Value

result — The resulting table, containing the columns specified by coli, and the rows
specified by the query qualifiers and clauses. If the query result is empty, and no
syntax or other errors occurred, the result returned is –1.

Keywords

None.

Discussion

Before you can use QUERY_TABLE, you must create a table with the
BUILD_TABLE function. For details on BUILD_TABLE, see the discussion of
the BUILD_TABLE function in this chapter. See also the PV-WAVE User’s Guide.

A table query always produces a new table containing the query results, or –1 if the
query is empty.

Any string or numeric constant used in a QUERY_TABLE call can be passed into
the function as a variable parameter. This means that you can use variables for
numeric or string values in relational or Boolean expressions. For more informa-
tion on passing parameters into QUERY_TABLE, see

NOTE Within a QUERY_TABLE call, the Group By and Order By clauses are
mutually exclusive. That is, you cannot place both Group By and Order By in the
same QUERY_TABLE call.

Boolean and Relational Operators Used in Queries

The Where clause uses Boolean and relational operators to “filter” the rows of the
table. You can specify any of the following conditions within a Where clause. Use
parentheses to control the order of evaluation, if necessary.

728 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

• Comparison operators — = (equal to), <> (not equal to),
< (less than), <= (less than or equal to), > (greater than),
>= (greater than or equal to)

• Compound search condition — Not, And, Or

• Set membership test — In

See the Example section for more information on these operators.

You can also use relational operators (EQ, GE, GT, LE, LT, and NE) in a Where
clause instead of the SQL-style operators listed above.

NOTE When a literal string is used in a comparison, it must be enclosed in
quotes—a different set of quotes than those used to delimit the entire
QUERY_TABLE parameter string. For more information on using strings in com-
parisons, see the PV-WAVE User’s Guide.

Calculation Functions Used with GROUP BY

The Group By clause is used in conjunction with calculation functions that operate
on the values in the specified groupings. Each function takes one column name as
its argument. See the Example section for examples showing the use of calculation
functions with Group By.

The calculation functions used with Group By are the following, where col is the
name of a column:

• Avg(col) — Averages the values that fall within a group.

• Count(col) — Counts the number of occurrences of each data value that falls
within a group.

• Max(col) — Returns the maximum value that falls within a group.

• Min(col) — Returns the minimum value that falls within a group.

• Sum(col) — Returns the sum of the values that fall within a group.

Examples

For the following examples, assume table called phone_data contains informa-
tion on company phone calls. This table contains eight columns of phone
information: the date, time, duration of call, caller’s initials, phone extension, cost
of call, area code of call, and number of call.

QUERY_TABLE Function 729

The table used in these examples and the data used to create it are available to you.
Enter the following command at the WAVE> prompt to restore the table and data:

(UNIX) RESTORE, !dir+’/data/phone_example.sav’

(OpenVMS) RESTORE, !dir+’[DATA]PHONE_EXAMPLE.SAV’

(Windows) RESTORE, !dir+’\data\phone_example.sav’

For more information on the structure of this table and more examples, see the
PV-WAVE User’s Guide.

For an example showing the use of the Distinct qualifier, see the PV-WAVE User’s
Guide.

The following examples show how to query this table in various ways using
QUERY_TABLE.

Example 1

Create a new table containing only the phone extensions, area code, and phone
number of each call made.

This example demonstrates a simple table query that produces a three-column sub-
set of the original table.

new_table = QUERY_TABLE(phone_data, $
’EXT, AREA, NUMBER’)

A portion of the resulting table is organized as follows:

TIP For information on printing tables, see the PV-WAVE User’s Guide.

Example 2

Show data on the calls that cost more than one dollar.

EXT AREA NUMBER

311 215 2155554242

358 303 5553869

320 214 2145559893

289 303 5555836

248 617 6175551999

730 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

This example demonstrates how a Where clause is used to produce a subset of the
original table, where all rows that contain a cost value of less than one dollar are
filtered out.

new_tbl = QUERY_TABLE(phone_data, $
’* Where COST > 1.0’)

The following is an excerpt from the resulting table:

Example 3

Show the total cost and duration of calls made from each phone extension for the
period of time the data was collected.

This example demonstrates the use of the Group By clause. The column specified
after Group By is the column by which the other specified columns are grouped.
The calculation function Sum() is used to return the total cost and duration for each
extension in the table.

The following command produces this result:

sum_table = QUERY_TABLE(phone_data, $
’EXT, SUM(COST), SUM(DUR) Group By EXT’)

This produces the new table, called sum_table containing the columns EXT,
SUM_COST, and SUM_DUR:

DATE TIME DUR INIT EXT COST AREA NUMBER

901002 093200 21.40 TAC 311 5.78 215 2155554242

901002 094700 17.44 EBH 320 4.71 214 2145559893

901004 095000 3.77 DJC 331 1.02 512 5125551228

EXT SUM_COST SUM_DUR

0 0.00000 4.49000

248 0.350000 1.31000

289 0.00000 16.2300

311 5.78000 21.4000

320 4.71000 17.4400

331 1.02000 3.77000

QUERY_TABLE Function 731

TIP The cost and duration columns are named in the result table, by default, with
the prefix SUM_. This prevents any confusion with the existing table columns that
are already named COST and DUR. You can change these default names by includ-
ing aliases in the QUERY_TABLE function call.

The INFO command can be used to show the basic structure of this new table:
INFO, /Structure, sum_table

** Structure TABLE_GB_2, 3 tags, 12 length:

The Structure keyword is used because tables are represented as an array of struc-
tures. For more information, see the PV-WAVE User’s Guide.

Example 4

Show the extension, date, and total duration of all calls made from each extension
on each date.

This example demonstrates a multiple Group By clause. For example, you can
obtain a grouping by extension and by date. The result is a “grouping within a
grouping”.

The following command produces the desired result:

tbl = QUERY_TABLE(phone_data, $
’EXT, DATE, Sum(DUR) Group By EXT, DATE’)

EXT LONG 0

SUM_COST FLOAT 0.000000

SUM_DUR FLOAT 4.49000

EXT DATE SUM_DUR

0 901003 2.33000

0 901004 2.16000

248 901002 1.31000

289 901002 16.2300

311 901002 21.4000

320 901002 17.4400

331 901004 3.77000

332 901003 2.53000

732 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Note that each multiple grouping produces one summary value. In this case the
total duration is calculated for each extension/date grouping. For instance, in the
table shown above, the row:

shows the total duration (0.450000) of all calls made from extension 370 on
date 901003.

Example 5

Show the number of calls made from each extension for the period of time the data
was collected.

This example demonstrates the Group By clause used with the Count function.

cost_sum = QUERY_TABLE(phone_data, $
’EXT, Count(NUMBER) Group By EXT’)

The result is a two-column table that contains each extension number and a count
value. The count value represents the total number of times each extension number
appears in the table.

358 901002 1.05000

370 901003 0.450000

370 901004 0.160000

379 901003 1.53000

379 901004 1.93000

418 901003 0.350000

370 901003 0.450000

EXT COUNT_NUMBER

0 3

248 1

289 1

311 1

320 1

331 1

EXT DATE SUM_DUR

QUERY_TABLE Function 733

The parameter specified in the Count function has no real effect on the result,
because the function is merely counting the number of data values in the primary
column (that is, null values are not ignored). You can obtain the same result with:

cost_sum = QUERY_TABLE(phone_data, $
’EXT, Count(DUR) Group By EXT’)

Example 6

Sort the phone_data table by extension, in ascending order.

This example demonstrates how the Order By clause is used to sort a column in a
table.

ext_sort = QUERY_TABLE(phone_data, ’* Order By EXT’)

Here is a portion of the resulting table.

Example 7

Sort the phone_data table by extension, in ascending order, then by cost in descend-
ing order.

The table can be further refined by sorting the COST field as well.

cost_sort = QUERY_TABLE(phone_data, ’* Order By EXT, COST DESC’)

332 1

358 1

370 2

379 2

418 1

DATE TIME DUR INIT EXT COST AREA NUMBER

901004 95300 1.360 JAT 0 0.00 303 5553200

901004 94700 0.800 JAT 0 0.00 303 5553200

901003 91600 2.330 JAT 0 0.00 303 5553440

901002 94800 1.310 RLD 248 0.35 617 6175551999

901002 94800 16.23 TDW 289 0.00 303 5555836

901002 93200 21.40 TAC 311 5.78 215 2155554242

901002 94700 17.44 EBH 320 4.71 214 2145559893

734 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

This command produces a table organized like the previous table, except the COST
column is now sorted in descending order within each group of extensions. The fol-
lowing illustrates the new table organization:

Example 8

The In operator provides another means of filtering data in a table. This operator
tests for membership in a set (one-dimensional array) of values. For example, the
following array contains a subset of the initials found in the INIT column of the
phone_data table:

nameset = [’TAC’, ’KAR’, ’OLL’, ’ERD’]

The following QUERY_TABLE call produces a new table that contains informa-
tion only on the members of nameset:

res = QUERY_TABLE(phone_data, ’ * Where INIT In nameset’)

See Also

BUILD_TABLE, GROUP_BY, ORDER_BY, UNIQUE

For more information on QUERY_TABLE, see the PV-WAVE User’s Guide.

QUIT Procedure
Standard Library procedure that exits a PV-WAVE session.

Usage

QUIT

Parameters

None.

DATE TIME DUR INIT EXT COST AREA NUMBER

901003 91600 0.450 MLK 370 0.12 212 2125557956

901004 95100 0.160 MLK 370 0.00 303 5551245

901004 94900 1.930 SRB 379 0.52 818 8185552880

901003 91600 1.530 SRB 379 0.41 212 2125556618

QUIT Procedure 735

Keywords

None.

Discussion

QUIT simply prints a message and then calls the system routine EXIT.

See Also

EXIT

NOTE For more information on exiting PV-WAVE, see the PV-WAVE User’s
Guide.

736 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

2
Procedure and Function Reference

RANDOMN Function
Returns one or more normally distributed floating-point pseudo-random numbers
with a mean of zero and a standard deviation of 1.

Usage

result = RANDOMN(seed [, dim1, ... , dimn])

Input Parameters

seed — A named variable containing the seed value for random number generation.
The initial value of seed should be set to different values in order to obtain different
random sequences. seed is updated by RANDOMN once for each random number
generated. If seed is undefined, it is derived from the current system time.

dimi — (optional) The dimensions of the result. May be any scalar expression. Up
to eight dimensions may be specified.

Returned Value

result — A single scalar or an array of the specified dimensions. Contains normally
distributed floating-point pseudo-random numbers with a mean of zero and a stan-
dard deviation of 1. The floating-point numbers are in the range of –6.0 < x < 6.0.

Keywords

None.

See Also

RANDOMU

RANDOMU Function 737

RANDOMU Function
Returns one or more uniformly distributed floating-point pseudo-random numbers
over the range 0 < Y < 1.0.

Usage

result = RANDOMU(seed [, dim1, ... , dimn])

Input Parameters

seed — A named variable containing the seed value for random number generation.
seed is updated by RANDOMU once for each random number generated. The ini-
tial value of seed should be set to different values in order to obtain different
random sequences. If seed is undefined, it is derived from the current system time.

dimi — (optional) The dimensions of the result. May be any scalar expression. Up
to eight dimensions may be specified.

Returned Value

result — Returns a scalar or array of pseudo-random numbers over the range
0 < Y < 1.0. If no dimensions are specified, RANDOMU returns a scalar result.

Keywords

None.

Discussion

Uniform distribution means that, given a large enough sample of randomly-gener-
ated numbers, the same quantity of each number will be produced by RANDOMU.
In other words, if you were to select a number generated by RANDOMU, you are
as likely to pick any one number as another.

Example

This example simulates the result of rolling two dice 10,000 times, and plots the
distribution of the total using RANDOMU:

PLOT, HISTOGRAM(FIX(6 * RANDOMU(S, 10000)) + $
FIX(6 * RANDOMU(S, 10000)) + 2)

738 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

In the above statement, the expression RANDOMU(S, 10000) is a 10,000-ele-
ment floating-point array of random numbers greater or equal to 0 and less than 1.
Multiplying this by 6 converts the range to 0 < Y < 6.

Applying the FIX function yields 10,000-point integer vectors from 0 to 5, one less
than the numbers on one die. This is done twice, once for each die, and then 2 is
added to obtain a vector from 2 to 12, the total of two die.

The HISTOGRAM function makes a vector in which each element contains the
number of occurrences of dice rolls whose total is equal to the subscript of the
element.

This vector is plotted by the PLOT procedure.

See Also

RANDOMN

RDPIX Procedure
Standard Library procedure that displays the x, y, and pixel values at the location
of the cursor in the image displayed in the currently active window.

Usage

RDPIX, image [, x0, y0]

Input Parameters

image — The image array loaded into the current window. May be any type. Pixel
values are read from within the borders of the image; they are not read in relation
to the full display area of the screen. This avoids scaling difficulties.

x0 — The x-coordinate of the lower-left corner of the image displayed in the cur-
rently active window.

y0 — The y-coordinate of the lower-left corner of the image displayed in the cur-
rently active window.

Keywords

None.

READ Procedures 739

Discussion

The x, y, and pixel values under the cursor position are constantly displayed and
updated. Pressing the left or center button makes a new line of output, saving the
old line on the display. Pressing the right mouse button exits the procedure.

Example
OPENR, lun, !Data_dir + ’mandril.img’, /Get_lun

mandril_img = BYTARR(512, 512)

READU, lun, mandril

; Read in the image file.

TV, mandril_img

; Display the image.

RDPIX, mandril_img

; Press the left or center mouse button to see pixel values, and the
; right mouse button to quit.

TV, mandril_img, 100, 100

; Display the image offset on the screen by 100 pixels vertically and
; horizontally.

RDPIX, mandril_img, 100, 100

; Read the pixel values from the offset image. Then press the left or
; center mouse button to see pixel values, and right mouse button to
; quit.

See Also

CURSOR

READ Procedures
(READ, READF, READU)

Reads input into variables:

• READ reads ASCII (formatted) input from the standard input stream (file unit
0).

• READF reads ASCII input from a specified file.

• READU reads binary (unformatted) input from a specified file. (No processing
of any kind is done to the data.)

740 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Usage

READ, var1, ... , varn

READF, unit, var1, ... , varn

READU, unit, var1, ... , varn

Input Parameters

unit — The file unit from which the input will be taken.

vari — The named variables to receive the input.

Keywords

Format — (READ and READF only). Lets you specify the format of the input in
precise detail, using a FORTRAN-style specification. FORTRAN-style formats are
described in the PV-WAVE Programmer’s Guide.

If the Format keyword is not present, PV-WAVE uses its default rules for format-
ting the output. These rules are described in .

Discussion

READ and READF Procedures — If the Format keyword is not present and
READ is called with more than one parameter, and the first parameter is a scalar
string starting with the characters '$(', this initial parameter is taken to be the format
specification, just as if it had been specified via the Format keyword. This feature
is maintained for compatibility with Version 1 of PV-WAVE.

READU Procedure — For nonstring variables, the number of bytes required for
vari is input. For string variables, PV-WAVE reads exactly the number of bytes
contained in the existing string.

Example 1

This example reads a string from the standard input stream using the READ pro-
cedure. The value of the string is then displayed.

b = ’ ’

; Define a variable with string type.

READ, ’Enter a string: ’, b

Enter a string: This is a string.

; Read a string from the terminal.

READ Procedures 741

PRINT, b

This is a string.

; Display the contents of b.

Example 2

In this example, three integers are read from the standard input stream into a three-
element integer array, nums, using READ. A file named readex.dat is then
opened for writing, and the integers in nums are written to the file using PRINTF.
The file is then closed. The Format keyword is used with PRINTF to specify the
format of the integers in the file. The readex.dat file is then opened for reading,
and the integers are read into a three-element integer array using READF with the
Format keyword. The file is then closed and the values that were read from
readex.dat are displayed.

nums = INTARR(3)

; Create a three-element integer array.

READ, ’Enter 3 integers: ’, nums

Enter 3 integers: 3 5 7

; Read three integers from the standard input stream.

PRINT, nums

3 5 7

OPENW, unit, ’readex.dat’, /Get_Lun

; Open the readex.dat file for writing.

PRINTF, unit, nums, Format = ’(3i1)’

; Write the integers to the file using a specified format.

FREE_LUN, unit

; Close the file and free the file unit number.

OPENR, unit, ’readex.dat’, /Get_Lun

; Open the readex.dat file for reading.

ints = INTARR(3)

; Create a new three-element integer array.

READF, unit, ints, Format = ’(3i1)’

; Read the three integers from the readex.dat file using the same
; specified format as when they were written.

PRINT, ints

3 5 7

; Display the integers read from the file.

FREE_LUN, unit

; Close the file and free the file unit number.

742 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example 3

In this example, READU is used to read an image of a galaxy from the file
whirlpool.img, which is contained in the subdirectory data under the main
PV-WAVE distribution directory.

OPENR, unit, FILEPATH(’whirlpool.img’, $

Subdir = ’data’), /Get_Lun

; Open the file galaxy.dat for reading.

a = BYTARR(512, 512)

; Create a byte array large enough to hold the galaxy image.

READU, unit, a

; Read the image data.

FREE_LUN, unit

; Close the file and free the file unit number.

See Also

GET_LUN, OPEN (UNIX/OpenVMS), OPEN (Windows)

For more information and examples, see .

For more information on format specification codes, see the PV-WAVE
Programmer’s Guide.

READ_XBM Procedure
Reads the contents of an X-bitmap (XBM) file into a PV-WAVE variable.

Usage

READ_XBM, file, image

Input Parameters

file — A scalar string indicating the name of the bitmap file.

image — A 2D byte array containing the image from the file.

Keywords

Background — Specifies the background color. (Default: !P.Background)

REBIN Function 743

Color — Specifies the foreground color. (Default: !P.Color)

Order — Determines the y-scan order as follows:

Discussion

The READ_XBM procedure allows you to use XBM images in PV-WAVE for
analysis and display, or to convert to other formats by using the IMAGE_WRITE
function.

Example
READ_XBM, ’my.xbm’, x

; Reads in a file into a 2D byte array.

WzImage, x

; Displays the image.

See Also

HTML_IMAGE, IMAGE_CREATE, IMAGE_READ,
IMAGE_WRITE, WRITE_XBM

REBIN Function
Returns a vector or array resized to the given dimensions.

Usage

result = REBIN(array, dim1, ... , dimn)

Input Parameters

array —The array to be sampled. Cannot be of string data type. Must have the same
number of dimensions as the number of dimension parameters that you supply.

dimi — The dimension(s) of the resampled array. Must be integral multiples or fac-
tors of the original array’s dimension(s).

0 Scans down from the top

1 Scans up from the bottom

744 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Returned Value

result — The resized (resampled) vector or array.

Keywords

Sample — If present and nonzero, specifies that nearest neighbor sampling is to be
used for both magnifying and shrinking operations.

If not present, specifies that bilinear interpolation is to be used for magnifying and
that neighborhood averaging is to be used for shrinking. (Bilinear interpolation
gives higher quality results, but requires more time.)

Discussion

The expansion or compression of each dimension is independent of the others;
REBIN can expand or compress one dimension while leaving the others
untouched.

Example

This example creates an image of a shaded surface, resizes the image using
REBIN, then displays the resized image.

x = DIST(20)

; Create a 20-by-20 single-precision, floating-point array where each
; element is proportional to its frequency.

SHADE_SURF, x, Color = 0

; Display a shaded-surface representation of x.

LOADCT, 7

y = TVRD(0, 0, 640, 512)

; Get the content of the display subsystem’s memory.

INFO, y

VARIABLE BYTE = Array(640, 512)

z = REBIN(y, 320, 256)

; Resize the 640-by-512 array y and place the result in z.

WINDOW, 0, Xsize = 960, Ysize = 512

; Create window of size 960-by-512.

TV, y, 0

; Display larger image in position 0 of window.

REFORM Function 745

TV, z, 5

; Display resized image in position 3 of window.

Figure 2-51 Original image (left); resized image (right).

See Also

CONGRID, EXPAND, INTRP, REFORM, REPLV, RESAMP

For more information on resampling and resizing images, see .

For information on interpolation methods, see .

REFORM Function
Reformats an array without changing its values numerically.

Usage

result = REFORM(array, dim1, ... , dimn)

Input Parameters

array — The array that is to have its dimensions modified. Must have the same total
number of elements as specified by the new dimensions.

dimi — The dimensions of the result. Alternatively, you can specify the dimensions in
a vector. See the Example section for more information.

Returned Value

result — The reformated array.

746 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Keywords

None.

Discussion

REFORM returns a copy of array with the dimensions specified. If no dimensions
are specified, then REFORM returns a copy of array with all dimensions of size 1
removed. Only the dimensions of array are changed; the actual data remains
unaltered.

TIP REFORM is useful for removing degenerate leading dimensions of size one.
These leading dimensions can be created when you extract a subarray from an
array with more dimensions.

Example

To use REFORM to remove degenerate leading dimensions:

a = intarr(10,10, 10)

; The variable a is a 3-dimensional array.

b = a(5,*,*)

; Extract a “slice” from a.

INFO, b, REFORM(b)

; Use INFO to show what REFORM did.

Executing the above statements produces:
B INT = Array(1, 10, 10)

<Expression> INT = Array(10, 10)

Note that the two statements:

b = REFORM(a,200,5)

b = REFORM(a,[200,5])

have identical effect. They create a new array b, with dimensions of (200,5), from
a.

See Also

CONGRID, REBIN

REGRESS Function 747

REGRESS Function
Standard Library function that fits a curve to data using the multiple linear regres-
sion method.

Usage

result = REGRESS(x, y, wt [, yf, a0, sig, ft, r, rm, c])

Input Parameters

x — An array containing the independent values. Must be two-dimensional of size
m by n, where m is the number of coefficients to be computed, and n is the number
of data points.

y — A vector containing the dependent values. Must have n elements.

wt — A vector of weighting factors for determining the weighting of the multiple
linear regression. Must have n elements.

Output Parameters

yf — (optional) An array containing the calculated values of y. It contains n number
of elements

a0 — (optional) The constant term (offset) of the output function.

sig — (optional) A vector containing the standard deviations for the coefficients.

ft — (optional) The value of F in the standard F Test for the goodness of fit.

r — (optional) A vector containing the linear correlational coefficients.

rm — (optional) The multiple linear correlation coefficient.

c — (optional) The value of X2 in the Chi-Squared test for the goodness of fit.

Returned Value

result — A column vector containing the coefficients (a1 to am) of the function in
x.

Keywords

None.

748 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Discussion

REGRESS performs a multiple linear regression fit to a dataset with a specified
function which is linear in the coefficients. The general function is given by:

f(x) = a0 + a1x1 + a2x2 + ... amxm

Weighting is useful when you want to correct for potential errors in the data you
are fitting to a curve. The weighting factor, wt, adjusts the parameters of the curve
so that the error at each point of the curve is minimized. For more information, see
the section Weighting Factor on page 180, in Volume 1 of this reference.

Example
x = FLTARR(3, 9)

x(0, *) = [0.,1.,2.,3.,4.,10.,13.,17.,20.]

x(1, *) = [0.,3.,6.,9.,12.,15.,18.,19.,20.]

x(2, *) = [0.,4.,8.,12.,13.,14.,15.,18.,20.]

y = [5.,4.,3.,2.,2.,4.,5.,8.,9.]

; Create the data.

wt = FLTARR(9) + 1.0

coeff = REGRESS(x,y,wt,yf,a0,sig,ft,r,rm,c)

; Perform multiple linear regression with no weighting.

PLOT, yf, title=’REGRESS EXAMPLE’

; Plot the fitted data.

PRINT, ’Fitted function:’

PRINT, ’ f(x) = ’,a0,’ +’, $

coeff(0, 0),’ x1 +’, $

coeff(0, 1),’ x2 +’, $

coeff(0, 2),’ x3’

PRINT, ’Standard deviations for ’ +$
’coefficients: ’, sig

PRINT, ’F Test value:’, ft

PRINT, ’Linear correlation coefficients: ’, r

PRINT, ’Multiple linear correlation ’ + ’coefficient: ’, rm

PRINT, ’Chi-squared value: ’, c

; Print all the output parameters.

See Also

CURVEFIT, GAUSSFIT, POLY_FIT, POLYFITW, SVDFIT

RENAME Procedure 749

The REGRESS function is adapted from the program REGRES in Data Reduction
and Error Analysis for the Physical Sciences, by Philip Bevington, McGraw-Hill,
New York, 1969.

RENAME Procedure
Renames a PV-WAVE variable.

Usage

RENAME, variable, new_name

Input Paramters

variable — The variable to rename.

new_name — A string specifying the name of the new variable. By default, the
new variable is placed at the $MAIN$ program level.

Keywords

Level — An integer, n, specifying the level of the program to which to add the
renamed variable.

If n ≥ 0, the level is counted from the $MAIN$ level to the current
procedure.

If n < 0, the level count is relative, counting from the current procedure
back to the $MAIN$ level.

Discussion

If the new variable already exists at the specified program level, the existing vari-
able is overwritten.

To rename a variable that exists at a level other than the current level,use the
UPVAR command to bind that variable to a local variable.

Example 1

This example is the simplest case, where a variable on the main program level is
renamed.

750 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

orig = 1B

RENAME, orig, ’new’

INFO, new

new BYTE = 1

Example 2

The following program demonstrates how RENAME can be used with the Level
keyword and the UPVAR procedure to move variables between program levels.

To run this example, follow the steps below.

1. Copy or type the code for the TESTRENAME and TESTLEVEL2 procedures
into a file called testrename.pro.

PRO TESTRENAME

; This procedure tests the RENAME procedure first inside the local
; program level (level 1), and then by renaming variables on other
; program levels.

orig1 = ’Original Level 1 Variable’

INFO, Depth = d

; First, create a variable in the local program level, and verify that the
; program level is level 1.

RENAME, orig1, ’orig1_new’, Level = d

; Rename the variable inside the local scope of TESTRENAME.

INFO, orig1_new

; Verify that RENAME created the new variable.

UPVAR, ’orig0’, orig_level1

; Grab a variable from program level 0 ($MAIN$) using UPVAR and
; bind that variable to a variable within the local scope.

TESTLEVEL2

; Execute the TESTLEVEL2 procedure.

INFO, local_level1

; After returning from TESTLEVEL2, verify the existence of the variable
; local_level1 and print it.

PRINT, local_level1

END

PRO TESTLEVEL2

INFO, /Depth

; First, verify that the local scope is program level 2.

RENAME Procedure 751

UPVAR, ’orig_level1’, orig_level2, Level = -1

; Use UPVAR to pass the variable orig_level1 from program level 1
; to the current program level 2. Note the use of the Level keyword,
; which causes UPVAR to look one program level down from the current
; level to find the variable.

RENAME, orig_level2, ’new’, Level = 2

; Rename the variable that was just passed into program level 2.
; The Level keyword specifies that the renamed variable be placed in
; program level 2.

INFO, new

; Verify that the new variable exists in the local scope.

local_level2 = INDGEN(10) + 222

; Simply create a new variable within the current scope (level 2).

RENAME, local_level2, ’local_level1’, Level = -1

; Rename this variable, but put the renamed version on a different
; program level. The Level keyword accomplishes this. It specifies that
; the renamed variable be placed one program level down from the
; current level. The current program level is 2, so the new variable is
; placed in program level 1.

RENAME, new, ’new_main’

; Finally, use RENAME to rename a variable in the current scope (level 2)
; and place the renamed variable in program level 0 ($MAIN$). Note that
; program level 0 is where RENAME places renamed variables by default,
; unless the Level keyword is used.

END

2. At the WAVE> prompt, compile the test procedures with .RUN.

.RUN testrename

% Compiled module: TESTRENAME.

% Compiled module: TESTLEVEL2.

3. Next, create a main level variable (a string).

orig0 = ’Original Level 0 Variable’

4. Run the procedure TESTRENAME.

TESTRENAME

PROGRAM LEVEL = 1
ORIG1_NEW STRING = ’Original Level 1 Variable’
PROGRAM LEVEL = 2
NEW STRING = ’Original Level 0 Variable’
LOCAL_LEVEL1 INT = Array(10)

222 223 224 225 226 227 228 229 230 231

752 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

5. Verify the existence of the variable new_main.

INFO, new_main

new_main STRING = ’Original Level 0 Variable’

See Also

ADDVAR, INFO, UPVAR

RENDER Function
Generates a ray-traced rendered image from one or more predefined objects.

Usage

result = RENDER(object1, ..., objectn)

Input Parameters

objecti — A previously-defined object. Valid object types include CONE, CYLIN-
DER, MESH, SPHERE, and VOLUME.

Returned Value

result — A 2D byte array (image) of size X-by-Y.

Keywords

Info — A 3-by-4 double-precision floating-point array used to return the automat-
ically calculated view as: [viewpoint, top_left_viewplane, bottom_left_viewplane,
bottom_right_viewplane].

For example, you could define the variable k to contain this default view as
follows:

k = DBLARR(3, 4)

RENDER(object, Info=k)

Lights — A double-precision floating-point array defining the position and inten-
sity (x,y, z, intensity) of all point light sources in the scene. It is of size 4-by-
number_of_lights.

RENDER Function 753

If this keyword is omitted, then a single light source is defined; this light source
coincides with the automatically generated viewer’s eye-point.

Sample — A long integer containing the number of randomly distributed rays to
fire per pixel to perform anti-aliasing. The default is Sample=1.

Scale — If present, indicates that the resultant image should be scaled prior to con-
version to bytes. By default, all generated shaded values are assumed to be in the
range {0...1} (see Discussion below).

Shadows — If present, indicates that shadow rays should be fired so that all points
on all objects are not visible to all light sources. If not present, every point in a
scene is visible to each light source.

TIP For most visualization applications, you will want to omit the
Shadows keyword, since this causes the ray tracer to run much faster.

Transform — A 4-by-4 double-precision floating-point array containing the local
transformation matrix whose default is the identity matrix.

View — A 3-by-4 double-precision floating-point array used to override the auto-
generation of the view to that specified. Uses the same format as is used for the Info
keyword.

X — An integer defining the width of the byte image to be returned. Defaults to
256.

Y — An integer defining the height of the byte image to be returned. Defaults to
256.

Discussion

RENDER generates an image from one or more objects using a technique called
“ray tracing.” The size of the returned byte image is X-by-Y, where X and Y each
default to 256 unless overridden with the X and Y keywords. The returned image
can be displayed using either the TV or TVSCL procedure.

Numerous objects can be rendered in the same scene. RENDER automatically gen-
erates the viewing information such that all objects are visible and the observer’s
viewpoint is on the positive Z axis looking towards the origin into the scene with a
slight perspective. The Transform or the View keyword can be used to alter the
default view. For more information, see

The Lights keyword can be used to pass in an array of locations and intensities of
point light sources. Except for the default light source (when none are specified by

754 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

keyword), the light sources specified are not transformed. For best results, the sum
of the intensities of light sources should equal 1.

The Scale keyword should be used in the following cases to ensure that all objects
in the resulting image are in proportionate intensity:

• if the sum of the light source intensities is greater than 1, or

• if there exists a material property in the scene such that
Color(i) * (Kamb(i) + Kdiff(i) + Ktran(i)) > 1.

If all of the values are less than 1, then the Scale keyword is not required, but you
may wish to view the resultant image using TVSCL to improve the contrast.

By default, shadow rays are turned off and thus all points on all objects are visible
to all lights. The firing of shadow rays can be turned on using the Shadows
keyword.

Example
TV, RENDER(SPHERE())

See Also

CONE, CYLINDER, MESH, RENDER24, SPHERE, SHADE_VOLUME,
TV, TVSCL, VOLUME

For more information, see .

RENDER24 Function
Standard Library function that generates a ray-traced rendered 24-bit image of m
objects.

Usage

result = RENDER24(b)

Input Parameters

b — A m-element list containing the m objects to render; objects are created using
the CONE, CYLINDER, MESH, or SPHERE functions. The objects must be
created with default material properties since these properties are controlled with
keywords (see below).

RENDER24 Function 755

Returned Value

result — (n,p,3) byte array containing a 24-bit image of the objects.

Keywords

c — (m,3) array of normalized RGB color components for the objects; by default,
c(*,*) = 1.0

k — (m,3,3) array of normalized shade components for the objects: k(i,j,*)
contains the ambient, reflective, and transmissive components for c(i,j). The sum
of the three components must not exceed one. The default is k(i,j,*) = [
0.0, 1.0, 0.0]

v — (3,4) array used to override the view automaticaly generated from !p.t. If
defined, v works like RENDER’s View keyword; if undefined. v works like
RENDER’s Info keyword.

g — (4,q) array giving position and intensity for q light sources; the sum of the
source intensities g(3,*) must equal one. The default is a single light source at the
viewer's eye

s — A 2-element vector specifying image size. The default is [256,256]

Example
b = LIST(SPHERE(), CYLINDER()) & b(1).transform(3,2) = 2

c = [[0,0], [1,0], [0,1]] & T3D, /reset, ROTATE=[0,50,0]

TV, RENDER24(b,c=c,s=[500,500]), true=3

See Also

POLYSHADE, RENDER

756 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

REPLICATE Function
Forms an array with the given dimensions, filled with the specified scalar value.

Usage

result = REPLICATE(value, dim1, ... , dimn)

Input Parameters

value — The scalar value used for filling the resulting array. May be of any scalar
type, including scalar structures.

dimi — The dimensions of the result.

Returned Value

result — An array with the given dimensions, filled with the specified value. The
resulting data type is that of value.

Keywords

None.

Example

This example uses REPLICATE to create a 4-by-3 string array. Each element of the
array contains the string “string”.

strs = REPLICATE("string", 4, 3)

INFO, strs

STRS STRING = Array(4, 3)

PRINT, strs

string string string string

string string string string

string string string string

See Also

MAKE_ARRAY, REPLV

REPLV Function 757

REPLV Function
Standard Library function that replicates a vector into an array.

Usage

result = REPLV(vector, dim_vector, dim)

Input Parameters

vector — The vector to be replicated.

dim_vector — A vector specifying the dimensions of the output array.

dim — An integer (≥0) designating the dimension to replicate.

Returned Value

result — An array of dimensions dim_vector.

Keywords

None.

Examples
PM, REPLV([0,1], [2,4], 0)

PM, REPLV([0,1], [4,2], 1)

PM, REPLV([0,1], [4,2], 0)

See Also

EXPAND, REBIN, REPLICATE

758 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

RESAMP Function
Standard Library function that resamples an array to new dimensions.

Usage

result = RESAMP(array, dim1, ..., dimn)

Input Parameters

array — An array of n dimensions.

dimi — Integers (>0) specifying the new dimensions.

Returned Value

result — The resampled version of array.

Keywords

Interp — If set, n-linear interpolation is used instead of the default
nearest-neighbor interpolation.

Examples
PM, RESAMP([0,1,2,3], 3)

PM, RESAMP([0,1,2,3], 3, /i)

PM, RESAMP([0,1,2,3], 6, /i)

PM, RESAMP([[0,1,2,3],[4,5,6,7]], 6, 3, /i)

See Also

INTRP, REBIN

RESTORE Procedure 759

RESTORE Procedure
Restores the PV-WAVE objects saved in a file by the SAVE procedure.

Usage

RESTORE [, filename]

Input Parameters

filename — The name of the file from which the PV-WAVE objects should be
restored. If not specified, the wavesave.dat file is used.

Keywords

Filename — The name of the file from which the PV-WAVE objects should be
restored. If not present, wavesave.dat is used. This keyword serves exactly the
same purpose as the filename parameter; only one of them needs to be provided.

Verbose — If present and nonzero, prints an informative message for each restored
object.

Discussion

Saving and restoring the value –0.0 (negative float zero) is not portable between
platforms. This is because of different internal implementations of that number.

Example
SAVE, /All, Filename=’mysave.dat’

; Save all local variables and system variables.

— User exits and then enters a new PV-WAVE session. —

RESTORE, ’mysave.dat’

; Restore all the saved variables.

See Also

COMPILE, JOURNAL, SAVE

UNIX and OpenVMS USERS For more information, see .

760 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Windows USERS For more information, see .

RETALL Procedure
Issues RETURNs from nested routines. Used primarily to recover from errors in
user-written procedures and functions.

Usage

RETALL

Parameters
None.

Keywords

None.

Discussion

RETALL issues RETURNs from nested procedures and functions until the main
program level is reached. (The name RETALL is an abbreviation for RETurn
ALL.)

When an error occurs in a procedure or function, control is left within that routine
unless it contains special error handling instructions. Issuing the RETALL
command causes control to return to the main level of PV-WAVE.

NOTE RETALL stops all currently running WAVE Widgets applications. Typing
RETALL will often make “disappearing variables” reappear.

See Also

RETURN, STOP
For more information, see .

RETURN Procedure 761

RETURN Procedure
Returns control to the caller of a user-written procedure or function.

Usage

RETURN [, expr]

Input Parameters

expr — (optional) Returns the result of the function to the caller. This parameter
can only be used when RETURN is called inside a function; it cannot be used in a
procedure.

Keywords

None.

Example
FUNCTION SQUARE_IT, val

x = val * val

RETURN, x

; Return the value of x to the calling program.

END

See Also

RETALL, STOP

For more information about the role of the RETURN procedure, see .

762 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

REVERSE Function
Standard Library function that reverses a vector or array for a given dimension.

Usage

result = REVERSE(array, [dimension])

Input Parameters

array — The vector or array to be reversed.

dimension — (optional) The dimension of array to be reversed, such as the rows
or columns. (Default: reverse rows, the first dimension).

Returned Value

result — The vector or array that has been reversed.

Keywords

None.

Discussion

REVERSE is helpful in a variety of applications; one example is its use in obtain-
ing perfectly symmetrical figures, such as an hourglass, by simply creating a
portion of the needed figure and then making a reverse image for the rest.

NOTE Running REVERSE is equivalent to running the ROTATE function with
the correct parameter.

Example 1

This example exhibits the result of applying REVERSE to a 4-by-3 integer array.

a = INDGEN(4, 3)

; Create a 4-by-3 integer array. Each element has a value equal to its
; one-dimensional subscript.

PRINT, a

0 1 2 3

REVERSE Function 763

4 5 6 7

8 9 10 11

PRINT, REVERSE(a)

3 2 1 0

7 6 5 4

11 10 9 8

; Reverse the rows of a.

PRINT, REVERSE(a, 2)

8 9 10 11

4 5 6 7

0 1 2 3

; Reverse the columns of a.

PRINT, REVERSE(REVERSE(a), 2)

11 10 9 8

7 6 5 4

3 2 1 0

; Reverse the columns and rows of a.

Example 2

The following commands first display the image contained in the
scientist3.dat file, and then rotate and redisplay it:

image1 = BYTARR(250, 200)

OPENR, 1, !Data_dir + ’scientist3.dat’

READU, 1, image1

TV, image1, 0

TV, REVERSE(image1), 1

See Also

ROTATE

764 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

REWIND Procedure (OpenVMS)
Rewinds the tape on the designated tape unit.

Usage

REWIND, unit

Input Parameters

unit — A number between 0 and 9 that specifies the magnetic tape unit to rewind.
(Do not confuse this parameter with file logical unit numbers.)

Keywords

None.

See Also

For more information, see .

RGB_TO_HSV Procedure
Standard Library procedure that converts from the RGB color system to the HSV
color system.

Usage

RGB_TO_HSV, red, green, blue, h, s, v

Input Parameters

red — Red color value(s). These can be scalar or vectors, whose values are short
integers in the range 0 to 255.

green — Green color value(s). This parameter must have the same number of ele-
ments as the red input parameter.

blue — Blue color value(s).

RM Procedure 765

Output Parameters

h — The resulting hue value, with the same number of elements as red and whose
value is in the range of 0 to 360.

s — The corresponding saturation value in the range of 0 to 1.

v — The value of the corresponding value in the range 0 to 1.

Keywords

None.

Discussion

RGB_TO_HSV converts colors from the RGB (red, green, blue) color system to
the HSV (hue, saturation, value) color system.

See Also

C_EDIT, COLOR_CONVERT, COLOR_EDIT, HSV_TO_RGB,
LOADCT, MODIFYCT, TVLCT, WgCeditTool, WgCtTool

For background information about color systems, see .

RM Procedure
Reads data into a one- or two-dimensional matrix.

Usage

RM, a [, rows, columns]

Input Parameters

rows — (optional) Number of rows in the matrix.

columns — (optional) Number of columns in the matrix.

Output Parameters

a — Named variable into which the data is stored.

766 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Keywords

Complex — If present and nonzero, creates a single-precision complex matrix.

Dcomplex — If present and nonzero, creates a double-precision complex matrix.

Double — If present and nonzero, creates a double-precision matrix.

Description

Procedure RM is used to read data into matrices according to the PV-WAVE
matrix-storage scheme. If rows and columns are not specified, RM attempts to use
the current definition of a to determine the number of rows and columns of a. If
rows and columns are not specified and a is undefined or a scalar, an error is issued.

Upon invoking RM, the user is prompted with the row number for which input is
expected. The prompt for the next row to be filled does not appear until the current
row is filled. If the amount of data input for a particular row is larger than the
defined number of columns of a, then the extra trailing input is ignored, and the
prompt for the next row is given.

The matrix-printing procedures PM or PMF must be used to correctly print a
matrix read in with RM.

Example 1: Reading a Simple Matrix

This example reads a 2-by-3 matrix and prints the results using the matrix-printing
procedure PM.

RM, a, 2, 3

row 0: 11 22 33

row 1: 40 50 60

; Read a 2-by-3 matrix.

PM, a

11.0000 22.0000 33.0000

40.0000 50.0000 60.0000

; Output the matrix.

Example 2: Reading a Complex Matrix

In this example, a complex matrix is read. Notice that the elements input as integers
are promoted to type complex with the value of the imaginary part set to zero.

RM, a, 3, 2, /Complex

row 0: (1, 0) (1, 1)

row 1: 1 -1

RM Procedure 767

row 2: (10.0, 0) (0, -10)

; Read the matrix; note that keyword Complex is set.

PM, a

(1.00000, 0.00000)(1.00000, 1.00000)

(1.00000, 0.00000)(-1.00000, 0.00000)

(10.0000, 0.00000)(0.00000, -10.0000)

; Print the result.

Example 3: Reading a Matrix to be Used with LUSOL

In this example, a 3-by-3 matrix and a 3-by-1 matrix are read. These matrices are
then used in a call to the PV-WAVE:IMSL Mathematics Toolkit function LUSOL.

RM, a, 3, 3

row 0: 1 3 3

row 1: 1 3 4

row 2: 1 4 3

; Read the coefficient matrix.

RM, b, 3, 1

row 0: 1

row 1: 4

row 2: -1

; Read the right-hand side.

x = LUSOL(b, a)

; Call LUSOL to compute the solution.

PM, x

-2.00000

-2.00000

3.00000

; Output the results.

PM, a#x - b

0.00000

0.00000

0.00000

See Also

PM, PMF, RMF

See for more information.

768 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

RMF Procedure
Reads data into a one- or two-dimensional matrix from a specified file unit.

Usage

RMF, unit, a [, rows, columns]

Input Parameters

unit — File unit from which the input is taken.

rows — (optional) Number of rows in the matrix.

columns — (optional) Number of columns in the matrix.

Output Parameters

a — Named variable into which the data is stored.

Keywords

Complex — If present and nonzero, creates a single-precision complex matrix.

Dcomplex — If present and nonzero, creates a double-precision complex matrix.

Double — If present and nonzero, creates a double-precision matrix.

Format — Scalar string specifying the precise format of the data to be read. If For-
mat is not specified, PV-WAVE uses its default rules for formatting the input. The
character string should start with a left parenthesis and end with a right parenthesis.
For example:

Format = ’(f10.5)’

Description

RMF is used to read data from a specified file unit into a matrix according to the
PV-WAVE matrix-storage mode. If rows and columns are not specified, RMF
attempts to use the current definition of a to determine the number of rows and col-
umns of a. If the arguments rows and columns are not specified and a is undefined
or a scalar, an error is issued.

The matrix-printing procedures PM or PMF must be used to correctly print a
matrix read in with RMF.

ROBERTS Function 769

Example

This example reads in a 2-by-3 matrix from standard input (unit = –1) and prints
the results using the matrix-printing procedure PM.

RMF, 0, a, 2, 3

: 11 22 33

: 40 50 60

; Read matrix.

PM, a

11.0000 22.0000 33.0000

40.0000 50.0000 60.0000

; Output the matrix.

See Also

PM, PMF, RM

See .for more information.

ROBERTS Function
Performs a Roberts edge enhancement of an image.

Usage

result = ROBERTS(image)

Input Parameters

image — A two-dimensional array.

Returned Value

result — A two-dimensional array of integer data type which contains the edge-
enhanced image.

Keywords

Col — Computes the column gradient (horizontal line enhancement). (Default:
Col = 1)

770 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

NOTE For horizontal line enhancement only, you must disable the vertical line
enhancement by setting the Row keyword to 0.

Edge — A scalar string indicating how edge effects are handled. (Default:
’zero’) Valid strings are:

’zero’ — Sets the border of the output image to zero. (Default)

’copy’ — Copies the border of the input image to the output image.

No_Clip — If set, the result data type is greater than the image data type so that
overflow values in result are not clipped.

TIP Use the No_Clip keyword to avoid overflow conditions.

Return — A scalar string specifying a mathematical function to apply. Valid
strings are ’abs’, ’phase’, and ’value’. The Return keyword is used with
the Row and Col keywords per the following table. (Default: ’abs’)

Row — Computes the row gradient (vertical line enhancement). (Default: Row = 1)

NOTE For vertical line enhancement only, you must disable the horizontal line
enhancement by setting the Col keyword to 0.

Same_Type — If set, the result is the same data type as image; otherwise, the result
image data type is always integer.

Zero_Negatives — If set, all negative values in result are set to zero.

Return = ’abs’ Return = ’phase’ Return = ’value’

Col = 1,
Row = 0 ABS(col grad) Invalid Condition column gradient

Col = 0,
Row = 1 ABS(row grad) Invalid Condition row gradient

Col = 1,
Row = 1 ABS(row grad)+

ABS(col grad)

ATAN(row grad ÷
col grad),
data type is double

Invalid Condition

Col = 0,
Row = 0 Invalid Condition Invalid Condition Invalid Condition

ROBERTS Function 771

Discussion

The ROBERTS function supports multi-layer band-interleaved images. When
image is 3D, it is treated as an array of images array(m, n, p), where p is the num-
ber of m-by-n images. Each image in the input array is then operated on separately
and an array of the result images is returned.

The ROBERTS function performs edge sharpening and isolation on image. It
returns an approximation to the Roberts edge enhancement operator for images.
This approximation is:

GA(j,k) = |Fj,k – Fj+1,k+1| + |Fj,k+1 – Fj+1,k|

The resulting image returned by ROBERTS has the same dimensions as the input
image.

CAUTION Because the result image is saved in integer format, large original data
values will cause overflow. Overflow occurs when the absolute value of the result
is larger than 32,767. Use the No_Clip keyword to avoid overflow.

Example

This example uses the ROBERTS function to apply the Roberts edge enhancement
operator to an aerial image. The final edge enhanced image is the absolute value of
the difference between the original image and the image from the ROBERTS
function.

OPENR, unit, FILEPATH(’aerial_demo.img’, Subdir=’data’), /Get_Lun

; Open the file containing the image.

img = BYTARR(512, 512)

; Create an array large enough to hold the image.

READU, unit, img

; Read the image data.

FREE_LUN, unit

; Close the file and free the file unit number.

WINDOW, 0, Xsize = 1024, Ysize = 512

; Create a window large enough to hold two 512-by-512 images.

TV, img

; Display the original image in the left-half of the window.

HIST_EQUAL_CT, img

TV, ABS(img - ROBERTS(img)), 1

; Display the absolute value of the difference between the original
; image and the result of the ROBERTS function in the right-half of

772 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

; the window.

Figure 2-52 Original image (left), and Roberts edge enhanced image (right).

See Also

CONVOL, SHIFT, SOBEL

For background information, see the section Image Sharpening in Chapter 6 of the
PV-WAVE User’s Guide.

ROT Function
Standard Library function that rotates and magnifies (or demagnifies) a two-dimen-
sional array.

Usage

result = ROT(image, ang[, mag, xctr, yctr])

Input Parameters

image —The input image to be manipulated. Can be of any data type except string.
Must be two-dimensional.

ang — The angle of rotation in degrees clockwise.

mag — (optional) The magnification or demagnification factor (see Discussion).

xctr — (optional) The x subscript of the center of rotation. If omitted, xctr is equal
to the number of columns in image divided by 2.

ROT Function 773

yctr — (optional) The y subscript of the center of rotation. If omitted, yctr is equal
to the number of rows in image divided by 2.

Returned Value

result — A rotated and magnified (or demagnified) image. The dimensions are the
same as those for the input image.

Keywords

Interp — If present and nonzero, specifies that bilinear interpolation is to be used.
Otherwise, the nearest neighbor interpolation method is used.

Missing — Data value to substitute for pixels in the output image that map outside
the input image.

Discussion

ROT uses the POLY_2D function to rotate and scale the input image.

The magnification factor can be of integer or floating-point data type. It is specified
as follows (with 1 being the default value):

For example, if mag is set to 0.5, this would result in an image half the size of the
original image, and if mag is set to 3, this would result in an image three times the
size of the original.

TIP If you only need to rotate an image by 90-degree increments, the ROTATE
function is more efficient to use.

TIP If you need a more accurate bilinear interpolation method, use the ROT_INT
function.

mag = 1 no change

mag > 1 causes magnification

mag < 1 causes demagnification

774 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example

This example uses ROT to both rotate and demagnify an image. The image is
rotated 135 degrees clockwise, while the demagnification factor is 0.63. Also, pix-
els that map outside the original image are assigned a value of 0.

OPENR, unit, FILEPATH(’x2y2.dat’, Subdir = ’data’), /Get_Lun

; Open the file containing the image.

image = BYTARR(320, 256)

; Create an array large enough to hold the image.

READU, unit, image

; Read the image.

FREE_LUN, unit

; Close the file and free the file unit number.

WINDOW, 0, Xsize = 640, Ysize = 256

; Create a window large enough to contain two 320-by-256 images.

TV, image, 0

; Display the original image in the left-half of the window.

a = ROT(image, 135, 0.63, Missing = 0)

; Rotate the image 135 degrees clockwise, and demagnify it by a
; factor of 0.63. Also, pixels that map outside the original image are
; assigned a value of 0.

TV, a, 1

; Display rotated, demagnified image in the right-half of the window.

Figure 2-53 Original image (left); rotated/demagnified image (right).

See Also

AFFINE, POLY_2D, ROTATE, ROT_INT

ROTATE Function 775

For information on interpolation methods, see .

ROTATE Function
Returns a rotated and/or transposed copy of the input array.

Usage

result = ROTATE(array, direction)

Input Parameters
array — The 1D, 2D, or 3D array to be rotated.

direction — An integer that specifies the type of rotation to be performed, as shown
below:

The input parameter direction is taken modulo 8, so a rotation of –1 is the same as
7, 9 is the same as 1, and so forth.

Returned Value
result — A copy of array that has been rotated and/or transposed by 90-degree
increments.

Keywords
None.

Direction Transpose Rotation Clockwise

0 No None

1 No 90°
2 No 180°
3 No 270°
4 Yes None

5 Yes 90°
6 Yes 180°
7 Yes 270°

776 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Discussion
The ROTATE function supports multi-layer band interleaved images. When the
input array is three-dimensional, it is automatically treated as an array of images,
array(m, n, p), where p is the number of m by n images. Each image is then oper-
ated on separately and an array of the result images is returned.

The resulting array is of the same data type as the input array. The dimensions of
the result are the same as those of array if direction is equal to 0 or 2; the dimen-
sions are switched if direction is 1 or 3.

TIP To rotate by amounts other than multiples of 90 degrees, use the functions
ROT and ROT_INT. However, note that ROTATE is more efficient than either of
those functions.

Example 1
ROTATE may be used to reverse the order of elements in vectors. For example, to
reverse the order of elements in the vector in variable X, use the expression:

ROTATE(X,2)

If

X = [0,1,2,3]

then

ROTATE(X,2) = [3,2,1,0]

Example 2

This example uses ROTATE to rotate an image by 90 degrees counterclockwise and
displays the image both before and after the rotation.

OPENR, unit, FILEPATH(’x2y2.dat’, $

Subdir =’data’), /Get_Lun

; Open the file containing the image.

img = BYTARR(320, 256)

READU, unit, img

FREE_LUN, unit

; Create array to hold the image, read the image, and free the LUN.

WINDOW, 0, Xsize = 640, Ysize = 640

; Create a window.

TV, img, 0, 321

TV, ROTATE(img, 1), 321, 257

TV, ROTATE(img, 2), 0, 0

ROT_INT Function 777

TV, ROTATE(img, 3), 321, 0

; Display the image, before, and after rotations.

Figure 2-54 Original image and rotations.

See Also

AFFINE, REVERSE, ROT, ROT_INT

ROT_INT Function
Standard Library function that rotates and magnifies (or demagnifies) an image on
the display screen.

Usage

result = ROT_INT(image, ang [, mag, xctr, yctr])

Input Parameters

image — The input image to be manipulated. Can be of any data type except string.
Must be two-dimensional.

ang — The angle of rotation in degrees clockwise.

mag — (optional) The magnification or demagnification factor (see Discussion).

778 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

xctr — (optional) The x subscript of the center of rotation. If omitted, xctr is equal
to the number of columns in image divided by 2.

yctr — (optional) The y subscript of the center of rotation. If omitted, yctr is equal
to the number of rows in image divided by 2.

Returned Value

result — A rotated and magnified (or demagnified) image. The dimensions are the
same as those for the input image.

Keywords

None.

Discussion

ROT_INT calls the function POLY_2D to rotate and scale the input image.

The magnification factor can be of integer or floating-point data type. It is specified
as follows (with 1 being the default value):

For example, if mag is set to 0.5, this would result in an image half the size of the
original image, and if mag is set to 3, this would result in an image three times the
size of the original.

ROT_INT uses the bilinear interpolation method to rotate and scale the input
image.

TIP If a faster (but less accurate) method of interpolation is needed, use the related
function ROT, which uses a nearest neighbor method.

See Also

AFFINE, POLY_2D, ROT, ROTATE

For information on interpolation methods, see .

mag = 1 no change

mag > 1 causes magnification

mag < 1 causes demagnification

ROT_INT Function 779

780 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Procedure and Function Reference

2

SAME Function
Standard Library function that tests if two variables are the same.

Usage

result = SAME(x, y)

Input Parameters

x — A variable.

y — A variable.

Returned Value

result — 1 if the two variables are the same (within keyword settings), 0 if not.

NOTE For Named Structures, the name is not tested, so {a,x:1} is same as {b,x:1}.

Keywords

NoType — If set, the types of x and y are ignored. (FINDGEN(5) is same as
INDGEN(5).)

NoDim — If set, the dimensions of the arrays are ignored. ([1,2,3,4] is same as
[[1,2],[3,4]] - same as SAME(a(*),b(*).)

NoVal — If set, the values in the arrays are ignored. ([1,2,3] is same as [3,4,5].)

Examples

To test for exact match:

result = SAME(a, b)

To test for compatible sizes:

result = SAME(a, b, /NoType, /NoVal)

(Replaces multiple SIZE calls.)

See Also

SIZE

SAVE Procedure 781

SAVE Procedure
Saves variables or other specified objects in a file for later recovery by RESTORE.

Usage

SAVE [, var1, ... , varn]

Input Parameters

vari — The named variables that are to be saved.

Keywords

All — If nonzero, specifies that everything (common blocks, system variables,
local variables, compiled functions, and compiled procedures) should be saved.

Comm — If present and nonzero, causes all main level common block definitions
to be saved.

Filename — The name of the file into which to save the PV-WAVE objects. If this
keyword is not present, the file wavesave.dat is used.

Level — Specifies the level of the program for which data is to be saved. If n > 0,
the level is counted from the $MAIN$ level to the current procedure. If n < 0 the
level count is relative, counting from the current procedure back to the $MAIN$
level. (Default: 0 — $MAIN$).

Routines — If present and nonzero, saves all procedures and functions that are cur-
rently compiled in memory.

System_Variables — If present and nonzero, saves all system variables.

Variables — If present and nonzero, saves all current local variables to.

Verbose — If present and nonzero, prints an informative message for each saved
object.

Wavepoint — If present and nonzero, saves PV-WAVE variables so that they can
be read into PV-WAVE Point & Click and PV-WAVE Personal Edition. This key-
word is disabled for the Digital Alpha Digital UNIX platform.

XDR — If present and nonzero, causes the save file to be written in a portable for-
mat using XDR (eXternal Data Representation).

782 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

UNIX USERS Under UNIX, XDR is the only supported format, so specifying this
keyword is unnecessary.

OpenVMS USERS Under OpenVMS, XDR is used to interchange data with
other versions of PV-WAVE. The default is a VAX-specific format that is more effi-
cient to process.

Discussion

Saving and restoring the value –0.0 (negative float zero) is not portable between
platforms. This is because of different internal implementations of that number.

See Also

COMPILE, JOURNAL, RESTORE

UNIX and OpenVMS USERS For more information, see

SCALE3D Procedure
Standard Library procedure that scales a three-dimensional unit cube into the view-
ing area.

Usage

SCALE3D

Parameters

None.

Keywords

None.

SEC_TO_DT Function 783

Discussion

SCALE3D is useful for certain forms of perspective transformation, although it
does not work for all forms.

SCALE3D does not use explicit parameters, but rather modifies the system vari-
able !P.T for use as the implicit input and output parameters. Eight three-
dimensional data points are created at the vertices of the three-dimensional unit
cube. These eight points are transformed by !P.T. The system is translated to bring
the minimum (X, Y, Z) point to the origin, and then scaled to make each coordi-
nate’s maximum value equal to 1.

Example

For an example, see .

See Also

System Variables: !P.T

SEC_TO_DT Function
Converts any number of seconds into date/time values.

Usage
result = SEC_TO_DT(num_of_seconds)

Input Parameters
num_of_seconds — A scalar representing the number of seconds elapsed from the
date specified in the system variable !DT_Base.

Returned Value
result — A date/time variable containing the converted values.

Keywords
Base — A string containing a date, such as “3-27-92”. This is the base date from
which the number of seconds is calculated. The default value for Base is taken from
the system variable !DT_Base.

Date_Fmt — Specifies the format of the base date, if passed into the function. Pos-
sible values are 1, 2, 3, 4, or 5, as summarized in the following table:

784 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

where the asterisk (*) represents one of the following separators: dash (–), slash
(/), comma (,), period (.), or colon (:).

For a description of these formats, see .

Discussion
This function is useful for converting time stamps that count seconds to date/time
values. Most time stamps count seconds from an arbitrary base date. For example,
the UNIX time stamp counts seconds from January 1, 1970.

Example 1
This example shows how a value of 20 seconds is represented internally inside a
date/time variable after it has been converted with SEC_TO_DT. The example uses
a base start date of January 1, 1970.
date = SEC_TO_DT(20, Base=’1-1-70’, $

Date_Fmt=1)

PRINT, date

{ 1970 1 1 0 0 20.0000 79367.000 0}

Example 2
Assume you have the following dataset which contains time stamps and associated
measurements. The file contains data collected from January 1, 1990 to January 5,
1990. The base date for the clock is January 1, 1970.

6.3119520e+08 113

6.3128160e+08 768

6.3136800e+08 632

6.3145440e+08 227

6.3154080e+08 224

Assume the above file has been read into two variables. The first column is read
into a double-precision array called tarray. The second column is read into an
array called fluid_level, which indicates the water level of a lake for each

Value Format Description
Examples for
May 1, 1992

1 MM*DD*[YY]YY 05/01/92

2 DD*MM*[YY]YY 01-05-92

3 ddd*[YY]YY 122,1992

4 DD*mmm[mmmmmm]*[YY]YY 01/May/92

5 [YY]YY*MM*DD 1992-05-01

SELECT_READ_LUN Procedure (UNIX) 785

specified time period. You can convert the date/time data in Column 1 to date/time
data with the SEC_TO_DT function:
dtarray = SEC_TO_DT(tarray, Base=’1-1-70’)

PRINT, dtarray

{ 1990 1 1 12 0 0.00000 86672.500 0}

{ 1990 1 2 12 0 0.00000 86673.500 0}

{ 1990 1 3 12 0 0.00000 86674.500 0}

{ 1990 1 4 12 0 0.00000 86675.500 0}

{ 1990 1 5 12 0 0.00000 86676.500 0}

Notice the SEC_TO_DT function creates an array containing a date/time structure
for each of the seconds values. The Julian day shown for each date/time is
automatically adjusted to reflect the system base date of September 14, 1752.

See Also

DT_TO_SEC, JUL_TO_DT, STR_TO_DT, VAR_TO_DT

System Variables: !DT_Base

For more information, see Chapter 8, Working with Date/Time Data, in the
PV-WAVE User’s Guide.

SELECT_READ_LUN Procedure (UNIX)
Waits for input on any of a list of logical unit numbers.

Usage

SELECT_READ_LUN, luns

Input Parameters

luns — A vector of logical unit numbers.

Output Parameters

luns — A vector of logical unit numbers.

Keywords

Timeout — Amount of time, in seconds, this procedure should block while waiting
for input. This may be a floating-point number. The default is to block forever.

786 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Widget — If present and nonzero, selects the X11 socket. If there is no X11 input,
then the value of this keyword is set to –1.

Description

This procedure checks for input on all the logical unit numbers specified in the luns
vector. When it returns, those unit numbers without input are set to –1. By default,
this procedure blocks forever waiting for input. Keyword Timeout can be used to
reduce the time the procedure blocks. This procedure always returns when any one
of the listed LUNs has input to be read.

This procedure is an interface to the select_read_lunC routine in the io.so
shared library.

See Also

ADD_EXEC_ON_SELECT, DROP_EXEC_ON_SELECT,
EXEC_ON_SELECT

SETDEMO Procedure
Standard Library procedure that defines key bindings and system variables to run
the PV-WAVE demonstration system for the system on which PV-WAVE is
started.

Usage

SETDEMO

Parameters

None.

Keywords

None.

SETDEMO Procedure 787

Discussion

SETDEMO is called when PV-WAVE is started, and defines the key bindings and
system variables used to run the demonstration system. The message that appears
at the start of a session identifying the key bindings is written by this procedure.

NOTE Some key definitions may not be possible on all platforms.

UNIX and OpenVMS USERS The SETDEMO procedure is called by the
PV-WAVE startup file:

(UNIX) <wavedir>/bin/wavestartup

(OpenVMS) <wavedir>:[000000.bin]wavestartup.dat

Where <wavedir> is the main PV-WAVE directory.

During startup, SETDEMO sets up the key bindings for the PV-WAVE demonstra-
tion, accesses the Help system, outputs the PV-WAVE status, and creates a
subprocess on your system. It then displays a message indicating that the key bind-
ings were set.

You can use SETDEMO to customize your keys for commonly used commands
(through the DEFINE_KEY routine), to change the message that is printed to the
screen when you invoke PV-WAVE, or to change the default key bindings.

See Also

DEFINE_KEY, SETUP_KEYS

788 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

SETENV Procedure (UNIX/Windows)
Adds or changes an environment string in the process environment.

Usage

SETENV, environment_expr

Input Parameters

environment_expr — A scalar string containing an environment expression to be
added to the environment.

Keywords

None.

UNIX Example
SETENV, ’SHELL=/bin/sh’

Windows Example

To change the HOMEPATH environment variable to point to the directory
D:\users\chris\utah_data:

r = GETENV(’HOMEPATH’)

PRINT, r

D:\users\chris

SETENV, ’HOMEPATH=D:\users\chris\utah_data’

r = GETENV(’HOMEPATH’)

PRINT, r

D:\users\chris\utah_data

See Also

ENVIRONMENT, GETENV

SETLOG Procedure (OpenVMS) 789

SETLOG Procedure (OpenVMS)
Defines a logical name.

Usage

SETLOG, logname, value

Input Parameters

logname — A scalar string containing the name of the logical to be defined.

value — A string giving the value to which logname will be set. If value is a string
array, logname is defined as a multi-valued logical where each element of value
defines one of the equivalence strings.

Keywords

Concealed — If set, RMS interprets the equivalence name as a device name.

Confine — If set, prevents logname from being copied from the PV-WAVE pro-
cess to its spawned subprocesses.

No_Alias — If set, prevents logname from being duplicated in the same logical
table at an outer access mode. If another logical name with the same name already
exists at an outer access mode, it is deleted.

Table — A scalar string giving the name of the logical table from which to delete
logname. If this keyword is not present, the table LNM$PROCESS_TABLE is used.

Terminal — If set, prevents further iterative logical name translation on the equiv-
alence name from being performed when SETLOG attempts to translate logname.

See Also

DELETE_SYMBOL, DELLOG, GET_SYMBOL, SET_SYMBOL,
TRNLOG

For more information on logical names and access modes, see the VAX/OpenVMS
DCL Dictionary. Information oriented to C programmers can be found in the Open-
VMS System Services Manual.

790 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

SETNCOPTS Procedure
Sets the value of the ncopts variable and defines the level of error reporting for the
NetCDF functions as discussed in the error section of the NetCDF User’s Guide.

Usage

SETNCOPTS, new_ncopts

Input Parameters

new_ncopts — The new value for the ncopts variable. Valid values for the ncopts
variable are:

0 (zero) — No error messages will be reported.

NC_FATAL — No error messages will be reported and all errors will be fatal.

NC_VERBOSE — Error messages will be reported.

NC_FATAL+NC_VERBOSE — Error messages will be reported and all errors
will be fatal.

NC_VERBOSE and NC_FATAL are defined in HDF_COMMON and HDF_INIT.

Keywords

Help — List the usage for this function.

Usage — List the usage for this function. Same as the Help keyword.

Discussion

SETNCOPTS sets the value of the “ncopts” variable thus defining the level of error
reporting by the netCDF functions as discussed in the Error Handling section of the
NetCDF User’s Guide.

SETNCOPTS is only valid for the netCDF functionality.

Fatal errors will cause PV-WAVE to exit.

Example
SETNCOPTS, 0

ncid = NCOPEN("foo.nc", NC_NOWRITE)

SET_PLOT Procedure 791

status = NCCLOSE(ncid)

status = NCREDEF(ncid)
% NCREDEF: error in HDF return status.

SETNCOPTS, NC_VERBOSE

ncid = NCOPEN("foo.nc", NC_NOWRITE)

status = NCCLOSE(ncid)

status = NCREDEF(ncid)
ncredef: 0 is not a valid cdfid % NCREDEF: error in HDF return
status.

See Also

GETNCERR, GETNCOPTS

Also refer to the NetCDF User’s Guide.

For more information on using the HDF interface and the calling sequence for the
entire suite of HDF base functions, refer to Appendix A, The PV-WAVE HDF
Interface.

For a complete list of the HDF convenience routines, refer to Chapter 1, Functional
Summary of Routines.

SET_PLOT Procedure
Specifies the device type used by PV-WAVE graphics procedures.

Usage

SET_PLOT, device

Input Parameters

device — A scalar string giving the name of the device to use. This parameter is
case-insensitive.

Keywords

Copy — If present and nonzero, PV-WAVE’s internal color table is copied into the
device. This is the preferred method if you are displaying graphics and each color
index is explicitly loaded.

792 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Interpolate — If present and nonzero, the color table of the new device is loaded
by interpolating the old color table to span the new number of color indices. This
method works best when displaying images with continuous color ranges.

Discussion

The following are valid device names. These devices are explained in detail in
Appendix B, Output Devices and Window Systems.

If the Copy keyword parameter is set, the color table copying is straightforward as
long as both devices have the same number of color indices. However, if the new
device has more colors than the old device, some color indices will be invalid. If
the new device has less colors than the old, not all the colors are saved.

Examples
SET_PLOT, ’ps’

; Send output to a PostScript file.

SET_PLOT, ’cgm’

; Send output to a CGM file.

See Also

DEVICE

System Variables: !D

PV-WAVE Device Drivers

Name Device

CGM Computer Graphics Metafile format

HP HPGL device

PCL PCL device

PM Pixel Map

PS PostScript device

REGIS REGIS terminal

TEK Tektronix terminal

WIN32 Windows NT

WMF Windows Metafile

X X Window System

Z Z-buffer pseudo device

SET_SCREEN Procedure 793

SET_SCREEN Procedure
Standard Library procedure that establishes a new position for the rectangular plot
area based on input values specified using the device coordinate system.

Usage

SET_SCREEN, xmin, xmax [, ymin, ymax]

Input Parameters

xmin — The position of the left edge of the rectangular plot area in device
coordinates.

xmax — The position of the right edge of the rectangular plot area in device
coordinates.

ymin — The position of the bottom edge of the rectangular plot area in device
coordinates.

ymax — The position of the top edge of the rectangular plot area in device
coordinates.

Keywords

Cursor — Lets you set the region for the rectangular plot area interactively with
the mouse:

• If nonzero, lets you set the boundaries by clicking the mouse at the corners of
the rectangular plot area that you want to use. Click first to set the lower-left
corner, then once again to set the upper-right corner. Any input parameters for
SET_SCREEN are ignored.

• If zero, uses the input parameters as specified.

Region — If present, uses the system variable !P.Region to set the plot area. The
default is to use !P.Position.

Discussion

SET_SCREEN is used to set up the area of the display that will be used for plotting.
It is identical to the SET_VIEWPORT procedure, except that the input parameters
are in device coordinates for SET_SCREEN.

794 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

If only xmin and xmax are provided, the values for ymin and ymax are calculated.
Calling SET_SCREEN with four input parameters is the same as setting the
!P.Position system variable or using the Position keyword with the plotting
commands.

SET_SCREEN overrides the effect of the system variables !X.Margin and
!Y.Margin.

TIP To find out the current values of your device, type one of the following two
commands:

INFO, /Structure, !D

PRINT, !D.X_Size, !D.Y_Size

Example
INFO, /Structure, !D

SET_SCREEN, !D.X_Size/10., !D.X_Size/2.

SET_SCREEN, !D.X_Size/10., !D.X_Size/2.1, $
!D.Y_Size/1.7, !D.Y_Size/1.1

PLOT, [3, 4, 5], Title=’Upper left plot’

SET_SCREEN, !D.X_Size/10., !D.X_Size/2.1, $
!D.Y_Size/10., !D.Y_Size/2.3

PLOT, [5, 1, 6], Title=’Lower left plot’, $
/Noerase

SET_SCREEN, !D.X_Size/1.8, !D.X_Size/1.1, $
!D.Y_Size/1.7, !D.Y_Size/1.1

PLOT, [3, 4, 5], Title=’Upper right plot’, $
/Noerase

SET_SCREEN, !D_X_Size/1.8, !D_X_Size/1.1, $
!D_Y_Size/10., !D_Y_Size/2.3

PLOT, [2, 4, 3], title=’Lower right plot’, /Noerase

SET_SCREEN, 1, 1, 1, 1, /Cursor

; Click the mouse button on the lower left corner of the desired
; plotting area and then again for the desired upper right corner.

PLOT, [3, 5, 4]

SET_SCREEN, !D_X_Size/10., !D_X_Size/1.1, $
!D_Y_Size/10., !D_Y_Size/1.1

PLOT, [3, 4, 5], $
Title=’Without setting the region keyword’

SET_SHADING Procedure 795

SET_SCREEN, !D_X_Size/10., !D_X_Size/1.1, $
!D_Y_Size/10., !D_Y_Size/1.1, Region

PLOT, [3, 4, 5], Title=’With the region keyword set’, /Noerase

See Also

SET_VIEWPORT

System Variables: !P.Position, !P.Region

SET_SHADING Procedure
Modifies the light source shading parameters affecting the output of
SHADE_SURF and POLYSHADE.

Usage

SET_SHADING

Input Parameters

None.

Keywords

Gouraud — Controls the method of shading the surface polygons of the POLY-
SHADE procedure:

• If set to nonzero (the default), the Gouraud shading method is used.

• Otherwise, each polygon is shaded with a constant intensity.

Gouraud shading interpolates intensities from each vertex along each edge. Then,
when scan converting the polygons, the shading is interpolated along each scan line
from the edge intensities. Gouraud shading is slower than constant shading, but
usually results in a more realistic appearance.

Light — A 3-element vector specifying the direction of the light source. The
default light source vector is [0, 0, 1], with the light rays parallel to the Z axis.

Reject — If set (the default), causes polygons to be rejected as being hidden if their
vertices are ordered in a clockwise direction as seen by the viewer.

796 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

• You should always set Reject when rendering enclosed solids whose original
vertex lists are in counterclockwise order.

• You may also choose to set Reject when rendering surfaces that are not closed
or are not in counterclockwise order, although this may cause shading anoma-
lies at boundaries between visible and hidden surfaces to occur.

Discussion

SET_SHADING keywords let you control the light source direction, shading
method, and the rejection of hidden surfaces. SET_SHADING first resets its key-
words to their default values. The values specified in the call then overwrite the
default values.

Example

This example creates a spherical volume dataset and then renders two isosurfaces
from that dataset. The first isosurface does not use the Gouraud method of shading
but instead shades each polygon with a constant intensity. This is achieved by using
SET_SHADING with the Gouraud keyword set to 0. The second isosurface uses
the Gouraud method of shading, which is achieved by using SET_SHADING with
the Gouraud keyword set to 1.

sphere = FLTARR(20, 20, 20)

; Create a three-dimensional single precision, floating-point array.

FOR x = 0, 19 DO FOR y = 0, 19 DO FOR $
z = 0, 19 DO sphere(x, y, z) = $
SQRT((x-10)^2 + (y-10)^2 + (z-10)^2)

; Create the spherical volume dataset.

SHADE_VOLUME, sphere, 7, v, p

; Find the vertices and polygons at a contour level of 7.

SURFACE, FLTARR(2, 2), /Nodata, /Save, $
Xrange = [0, 20], Yrange = [0, 20], $
Zrange = [0, 20], Xstyle = 4, Ystyle = 4, $
Zstyle = 4

; Set up an appropriate three-dimensional transformation.

SET_SHADING, Gouraud = 0

; Turn Gouraud shading off.

image = POLYSHADE(v, p, /T3d)

; Render the image.

TV, image

; Display the image.

SET_SHADING Procedure 797

Figure 2-55 Spherical isosurface with constant intensity shading.

SET_SHADING, Gouraud = 1

; Turn Gouraud shading on.

image = POLYSHADE(v, p, /T3d)

; Render the image.

TV, image

; Display the image.

Figure 2-56 Spherical isosurface with Gouraud shading.

See Also

POLYSHADE, SHADE_SURF, SHADE_SURF_IRR

798 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

SET_SYMBOL Procedure (OpenVMS)
(OpenVMS Only) Defines a DCL interpreter symbol for the current process.

Usage

SET_SYMBOL, name, value

Input Parameters

name — A scalar string containing the name of the symbol to be defined.

value — A scalar string containing the value with which name will be defined.

Keywords

Type — Indicates the OpenVMS table into which name will be placed:

See Also

DELETE_SYMBOL, DELLOG, GET_SYMBOL, SETLOG, TRNLOG

For more information, see the VAX/OpenVMS DCL Dictionary. Information ori-
ented to C programmers can be found in the OpenVMS System Services Manual.

SETUP_KEYS Procedure
Standard Library procedure that sets up the functions keys for keyboards known to
PV-WAVE.

Usage

SETUP_KEYS

Parameters

None.

1 Specifies the local symbol table (the default).

2 Specifies the global symbol table.

SETUP_KEYS Procedure 799

Keywords

Windows USERS All of the keywords described below work only under UNIX
and OpenVMS. This procedure does not take any keywords under Windows.

App_Keypad — Specifies the escape sequences for the group of keys in the
numeric keypad, enabling these keys to be program-med within PV-WAVE.

Eightbit — Indicates that the 8-bit versions of the escape codes should be used
instead of the default 7-bit versions when the VT200 function key definitions are
entered. Eightbit is only valid if the VT200 keyword is also used.

HP9000 — Specifies that function key definitions for an HP-9000 Series 300 key-
board should be established.

The upper right-hand group of four keys (at the same height as the function keys)
are called <BLANK1> throught <BLANK4>, since they have no written labels.

Keys defined to have labels beginning with a capital <K> belong to the numeric
keypad group; for example, <K9> refers to keypad key <9>.

Mips — Specifies that function key definitions for a MIPS RS series keyboard
should be established.

Num_Keypad — Disables programmability of the numeric keypad.

Sun — Specifies that function key definitions for a Sun-4 keyboard should be
established.

VT200 — Specifies that function key definitions for a VT200 keyboard should be
established.

Discussion

You can examine the function key definitions by running the SETUP_KEYS pro-
cedure and then typing INFO, /Keys. To change a key definition or add a new
key definition, use the DEFINE_KEY procedure.

Example
SETUP_KEYS, /Sun

; Establishes function key definitions for a Sun-4 keyboard.

800 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

See Also

DEFINE_KEY, SETDEMO

System Variables: !Version

SET_VIEW3D Procedure
Generates a 3D view, given a view position and a view direction.

Usage

SET_VIEW3D, viewpoint, viewvector, perspective, izoom, viewup, viewcenter,
winx, winy, xr, yr, zr

Input Parameters

viewpoint — A three-element vector containing the point from which to view the
data in data coordinates.

viewvector — A three-element vector containing the direction to look.

perspective — The perspective projection distance. The smaller the projection dis-
tance, the more “severe” the projection is. The larger the projection distance, the
more “isometric” the projection is.

TIP To prevent a perspective projection, set perspective to 0 (or less than zero).

izoom — The magnification factor for the projection.

viewup — A two-element vector containing the final 2D view up vector. For a
“right-side-up” view, set this parameter to [0.0, 1.0].

viewcenter — A two-element vector containing the window location on which to
place the viewpoint. It is in normal coordinates and is usually set to [0.5, 0.5].

winx, winy — The x and y dimensions, respectively, of the plot window in device
coordinates. Typically, winx and winy are set to the X and Y size of the current
graphics window.

xr, yr, zr — Two-element vectors containing the minimum and maximum x, y, and
z values, respectively, found in the data to be plotted. The minimum value is in
xr(0), yr(0), and zr(0); the maximum value in xr(1), yr(1), and zr(1).

SET_VIEWPORT Procedure 801

Keywords

None.

Discussion

SET_VIEW3D creates a view transformation that preserves the correct aspect ratio
of the data, even if the plot window is non-square.

SET_VIEW3D changes the system viewing matrix !P.T, as well as the system vari-
ables, !X.S, !Y.S, and !Z.S, which handle conversion from data coordinates to
normal coordinates. (These system variables are described in Chapter 4, System
Variables.)

Examples

See the Examples section in the description of the POLY_DEV routine.

See Also

CENTER_VIEW

SET_VIEWPORT Procedure
Standard Library procedure that establishes a new position for the rectangular plot
area based on input values specified using the normalized coordinate system.

Usage

SET_VIEWPORT, xmin, xmax [, ymin, ymax]

Input Parameters

xmin — The position of the left edge of the rectangular plot area in normal
coordinates.

xmax — The position of the right edge of the rectangular plot area in normal
coordinates.

ymin — (optional) The position of the bottom edge of the rectangular plot area in
normal coordinates.

802 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

ymax — (optional) The position of the top edge of the rectangular plot area in nor-
mal coordinates.

Keywords

Cursor — Lets you set the region for the rectangular plot area interactively with
the mouse:

• If nonzero, lets you set the boundaries by clicking the mouse at the corners of
the rectangular plot area that you want to use. Click first to set the lower-left
corner, then once again to set the upper-right corner. Any input parameters for
SET_VIEWPORT are ignored.

• If zero, uses the input parameters as specified.

Region — If present, uses the system variable !P.Region to set the plot area. The
default is to use !P.Position.

Discussion

SET_VIEWPORT is used to set up the area of the display that will be used for plot-
ting. It is identical to the SET_SCREEN procedure, except that the input
parameters are in normalized coordinates for SET_VIEWPORT.

If only xmin and xmax are provided, the values for ymin and ymax are calculated.
Calling SET_VIEWPORT with four input parameters is the same as setting the
!P.Postion system variable or using the Position keyword with the plotting
commands.

SET_VIEWPORT overrides the effect of the system variables !X.Margin and
!Y.Margin.

Example
SET_VIEWPORT, .2, .5

PLOT, [3, 5, 2]

SET_VIEWPORT, .1, .45, .55, .90

PLOT, [3, 4, 5], Title=’Upper left plot’

SET_VIEWPORT, .1, .45, .1, .45

PLOT, [5, 1, 6], Title=’Lower left plot’, /Noerase

SET_VIEWPORT, .55, .90, .55, .90

PLOT, [3, 4, 5], Title=’Upper right plot’, /Noerase

SET_XY Procedure 803

SET_VIEWPORT, .55, .90, .1, .45

PLOT, [2, 4, 3], Title=’Lower right plot’, /Noerase

SET_VIEWPORT, 1, 1, 1, 1, /Cursor

; Click with the mouse button on the lower left corner of the desired
; plotting area and then again for the desired upper right corner.

PLOT, [3, 5, 4]

SET_VIEWPORT, .2, .8, .2, .8

PLOT, [3, 4, 5], Title=’Without setting the region keyword’

SET_VIEWPORT, .2, .8, .2, .8, /Region

PLOT, [3, 4, 5], Title=’With the region keyword set’, /Noerase

See Also

SET_SCREEN

System Variables: !P.Position, !P.Region

SET_XY Procedure
Standard Library procedure that sets the default data axis range for either the x- or
y-axis. It should only be used for emulating Version 1 of PV-WAVE.

Usage

SET_XY, xmin, xmax [, ymin, ymax]

Input Parameters

xmin — The minimum default value for the x-axis.

xmax — The maximum default value for the x-axis.

ymin — (optional) The minimum default value for the y-axis.

ymax — (optional) The maximum default value for the y-axis.

Keywords

None.

804 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Discussion

SET_XY is used for setting the range of data values that will be drawn in the rect-
angular display window. (Normally the axis range is determined automatically by
scanning the data.)

Note that you should only use SET_XY if you are trying to emulate Version 1 of
PV-WAVE. With more recent versions of PV-WAVE, you should use the system
variables !X.Range and !Y.Range, or their corresponding keywords.

NOTE SET_XY sets the Range, Crange, and S (scaling) fields of the system vari-
ables !X and !Y. This may cause subsequent plots of otherwise familiar data to
appear skewed.

Example
PLOT, [12, 26, 35, 44], [50, 43, 89, 70]

PLOT, [12, 26, 35, 44], [50, 43, 89, 70], $
XRange=[10, 50], YRange=[40, 100]

SET_XY, 10, 50, 40, 100

PLOT, [12, 26, 35, 44], [50, 43, 89, 70]

See Also

AXIS, PLOT, SET_VIEWPORT

Graphics and Plotting Keywords: [XY]Range, [XY]Style

System Variables: ![XY].Range, ![XY].Style

For more information, see .

SGN Function 805

SGN Function
Standard Library function that returns the sign of passed values.

Usage

result = SGN(x)

Input Parameters

x — A scalar or array.

Returned Value

result — An integer array of the same size of x where each element is:

1 where x > 0

-1 where x < 0

0 where x = 0

Keywords

None.

Examples
PM, SGN([-0.5,0,0.5])

806 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

SHADE_SURF Procedure
Creates a shaded surface representation of a regular or nearly regular gridded sur-
face, with shading from either a light source model or from a specified array of
intensities.

Usage

SHADE_SURF, z [, x, y]

Input Parameters

z — A two-dimensional array containing the values that make up the surface. If x
and y are supplied, the surface is plotted as a function of the X,Y locations specified
by their contents. Otherwise, the surface is generated as a function of the array
index of each element of z.

x — A vector or two-dimensional array specifying the x-coordinates for the con-
tour surface. If x is a vector, each element of x specifies the x-coordinate for a
column of z.

For example, x(0) specifies the x-coordinate for z(0, *). If x is a two-dimensional
array, each element of x specifies the x-coordinate of the corresponding point in z
(xij specifies the x-coordinate for zij).

y — A vector or two-dimensional array specifying the y-coordinates for the contour
surface. If a vector, each element of y specifies the y-coordinate for a row of z.

For example, y(0) specifies the y-coordinate for z(*, 0). If y is a two-dimensional
array, each element of y specifies the y-coordinate of the corresponding point in z
(yij specifies the y-coordinate for zij).

Keywords

Image — The name of a variable into which the image containing the shaded sur-
face is stored. If this keyword is omitted, the image is displayed but not saved.

Max_Img_Size — For devices with scalable pixels (e.g., postscript), this keyword
sets the largest allowed image size created internally to render the shaded surface.
Larger values will result in a better quality image but at a cost of greater memory
use and larger file size. The mimimum value is 100 (100x100), which will gener-
ally result in a poor-quality image. (Default: 400)

SHADE_SURF Procedure 807

Shades — An array expression, of the same dimensions as z, containing the color
index at each point. The shading of each pixel is interpolated from the surrounding
Shades values. For most displays, this parameter should be scaled into the range of
bytes. If this keyword is omitted, light source shading is used.

Other keywords are listed below. For a description of each keyword, see Chapter 3,
Graphics and Plotting Keywords.

Discussion

SHADE_SURF is similar to the SURFACE procedure. Given a regular or near-reg-
ular grid of elevations, SHADE_SURF produces a shaded surface representation
of the data with the hidden surfaces removed.

If the graphics output device has scalable pixels (e.g., PostScript), then the output
image is scaled so that its largest dimension is less than or equal to 400. Use the
Max_Img_Size keyword to increase this size.

When outputting to PostScript devices, the default for the Background keyword is
white (index 255), rather than !P.Background.

Use the SET_SHADING procedure to control the direction of the light source and
other shading parameters.

Ax Noclip [XYZ]Charsize

Az Nodata [XYZ]Gridstyle

Background Noerase [XYZ]Margin

Channel Normal [XYZ]Minor

Charsize Position [XYZ]Range

Charthick Save [XYZ]Style

Clip Subtitle [XYZ]Tickformat

Color T3d [XYZ]Ticklen

Data Thick [XYZ]Tickname

Device Tickformat [XYZ]Ticks

Font Ticklen [XYZ]Tickv

Gridstyle Title [XYZ]Title

ZValue

808 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

CAUTION If the T3D keyword is set, the 3D to 2D transformation matrix con-
tained in !P.T must project the z-axis to a line parallel to the device y-axis, or errors
will occur.

If the X,Y grid is not regular or nearly regular, errors in hidden line removal will
likely occur. In this case, you should use the SHADE_SURF_IRR procedure.

SHADE_SURF is not supported on Tektronix terminals or the 4510 Rasterizer. If
you try to display shaded image on such a device, PV-WAVE may abort. This is
because of a limitation in the range of image coordinates available on Tektronix
devices. SHADE_SURF is also unsupported on VT240 terminals.

Example 1

This example uses SHADE_SURF to display a shaded surface representation of
the function:

where

.

x = FINDGEN(101)/5 -10

; Create 101-element vector of x-coordinates such that -10 < x < 10.

y = x

; Make the vector of y-coordinates the same as the
; vector of x-coordinates.

z = FLTARR(101, 101)

; Create a 101-by-101 array to hold the function values.

FOR i = 0, 100 DO BEGIN $

 z (i, *) = x(i)*SIN(y) + y*COS(x(i)) $
- SIN(0.25*x(i)*y)

; Insert the function values into z. Note that z is filled
; columnwise instead of elementwise.

SHADE_SURF, z, x, y, Ax = 50, XCharsize = 2, $
YCharsize = 2,ZCharsize = 2

; Display the shaded surface. The Ax keyword is used

f x y,() x y() y x() xy
4

 sin–cos+sin=

x y,() IR 2 x y 10– 10,[]∈,{ }∈

SHADE_SURF Procedure 809

; to specify the desired angle of rotation about the x-axis.
; The XCharsize, YCharsize, and ZCharsize keywords are used
; to enlarge the characters used to annotate the axes.

XYOUTS, 118, 463, $
"f(x, y) = x*sin(y) + y*cos(x) - + sin(x*y)/4)", $
Charsize = 2, /Device

; Place a title in the window. Note that the CURSOR
; procedure with the Device keyword was used to locate
; the proper position for the title.

Figure 2-57 Shaded surface with title.

Example 2

Users often wish to store the data that describes a surface in a file. Each row of data
in the file is a point on the surface so there are three columns of data in the file. The
first column contains x-coordinates of the points, the second column contains y-
coordinates of the points, and the third column contains z-coordinates of the points.

This example creates data describing the surface defined by the function

where

and places that data in the file shsurf.dat in the columnar format described
above. The data is then read from the file shsurf.dat, placed in the data struc-
tures expected by SHADE_SURF, and displayed.

f x y,() xy 0.575xy() 10 x2 y2+()–cos=

x y,() IR2 x y 10– 10,[]∈,{ }∈

810 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

x = FINDGEN(101)/5 - 10

y = x

; Create vectors containing the x- and y-
; coordinates of the region of the
; x-y plane over the surface.

x = x # REPLICATE(1., 101)

y = REPLICATE(1., 101) # y

; Convert these vectors into two-dimensional arrays

z = x * y * cos(0.575 * x * y) - 10 * (x^2 + y^2)

; Create a z-dimensional array containing the function values on the surface.

OPENW, 1, ’shsurf.dat’

; Open the file that is to hold the data describing the surface.

data = FLTARR(3, 101, 101)

; Build an array to hold file output data.

data(0, *, *) = x

data(1, *, *) = y

data(2, *, *) = z

; Write the x-, y-, and z-coordinates of points on the
; surface to this array.

PRINTF, 1, Format = ’(3f16.7)’, data

; Write the array to the file shsurf.dat.

CLOSE, 1

; Close the file
; NOTE: The commands below could be used during
; another wave session, since the data is originating from a file.

data = FLTARR(3, 101, 101)

; Create an array large enough to hold the data
; contained in shsurf.dat.

OPENR, 1, ’shsurf.dat’

; Open shsurf.dat for reading.

READF, 1, data

; Read the data from the file.

CLOSE, 1

; Close the input file.

x = REFORM(data(0, *, *))

; Copy the x-coordinates into x.

y = REFORM(data(1, *, *))

SHADE_SURF Procedure 811

; Copy the y-coordinates into y.

z = REFORM(data(2, *, *))

; Copy the z-coordinates into z.

SHADE_SURF, z, x, y, Ax = 50, Charsize = 2

; Display the shaded surface of the function. The Ax
; keyword is used to specify the desired angle of
; rotation about the x-axis. The Charsize keywords are used
; to enlarge the characters used to annotate the axes.

Figure 2-58 Shaded surface defined in the example.

Example 3
SHADE_SURF, DIST(100), Ax=60

See Also

SET_SHADING, SHADE_SURF_IRR, SURFACE

812 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

SHADE_SURF_IRR Procedure
Standard Library routine that creates a shaded-surface representation of a semireg-
ularly gridded surface, with shading from either a light source model or from a
specified array of intensities.

Usage

SHADE_SURF_IRR, z, x, y

Input Parameters

z — A two-dimensional array containing the values that make up the surface. If x
and y are supplied, the surface is plotted as a function of the X,Y locations specified
by their contents. Otherwise, the surface is generated as a function of the array
index of each element of z.

x — A two-dimensional array specifying the x-coordinates for the contour surface.
Each element of x specifies the x-coordinate of the corresponding point in
z (xij specifies the x-coordinate for zij).

y — A two-dimensional array specifying the y-coordinates for each elevation. Each
element of y specifies the y-coordinate of the corresponding point in z (yij specifies
the y-coordinate for zij).

Keywords

Image — The name of a variable into which the image containing the shaded sur-
face is stored. If this keyword is omitted, the image is displayed but not saved.

Max_Img_Size — For devices with scalable pixels (e.g., postscript), this keyword
sets the largest allowed image size created internally to render the shaded surface.
Larger values will result in a better quality image but at a cost of greater memory
use and larger file size. The mimimum value is 100 (100x100), which will gener-
ally result in a poor-quality image. (Default: 400)

Shades — An array expression, of the same dimensions as z, containing the color
index at each point. The shading of each pixel is interpolated from the surrounding
Shades values. For most displays, this parameter should be scaled into the range of
bytes. If this keyword is omitted, light source shading is used.

SHADE_SURF_IRR Procedure 813

Other keywords let you control many aspects of the plot’s appearance. These key-
words are listed in the following table. For a description of each keyword, see
Chapter 3, Graphics and Plotting Keywords.

Discussion

The input data for SHADE_SURF_IRR must be able to be represented as an array
of quadrilaterals. This procedure should be used when the (x, y, z) arrays are too
irregular to be drawn by the SHADE_SURF procedure, but are still semiregular.

SHADE_SURF_IRR is similar to the SURFACE procedure. Given a semiregular
grid of elevations, it produces a shaded surface representation of the data with hid-
den surfaces removed.

If the graphics output device has scalable pixels (e.g., PostScript), then the output
image is scaled so that its largest dimension is less than or equal to 400. Use the
Max_Img_Size keyword to increase this size.

When outputting to PostScript devices, the default for the Background keyword is
white (index 255), rather than !P.Background.

Use the SET_SHADING procedure to control the direction of the light source and
other shading parameters.

NOTE The NoErase keyword is ignored on devices that do not support TVRD()
— for example, PostScript.

Ax Noclip [XYZ]Margin

Az Nodata [XYZ]Minor

Background Noerase [XYZ]Range

Charsize Normal [XYZ]Style

Clip Position [XYZ]Tickname

Color Save [XYZ]Ticks

Data T3d [XYZ]Tickv

Device Ticklen [XYZ]Title

Font [XYZ]Charsize

814 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

CAUTION If the T3d keyword is set, the 3D to 2D transformation matrix con-
tained in !P.T must project the z-axis to a line parallel to the device y-axis, or errors
will occur.

Example

This example uses SHADE_SURF_IRR to display a shaded surface over an irreg-
ular grid. The function defining the surface is:

where

x = (LINDGEN(200, 100) MOD 200) / 10.0 - 10.0

y = (LINDGEN(200, 100) / 200) / 10.0 - 5.0

; Compute x- and y-components of a 200x100 regular grid.

x = x + (RANDOMN(seed, 200, 100) - 2.0) / 16.0

y = y + (RANDOMN(seed, 200, 100) - 2.0) / 16.0

; Build an irregular grid by perturbing the regular grid
; by a random factor.

z = x * SIN(y) + y * COS(x)

; Compute a two-dimensional array of elevations.

SHADE_SURF_IRR, z, x, y, Ax = 70

; Display the shaded surface. The Ax keyword is used to specify
; the angle of rotation about the x-axis.

f x y,() x y() y x()cos+sin=

x y,() IR2 x 10– 10,[]∈ y 5– 5,[]∈,{ }∈

SHADE_VOLUME Procedure 815

Figure 2-59 Shaded surface defined in the example over irregular grid.

See Also

SET_SHADING, SHADE_SURF, SURFACE

SHADE_VOLUME Procedure
Given a 3D volume and a contour value, produces a list of vertices and polygons
describing the contour surface.

Usage

SHADE_VOLUME, volume, value, vertex, poly

Input Parameters

volume — An array with three dimensions containing the dataset to be contoured.
If the volume array is dimensioned (D0, D1, D2), the resulting vertices range as
follows:

• In X, they range between 0 and D0 – 1.

• In Y, they range between 0 and D1 – 1.

• In Z, they range between 0 and D2 – 1.

value — A scalar containing the contour value.

816 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Output Parameters

vertex — The name of a variable to receive the vertex array. This variable will be
set to a (3, n) floating-point array, suitable for input to the MESH or POLYSHADE
procedure.

poly — The name of a variable to receive the polygon list, an m-element longword
array. This list describes the vertices of each polygon and is suitable for input to
MESH or POLYSHADE.

Keywords

Low — If present and nonzero, indicates that the low side of the contour surface is
to be displayed and that the contour surfaces enclose high data values. Otherwise,
it is assumed that the high side of the contour surface is to be displayed and that the
contour encloses low data values. If this parameter is incorrectly specified, errors
in shading will result.

Shades — An array with the same dimensions as volume. On input, it contains the
user-specified shading color index for each volume element (voxel), and is con-
verted to byte type before use. On output, this input array is replaced by another
array containing the shading value for each vertex, contained in vertex.

Discussion

SHADE_VOLUME computes the polygons that describe a three-dimensional con-
tour surface. Each voxel is visited to find the polygons formed by the intersections
of the contour surface and the voxel edges.

You can obtain shading from either a single light-source model or from the values
you specify with Shades.

The surface produced by SHADE_VOLUME may then be displayed as a shaded
surface with the POLYSHADE procedure.

This routine is limited to processing datasets that will fit in memory.

Example

The following procedure shades a volume passed as a parameter. It uses SURFACE
to establish the viewing transformation. It then calls SHADE_VOLUME to pro-
duce the vertex and polygon lists, and POLYSHADE to draw the contour surface.

PRO ShowVolume, vol, thresh, Low=low

; Display the contour surface of a volume.

SHADE_VOLUME Procedure 817

s = SIZE(vol)

; Get the dimensions.

IF s(0) NE 3 THEN PRINT, ’Error’

; Flag an error if s is not a 3D array.

SURFACE, FLTARR(2,2), /Nodata, /Save, $
XRange=[0,s(1)-1], YRange=[0,s(2)-1], ZRange=[0,s(3)-1]

; Use SURFACE to establish 3D transformation and
; coordinate ranges.

IF N_ELEMENTS(low) EQ 0 THEN low = 0

; Make the default be to view the high side of the contour surface.

SHADE_VOLUME, vol, thresh, v, p, Low = low

; Produce the vertices and polygons.

TV, POLYSHADE(v, p, /T3D)

; Produce the image of the surface and display.

END

NOTE For another example demonstrating SHADE_VOLUME, see the
POLYSHADE function.

See Also

POLYSHADE, SURFACE

For information on volume visualization, see .

The method used by SHADE_VOLUME is that described by Klemp, McIrvin and
Boyd in “PolyPaint — A Three-Dimensional Rendering Package,” American
Meteorology Society Proceedings, Sixth International Conference on Interactive
Information and Processing Systems, 1990.

This method is similar to the marching cubes algorithm described by Lorenson and
Cline in “Marching Cubes: A High Resolution 3D Surface Construction Algo-
rithm,” Computer Graphics, Vol. 21, pp. 163-169, 1987.

818 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

SHIF Function
Standard Library function that shifts an array along one of its dimensions.

Usage

result = SHIF(array, dimension, shift_amount)

Input Parameters

array — An array.

dimension — An integer (≥0) designating the shift dimension.

shift_amount — An integer specifying the shift amount.

Returned Value

result — An array of the same dimensions as array. result is obtained from the
input array by a shift of shift_amount elements along dimension dimension. The
shift is not cyclic; elements behind the shift are unaltered.

Keywords

y — If set, the shift is cyclic.

Examples
PM, SHIF([0,1,2,3,4,5], 0, 1)

PM, SHIF([0,1,2,3,4,5], 0, -2)

PM, SHIF([0,1,2,3,4,5], 0, -2, /y)

PM, SHIF([[0,1,2],[3,4,5],[6,7,8]], 0, 1)

PM, SHIF([[0,1,2],[3,4,5],[6,7,8]], 1, 1)

See Also

SHIFT

SHIFT Function 819

SHIFT Function
Shifts the elements of a vector or array along any dimension by any number of
elements.

Usage

result = SHIFT(array, shift1, ... , shiftn)

Input Parameters

array — The array to be shifted.

shifti — The shift parameters (see Discussion).

Returned Value

result — The shifted array.

Keywords

None.

Discussion

The SHIFT function is used to perform a circular shift upon the elements of a vec-
tor or an array. The resulting array has the same dimension and data type as the
input array. Shifts are handled similarly, regardless of the number of dimensions in
the input array, as detailed below:

• Shifts on One-Dimensional Arrays — A shift performed on a one-dimen-
sional array (a vector) shifts the contents of each element to the right or left,
depending on the number of elements specified in the second parameter: a pos-
itive number shifts elements to the right, while a negative number shifts them
to the left.

• Shifts on Two-Dimensional Arrays — A shift performed on a two-dimen-
sional array (such as a raster image) is done in a similar way. The contents of
entire rows and/or columns are shifted to the rows above or below, or to the col-
umns to the right or left, depending on the number of rows and columns
specified by the second and third parameters of the process, respectively.

820 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Positive numbers for the second and third parameters shift rows in an up direc-
tion (or columns to the right), while negative numbers shift rows in a down
direction (or columns to the left).

• Shifts on Arrays with More than Two Dimensions — For arrays of more
than two dimensions, the parameter shiftn specifies the shift applied to the nth
dimension. For example, shift1 specifies the shift along the first dimension. If
you specify 0 for shiftn, this means that no shift is to be performed along that
dimension.

Regardless of the number of dimensions, all shifts are circular, meaning that values
that are pushed off the beginning or end of the array by the shift operation are auto-
matically inserted back onto the opposite end of the array. No values in the array
are lost.

If only one shift parameter is present and the parameter is an array, the array is
treated as a vector.

Sample Usage

Typical uses of the SHIFT function include:

• To force the elements of one array to align with the elements of another array.

• To force the elements of one array to be misaligned with the elements of
another array (some statistical analysis techniques require this).

• To line up (or register) the edges of an image to match those of another image.
This can be used to compensate for an image that was initially digitized out of
alignment with respect to the edges of another image.

• To shift the beginning and ending point of a color table in an image.

• To do an edge enhancement technique for images commonly known as Shift
and Difference Edge Enhancement (see Example 2 for more information).

Example 1

The following demonstrates one-dimensional shifting using the SHIFT function
with a vector:

a = INDGEN(5)

; Make a small vector.

PRINT, a, SHIFT(a,1), SHIFT(a,-1)

; Print the vector, the vector shifted one position to the right, and
; the vector shifted one position to the left.

Executing these statements gives the result:

SHIFT Function 821

0 1 2 3 4

4 0 1 2 3

1 2 3 4 0

Notice how elements of the vector that shift off the end wrap around to the other
end. This “wrap around” occurs when shifting arrays of any dimension.

Example 2

SHIFT can be used to create an edge enhancement technique for images. In this
technique, a copy of an array may be shifted by one or more elements (pixels) in
any direction, and then subtracted from the original image.

When performed on a binary image (containing only black and white pixels), edges
that are opposite the direction of the shift are enhanced.

When performed on a gray scale or pseudocolor image, an embossing effect is cre-
ated opposite the direction of the shift.

By carefully selecting the direction and amount of the shift, you can make certain
details (for example, only vertical or horizontal lines) be discernible in an other-
wise jumbled image.

Typically, single-element (one pixel) shifts are most pronounced, while any shift
beyond ten elements (pixels) tends to start blurring the features in the image.

For example, to shift a mandrill image to highlight the edges to the left of each fea-
ture, you would first run the SHIFT function and then subtract the resulting image
from the original image to create a third image:

shift_mandril = SHIFT(mandril, 1, 0)

shift_diff_mand = mandril - shift_mandril

Figure 2-60 The SHIFT function described above has been used with this 512-by-512 man-
drill image for edge enhancement. Notice how the dark edges to the left of each feature in

822 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

the image are highlighted by using SHIFT with a positive number for the first parameter
(which causes the image to be shifted to the right).

To shift a mandrill image to highlight the edges below and to the left of each
feature:

shift_mandril = SHIFT(mandril, 1, 1)

shift_diff_mand = mandril - shift_mandril

Figure 2-61 Notice how the dark edges to the southwest of each feature in the image are
now highlighted by using the SHIFT function with a positive number for the first and second
parameter (which causes the image to be shifted both up and to the right).

See Also

CONVOL, ISHFT, ROBERTS, SHIF, SOBEL

For more information about Shift and Difference Edge Enhancement, see Digital
Image Processing, by Gregory Baxes, Cascade Press, Denver, 1988.

SHOW3 Procedure 823

SHOW3 Procedure
Standard Library procedure that displays a two-dimensional array as a combination
contour, surface, and image plot. The resulting display shows a surface with an
image underneath and a contour overhead.

Usage

SHOW3, array

Input Parameters

array — The two-dimensional array to display.

Keywords

Ax — The angle of rotation, in degrees, about the x-axis.

Az — The angle of rotation, in degrees, about the z-axis.

Bot_Image — The name of the image array to be used as the underneath image.

C_Colors — A vector of color indices whose elements indicate which color to use
in drawing the corresponding contour level.

Interp — If present and nonzero, specifies that bilinear interpolation is to be used
for the pixel display. Otherwise, the nearest neighbor interpolation method is used.

Sscale — The reduction scale for the surface. If set to anything other than 1 (the
default value), the image size is reduced by the specified factor. If the image dimen-
sions are not an integral multiple of Sscale, the image is reduced to the next smaller
multiple.

Discussion

You can modify SHOW3, if necessary, to customize the contour and surface com-
mands to your satisfaction (e.g., use different colors, skirts, line styles, and contour
levels). See the descriptions of the CONTOUR and SURFACE routines for details.

TIP When you are displaying larger images (say 50-by-50), the display produced
by SHOW3 can become too “busy.” If this happens, try using the SMOOTH and/
or REBIN procedures to smooth the surface plot.

824 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

CAUTION The SHOW3 procedure is not supported on Tektronix terminals or the
4510 Rasterizer. If you try to display a SHOW3 image on such a device, PV-WAVE
may abort. This is because of a limitation in the range of image coordinates avail-
able on Tektronix devices.

Example

This example uses the Pike’s Peak elevation and snowpack images found in:

(UNIX) <wavedir>/data

(OpenVMS) <wavedir>:[DATA]

(Windows) <wavedir>\data

Where <wavedir> is the main PV-WAVE directory.

OPENR, 1, !data_dir + ’pikeselev.dat’

; Open the file to read.

pikes = FLTARR(60, 40)

; Create the data array for the pikes elevation data.

READF, 1, pikes

; Read in the formatted file.

CLOSE, 1

; Close the file.

OPENR, 2, !data_dir + ’snowpack.dat’

; Open the file to read.

snow = FLTARR(60, 40)

; Create the data array for snow pack data.

READF, 2, snow

; Read in the formatted file.

CLOSE, 2

; Close the file.

LOADCT, 5

; Load color table number 5.

SHOW3, SMOOTH(pikes, 3), Bot_image=snow, /Interp

; Produce the combined display.

SHOW_OPTIONS Procedure 825

Figure 2-62 Combination image, surface, and contour produced with SHOW3.

See Also

CONTOUR, REBIN, SMOOTH, SURFACE

For information on interpolation methods, see .

SHOW_OPTIONS Procedure
Lists the currently loaded OPI (Option Programming Interface) optional modules
and their associated functions and procedures.

Usage

SHOW_OPTIONS

Keywords

Functions — If nonzero, displays the names of all functions available in the given
OPI option.

826 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

License— If nonzero, displays the license information for the given OPI option.

Procedures — If nonzero, displays the names of all procedures available in the
given OPI option.

Discussion

The SHOW_OPTIONS procedure lists the currently loaded OPI options and the
functions and procedures that they contain. OPI options can be loaded explicitly by
any PV-WAVE user using the LOAD_OPTION procedure. These optional mod-
ules can be written in C or FORTRAN, and can contain new system functions or
other primitives. For detailed information on creating OPI options, see the
PV-WAVE Application Developer’s Guide.

Example
WAVE> SHOW_OPTIONS, /Function, /Procedure

% Option: SAMPLE 1.000000

% Functions:

% PLUS_THREE

% PLUS_TWO

% Procedures:

% ADD_FOUR

% ADD_THREE

% ADD_TWO

See Also

LOAD_OPTION, OPTION_IS_LOADED, UNLOAD_OPTION

SIGMA Function 827

SIGMA Function
Standard Library function that calculates the standard deviation value of an array.
(Optionally, it can also calculate the standard deviation over one dimension of an
array as a function of the other dimensions.)

Usage

result = SIGMA(array [, npar, dim])

Input Parameters

array — The array to be processed. This parameter can be of any data type except
string.

npar — (optional) The number of parameters. (Default: 0)

dim — (optional) The dimension over which to calculate the standard deviation.

Returned Value

result — The standard deviation of array, or the standard deviation over one
dimension of array as a function of dim.

Keywords

None.

Discussion

The SIGMA function is useful in a variety of data and statistical analyses for esti-
mating thresholds and evaluating the significance of variance.

The number of degrees of freedom in SIGMA is equal to the number of elements
in array minus the value supplied in the optional npar. In other words:

degrees of freedom = #_of elements_in_array – npar

The degrees of freedom affects the value of the standard deviation. Specifically, the
value of the standard deviation varies as one over the square root of the number of
degrees of freedom.

828 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

If dim is used, then the result of SIGMA is an array with the same dimensions as
the input array, except for the dimension specified. Each element in the resulting
array is the standard deviation of the corresponding vector in the input array.

The dimension specified in a SIGMA call must be valid for the array passed; oth-
erwise, the input array is returned as the output array.

If array is an array with dimensions of (3,4,5), then the command:

std = SIGMA(array, 2, 1)

is equivalent to the commands:

std = FLTARR(3,5)

FOR j = 0, 4 DO BEGIN

FOR i = 0, 2 DO BEGIN

STD(i, j) = SIGMA(array(i, *, j), 2)

ENDFOR

ENDFOR

Example
y = [1., 5., 9., 3., 10., 4.]

std = SIGMA(y, 1)

PRINT, ’The standard deviation = ’, std

3.50238

a = FLTARR(3, 3)

a(*, 0) = [2., 2., 2.]

a(*, 1) = [4., 4., 4.]

a(*, 2) = [6., 6., 6.]

PRINT, a

PRINT, SIGMA(a, 1, 0)

0.00000 0.00000 0.00000

; Print the standard deviation of the column elements.

PRINT, SIGMA(a, 1, 1)

2.00000 2.00000 2.00000

; Print the standard deviation of the row elements.

See Also

STDEV

SIN Function 829

SIN Function
Returns the sine of the input variable.

Usage

result = SIN(x)

Input Parameters

x — The angle, in radians, that is evaluated.

Returned Value

result — The trigonometric sine of x.

Keywords

None.

Discussion

If x is of double-precision floating-point or complex data type, SIN yields a result
of the same type. All other types yield a single-precision floating-point result.

SIN handles complex numbers in the following way:

sin(x) ≡ complex((sin(r)cosh(i), cos(r)sinh(i))

where r and i are the real and imaginary parts of x.

If x is an array, the result of SIN has the same data type, with each element contain-
ing the sine of the corresponding element of x.

Example

The following commands produce a dampened sine wave.

x = FINDGEN(200)

PLOT, 10000 * SIN(x/5) / EXP(x/100)

830 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

See Also

COS, COSH, SINH

For a list of other transcendental functions, see Transcendental Mathematical
Functions in Volume 1 of this reference.

SINDGEN Function
Returns a string array with the specified dimensions.

Usage

result = SINDGEN(dim1, ... , dimn)

Input Parameters

dimi — The dimensions of the result. This may be any scalar expression and up to
eight dimensions may be specified.

Returned Value

result — An initialized string array. If the resulting array is treated as a one-dimen-
sional array, then its initialization is given by the following:

Keywords

None.

Discussion

Each element of the array is set to the string representation of the value of its one-
dimensional subscript, using the default formatting rules of PV-WAVE. These
rules are described in .

Example

This example creates a 4-by-2 string array.

array i() STRING i(), for i 0 1 … D j 1–
j 1=

n

∏

, , ,= =

SINH Function 831

a = SINDGEN(4, 2)

; Create the string array.

INFO, a

A STRING = Array(4, 2)

PRINT, a

0 1 2 3

4 5 6 7

See Also

BINDGEN, CINDGEN, DINDGEN, FINDGEN, INDGEN, LINDGEN

SINH Function
Returns the hyperbolic sine of the input variable.

Usage

result = SINH(x)

Input Parameters

x — The angle, in radians, that is evaluated.

Returned Value

result — The hyperbolic sine of x.

Keywords

None.

Discussion

SINH is defined by:

sinh(x) ≡ (e x – e–x)/2

If x is of double-precision floating-point or of complex data type, SINH yields a
result of the same type. All other data types yield a single-precision floating-point
result.

832 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

If x is an array, the result of SINH has the same dimensions, with each element con-
taining the hyperbolic sine of the corresponding element of x.

Example
x = [0.3, 0.5, 0.7, 0.9]

PRINT, SINH(x)

0.304520 0.521095 0.758584 1.02652

See Also

COS, COSH, SIN, TANH

For a list of other transcendental functions, see Transcendental Mathematical
Functions on page 32 in Volume 1 of this reference.

SIZE Function
Returns a vector containing size and type information for the given expression.

Usage

result = SIZE(expr)

Input Parameters

expr — The expression to be evaluated.

Returned Value

result — A vector containing size and type information for expr.

Keywords

Dimensions — Returns a longword vector containing the size of each dimension
of expr.

Nelements — Returns the total number of elements in expr.

Ndimensions — Returns the number of dimensions in expr. A zero is returned if
expr is scalar.

SIZE Function 833

Type — Returns the type code of expr.

Discussion

The returned vector is of longword type. It has the following form:

[D, S1, S2, ..., Sp, T, E]

where D is the number of dimensions of EXPRESSION (zero if EXPRESSION is
scalar or undefined); Si is the size of dimension i (not present if EXPRESSION is
scalar or undefined); T is the type code, encoded as shown in the table below; and
E is the number of elements in EXPRESSION.

See Also

N_ELEMENTS, N_PARAMS, N_TAGS, SAME, TAG_NAMES

Type Code Data Type

0 Undefined

1 Byte

2 Integer

3 Longword integer

4 Floating point

5 Double precision floating

6 Complex single-precision floating

7 String

8 Structure

9 UPVAR (the variable type pointed to by
UPVAR)

10 List

11 Associative array

12 Complex double-precision floating

834 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

SKIPF Procedure (OpenVMS)
(OpenVMS Only) Skips records or files on the designated magnetic tape unit.

Usage

SKIPF, unit, files

SKIPF, unit, records, r

Input Parameters

unit — A number between 0 and 9 specifying the magnetic tape unit to rewind. (Do
not confuse this parameter with file logical unit numbers.)

files — The number of files to be skipped. If this number is positive, skipping is in
the forward direction. Otherwise, files are skipped backwards.

records — The number of records to be skipped. If this number is positive, skip-
ping is in the forward direction. Otherwise, records are skipped backwards.

r — If this third parameter is present, records are skipped; otherwise, files are
skipped. (The value of r is never examined; its presence serves only to indicate that
records are to be skipped.)

Keywords

None.

Discussion

The number of files or records actually skipped is stored in the system variable !Err.
Note that when skipping records, the operation terminates immediately when the
end of a file is encountered.

See Also

TAPRD, TAPWRT

System Variables: !Err

For more information and sample usage, see .

SLICE Function 835

SLICE Function
Standard Library function that subsets an array along one of its dimensions.

Usage

result = SLICE(array, dimension, indices)

Input Parameters

array — An array.

dimension — An integer (≥0) designating the dimension to subset.

indices — A vector of indices into dimension dimension.

Returned Value

result — An array of slices perpendicular to dimension dimension.

Keywords

None.

Examples
a = INDGEN(6, 5, 2) & pm, a, ['',''], SLICE(a, 0, [1,3,5])

SLICE_VOL Function
Returns a 2D array containing a slice from a 3D volumetric array.

Usage

result = SLICE_VOL(volume, dim, cut_plane)

Input Parameters

volume — The 3D volume of data to slice.

836 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

TIP For better results, first use VOL_PAD to preprocess the volume.

dim — The x and y dimensions of the slice to return. Larger values for dim increase
the slice resolution and execution time. dim is typically the largest of the three
dimensions of volume.

cut_plane — A (3, 2) array defining the slicing plane. The elements in this (3, 2)
array are interpreted as follows:

NOTE The slicing plane is rotated first about the y-axis, and then about the x-axis.

Returned Value

result — A 2D array containing a slice from a 3D volumetric array.

Keywords

Degrees — If present and nonzero, cut_plane(0:1,0) is assumed to be in degrees.

Discussion

SLICE_VOL extracts a planar oblique slice from a volumetric (3D) array. The slic-
ing plane is defined by the center point (X, Y, and Z), and the rotations about the y-
and x-axes. You can interactively define the slicing plane by calling the VIEWER
procedure.

For best results, process volumes with VOL_PAD before slicing them with
SLICE_VOL.

cut_plane(0, 0) The plane’s angle of rotation about the x-axis.

cut_plane(1, 0) The plane’s angle of rotation about the y-axis.

cut_plane(2, 0) Ignored.

cut_plane(0, 1) The x-coordinate of the center of the plane.

cut_plane(1, 1) The y-coordinate of the center of the plane.

cut_plane(2, 1) The z-coordinate of the center of the plane.

SMALL_INT Function 837

Example

For demonstrations of the SLICE_VOL procedure, use the Medical Imaging and
CFD/Aerospace buttons on the PV-WAVE Demonstration Gallery.

To run the Gallery, enter wave_gallery at the WAVE> prompt.

See Also

VIEWER, VOL_PAD

SMALL_INT Function
Smallest Integer Function. Standard Library function that returns the smallest
integer greater than or equal to the passed value. Also known as Ceiling Function.

Usage

result = SMALL_INT(x)

Input Parameters

x — An array (scalar).

Returned Value

result — A long array (scalar) of the same dimensions as x: result(i) is the smallest
integer greater than or equal to x(i).

Keywords

None.

Examples
PM, SMALL_INT([-0.5,0,0.5])

x=[-2.1,-1.9,0,1.9,2.1]

PRINT, SMALL_INT(x)

; -2 -1 0 2 3

838 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

See Also

FIX, GREAT_INT, NINT

SMOOTH Function
Smooths an array with a boxcar average of a specified width.

Usage

result = SMOOTH(array, width)

Input Parameters

array — The array to be smoothed. The array can be of any number of dimensions.

NOTE Use the Intleave keyword to specify interleaving for 2D and 3D arrays.

width — The width of the smoothing window. Should be an odd number, smaller
than the smallest dimension. (If width is even, width + 1 is used instead.)

Returned Value

result — A copy of array smoothed with a boxcar average of the specified width.
It has the same type and dimensions as array.

Keywords

Edge — A scalar string indicating how edge effects are handled. (Default:
’copy’) Valid strings are:

’zero’ — Sets the border of the output image to zero.

’copy’ — Copies the border of the input image to the output image.
(Default)

Intleave — A scalar string indicating the type of interleaving:

’signal’ — Indicates that a mxn array is to be treated as n signals of
length m; each signal is smoothed independently.

’image’ — Indicates that a mxnxp array is to be treated as p mxn

SMOOTH Function 839

images; each image is smoothed independently.

Discussion

The SMOOTH function supports input arrays composed of multiple images as well
as input arrays composed of multiple signals. The Intleave keyword is used to indi-
cate that the input array is a multi-signal or multi-image array. When the Intleave
keyword is used, each signal or image in the array is operated on separately and an
array of the individual results is returned.

The default behavior for SMOOTH is to operate on the input array as a single piece
of data.

SMOOTH is used to selectively average the elements in an array within a moving
window of a given width. The result smooths out spikes or rapid transitions in the
data and is usually called a boxcar average. The window is a box that traverses the
input array, element by element. As the window moves through the array, all values
within the window are averaged. The average value is then placed at the center of
the window in the output array, while the original array is kept intact.

Conceptually, the algorithm used by SMOOTH is shown below for the 1D case (n
is the number of elements in A and w is the width of the smoothing window, and
w/2 is to be interpreted as the greatest integer less than or equal to w/2).

When w/2 ≤ i ≤ n–1–w/2, then:

Otherwise, Ri = Ai.

The 2D case of an n0xn1 array is handled similarly:

when w/2 ≤ ik ≤ nk–1–w/2 (k=0,1), then:

otherwise

Ri 1 w⁄() Ai j w 2⁄–+

j 0=

w 1–

∑=

Ri0 i1, 1 w2⁄() Ai0 j0 w 2, i1 j1 w 2⁄–+⁄–+

j0 j1, 0=

w 1–

∑=

Ri0 i1, Ai0 i1,=

840 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

The extension of these equations to higher dimensional arrays is obvious.

NOTE Rather than explicitly summing over the entire window each time the win-
dow is moved, the sum over each new window is computed as the sum over the old
window plus the sum over the leading edge of the new window minus the sum over
the trailing edge of the old window. This method is computationally efficient, but
due to numerical roundoff it may give slightly different results than the explicit
method. Double precision input virtually eliminates these differences.

Sample Usage
Typical uses for the SMOOTH function include:

• To remove ripples, spikes, or high frequency noise from a signal or image.

• To blur an image or set of data such that only the general trends in the data can
be seen (and are thereby highlighted).

• To isolate the lower spatial frequency components in an image. By subtracting
a blurred image from the original image, only the higher spatial frequency
components are left. (This is sometimes referred to as unsharp masking.)

• To soften sharp transitions from one color to another in a color table. This helps
reduce the banding or contouring artifact evident in color tables with rapid
color changes.

Example
Here is what a mandrill image looks like before and after applying the SMOOTH
function. For this example, a value of 7 was used for the width parameter.

Figure 2-63 The SMOOTH function has been used to soften the sharp contrasts in this 512-
by-512 mandrill image.

See Also

CONVOL, MEDIAN, ROBERTS, SOBEL

SOBEL Function 841

For more information, see the section Image Smoothing in Chapter 6 of the
PV-WAVE User’s Guide.

SOBEL Function
Performs a Sobel edge enhancement of an image.

Usage

result = SOBEL(image)

Input Parameters

image — The two-dimensional array containing the image to be enhanced.

Returned Value

result — A two-dimensional array of integer type containing the image that has
been edge-enhanced. It has the same dimensions as image.

Keywords

Col — Computes the column gradient (horizontal line enhancement). (Default:
Col = 1)

NOTE For horizontal line enhancement only, set the keyword Row = 0 to disable
the vertical line enhancement.

Edge — A scalar string indicating how edge effects are handled. (Default:
’zero’) Valid strings are:

’zero’ — Sets the border of the output image to zero. (Default)

’copy’ — Copies the border of the input image to the output image.

No_Clip — If set, the result data type is greater than the image data type so that
overflow values in result are not clipped.

TIP Use the No_Clip keyword to avoid overflow conditions.

842 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Return — A scalar string specifying a mathematical function to apply. Valid
strings are ’abs’, ’phase’, and ’value’. The Return keyword is used with
the Row and Col keywords per the following table. (Default: ’abs’)

Row — Computes the row gradient (vertical line enhancement). (Default: Row = 1)

NOTE For vertical line enhancement only, you must disable the horizontal line
enhancement by setting the Col keyword to 0.

Same_Type — If set, the result is the same data type as image; otherwise, the result
image data type is always integer.

Scale — If set, each gradient is scaled by the factor 0.25; otherwise, no scaling is
performed.

Zero_Negatives — If set, all negative values in the result are set to zero.

Discussion

The SOBEL function supports multi-layer band interleaved images. When the
input array is three-dimensional, it is automatically treated as an array of images,
array(m, n, p), where p is the number of m-by-n images. Each image is then oper-
ated on separately and an array of the result images is returned.

SOBEL implements an approximation of the 3-by-3 nonlinear edge enhancement
operator:

G(j,k) = |X| + |Y|

where

Return = ’abs’ Return = ’phase’ Return = ’value’

Col = 1,
Row = 0 ABS(col grad) Invalid Condition column gradient

Col = 0,
Row = 1 ABS(row grad) Invalid Condition row gradient

Col = 1,
Row = 1 ABS(row grad)+

ABS(col grad)

ATAN(row grad ÷
col grad),
data type is double

Invalid Condition

Col = 0,
Row = 0 Invalid Condition Invalid Condition Invalid Condition

SOBEL Function 843

X = (A2 + 2A3 + A4) – (A0 + 2A7 + A6)

Y = (A0 + 2A1 + A2) – (A6 + 2A5 + A4)

and where the pixels surrounding the neighborhood of the pixel F(j, k) are num-
bered as follows:

This algorithm is a fast approximation of the SOBEL function, which is actually
defined as:

CAUTION Because the result image is saved in integer format, large original data
values will cause overflow. Overflow occurs when the absolute value of the result
is larger than 32,767. Use the No_Clip keyword to avoid overflow.

Sample Usage

SOBEL is commonly used to obtain an image that contains only the edges (rapid
transitions between light and dark, or from one color to another) that were present
in the original image. SOBEL can help enhance features and transitions between
areas in an image (for example, a machine part photographed against a white
background).

With this information, it is possible to identify and compare features or items in an
image with those in another image, usually for verification or detection purposes.
SOBEL and other edge-detection algorithms are used extensively for image pro-
cessing and preprocessing for pattern recognition.

The image returned by SOBEL contains the edges present in the original image,
with the brightest edges representing a rapid transition (well-defined features), and
darker edges representing smoother transitions (blurred or blended features).

An original image can also be somewhat sharpened by adding or averaging the
edge-detected image with the original image.

A0 A1 A2

A7 F j k,() A3

A6 A5 A4

G j k,() X2 Y 2+=

844 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example

Here is what an aerial image looks like before and after applying the SOBEL
function.

Figure 2-64 The SOBEL function has been used with this 512-by-512 aerial image to make
the edges stand out with sharp contrast.

See Also

CONVOL, ROBERTS

SOCKET_ACCEPT Function
Waits for a connection on a socket.

Usage

connection = SOCKET_ACCEPT(socket)

Input Parameters

socket — A socket handle, usually the value returned by SOCKET_INIT. This han-
dle represents the socket on which the server listens for a client connection.

Keywords

None.

SOCKET_ACCEPT Function 845

Returned Value

connection — Another socket handle. This handle represents the actual socket
connection to the client.

Discussion

This routine blocks the currently running application until a socket connection is
received from the client.

The input parameter, socket, must be a value returned from either SOCKET_INIT
or SOCKET CONNECT.

SOCKET_ACCEPT listens on the port represented by the input parameter, socket.
Immediately upon making a connection, a new socket is assigned to handle the
communication flow. This new socket is represented by the returned value
connection.

Example

The following simple server program uses SOCKET_ACCEPT to listen for client
connections. This program simply prints a string sent from the client.

PRO SERVER

port = 1500

socket = SOCKET_INIT(port)

connection = SOCKET_ACCEPT(socket)

data = BYTARR(15)

nbytes = SOCKET_READ(connection,data)

PRINT, ’SERVER received: ’, STRING(data)

SOCKET_CLOSE, connection

SOCKET_CLOSE, socket

END

See Also

SOCKET_INIT

For more detailed information on using the socket routines, see the PV-WAVE
Application Developer’s Guide.

846 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

SOCKET_CLOSE Procedure
Closes a socket connection.

Usage

SOCKET_CLOSE, connection

Input Parameters

connection — A socket handle, the value returned by SOCKET_INIT,
SOCKET_CONNECT, or SOCKET_ACCEPT.

Keywords

None.

Discussion

The input parameter, connection, must be a value returned from either
SOCKET_INIT, SOCKET_ACCEPT, or SOCKET_CONNECT.

It is good practice to close any socket handle when you are finished with it. Closing
a handle returned from SOCKET_CONNECT or SOCKET_ACCEPT terminates
that client/server connection (the “session”), while closing a handle returned from
SOCKET_INIT terminates the server.

Example

See the example for SOCKET_ACCEPT.

See Also

SOCKET_ACCEPT, SOCKET_CONNECT, SOCKET_INIT

For more detailed information on using the socket routines, see the PV-WAVE
Application Developer’s Guide.

SOCKET_CONNECT Function 847

SOCKET_CONNECT Function
Connects to a socket at a given host and port.

Usage

connection = SOCKET_CONNECT(host, port)

Input Parameters

host — A string specifying the host name or IP address of the server machine (the
machine that the client will connect to).

port — A long integer specifying the port number to connect to on the server
machine.

Keywords

None.

Returned Value

connection — On success, returns a socket handle for the connection; on failure,
returns one of the following values:

Discussion

The host parameter can be an IP address number, a DNS name, or any other valid
address designation (such as, localhost).

It is good practice to close the socket connection when you are finished with it.

Example

The host must be a valid IP address. For example:

connection=SOCKET_CONNECT(’www.vni.com’, 80)

Uses a DNS name for the host.

connection=SOCKET_CONNECT(’192.130.240.125’, 1500)

–1 Unable to get host address.

–2 Could not connect to socket.

848 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Uses an IP address number for the host.

connection=SOCKET_CONNECT(’localhost’, 1500)

Uses the local loopback address for the host.

connection=SOCKET_CONNECT(’mymachine’, 2100)

Uses a local network designation for the host.

See Also

SOCKET_ACCEPT, SOCKET_INIT, SOCKET_CLOSE

For more detailed information on using the socket routines, see the PV-WAVE
Application Developer’s Guide.

SOCKET_GETPORT Function
Returns the socket port number for the specified socket connection.

Usage

port = SOCKET_GETPORT(socket)

Input Parameters

socket — A socket descriptor that was returned from SOCKET_INIT.

Keywords

None.

Output Parameters

port — On success, returns the port number for the socket descriptor; on failure,
returns –1.

Discussion

You can call SOCKET_INIT with a port number of 0 (zero), which lets your oper-
ating system pick an available port. SOCKET_GETPORT returns the port picked
by the operating system.

SOCKET_INIT Function 849

Example
s=SOCKET_INIT(0)

PRINT, ’PORT IS: ’, SOCKET_GETPORT(s)

See Also

SOCKET_INIT

For more detailed information on using the socket routines, see the PV-WAVE
Application Developer’s Guide.

SOCKET_INIT Function
Binds a socket to a specified port that is designated to listen for client connections.

Usage

socket = SOCKET_INIT(port)

Input Parameters

port — The port number on which the server will listen.

Keywords

None.

Returned Value

socket — On success, returns a socket handle; on failure, returns one of the follow-
ing values:

–2 Error creating the socket.

–3 Error binding the socket.

–4 Error on the listen() command.

850 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Discussion

You must call this routine in a server program to specify which port to listen on for
client connections.

The port number is usually a standard, or previously agreed upon, port that clients
use to contact a server. For example, by convention, most Web servers listen for
connections on port 80. Most hosts have ports numbered between 1 and 65,535.
Typically, ports 0 to 1024 are reserved and only available to someone with admin-
istrator or super user privileges.

The returned socket handle is used by other SOCKET_* routines to identify a par-
ticular socket connection.

It is good practice to close the socket handle when you are finished with it.

Example

In this simple server program, a socket is bound to port 1500, which is the port that
the client program will use to contact the server.

PRO SERVER

port = 1500

socket = SOCKET_INIT(port)

connection = SOCKET_ACCEPT(socket)

data = BYTARR(15)

nbytes = SOCKET_READ(connection,data)

PRINT, ’SERVER received: ’, STRING(data)

SOCKET_CLOSE, connection

SOCKET_CLOSE, socket

END

See Also

SOCKET_ACCEPT, SOCKET_CLOSE

For more detailed information on using the socket routines, see the PV-WAVE
Application Developer’s Guide.

SOCKET_READ Function 851

SOCKET_READ Function
Reads data from a socket connection.

Usage

nbytes = SOCKET_READ(connection, data)

Input Parameters

connection — A socket handle (usually returned by either SOCKET_ACCEPT or
SOCKET_CONNECT).

Output Parameters

data — A pre-allocated byte array to read into.

Keywords

None.

Returned Value

nbytes — The number of bytes read from the socket.

Discussion

This function can be used in both client and server programs. If used in a client pro-
gram, it retrieves data sent (using SOCKET_WRITE) from the server. If used in a
server program, it retrieves data sent from the client.

Before calling SOCKET_READ, you must initialize data to be a byte array of suf-
ficient size to hold the data sent from the client. It is up to the programmer to
convert the data in the byte array into whatever form the server or client expects to
process. PV-WAVE provides several routines for converting data from one type to
another, including BYTE, BYTEORDER, COMPLEX, DOUBLE, FLOAT,
LONG, and STRING.

852 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example

In this example, a client program uses SOCKET_READ to retrieve a byte array
sent from the server. Note that the STRING function is used to convert the byte
array to a string before the data is printed.

PRO CLIENT

 host = ’localhost’

 port = 1500

 socket = SOCKET_CONNECT(host,port)

 IF socket EQ -1 OR socket EQ -2 THEN BEGIN

 PRINT, ’SOCKET_CONNECT failed with return code: ’, socket

 RETURN

 ENDIF

data = BYTARR(15)

nbytes = SOCKET_READ(socket,data)

 PRINT, ’CLIENT received: ’, STRING(data)

SOCKET_CLOSE, socket

END

See Also

SOCKET_WRITE

For more detailed information on using the socket routines, see the PV-WAVE
Application Developer’s Guide.

SOCKET_WRITE Procedure
Writes data to a socket connection.

Usage

SOCKET_WRITE, connection, data

Input Parameters

connection — A socket descriptor.

SOCKET_WRITE Procedure 853

data — A byte array of data to write to the socket.

Keywords

None.

Discussion

This function can be used in both client and server programs. If used in a client pro-
gram, it sends data to the server. If used in a server program, it sends data to the
client.

All data written with this routine must first be converted to a byte array. For infor-
mation on converting data to a byte array, refer to documentation on the BYTE and
BYTEORDER functions.

Example

The following server program uses SOCKET_WRITE to send a string to a client.
Note that the string is first converted to type byte.

PRO SERVER

 port = 1500

 socket = SOCKET_INIT(port)

 connection = SOCKET_ACCEPT(socket)

data = BYTE(’Server String ’)

SOCKET_WRITE, connection, data

SOCKET_CLOSE, connection

SOCKET_CLOSE, socket

END

See Also

SOCKET_READ

For more detailed information on using the socket routines, see the PV-WAVE
Application Developer’s Guide.

854 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

SORT Function
Sorts the contents of an array.

Usage

result = SORT(array)

Input Parameters

array — The vector or array to be sorted.

Returned Value

result — A vector of subscripts which allow access to the elements of array in
ascending order.

Keywords

None.

Discussion

String arrays are sorted using the ASCII collating sequence. The result is always a
vector of long integer type with the same number of elements as array.

The contents of the result are the sorted indices, not the values themselves.

Example

This example uses SORT to obtain the vector of subscripts that places the single-
precision, floating-point vector a into ascending order. To obtain elements of a in
sorted order, use the vector of subscripts returned by SORT as the subscript vector
for a.

a = [4.0, 3.0, 7.0, 1.0, 2.0]

; Create an unsorted single-precision, floating-point vector.

b = SORT(a)

; Place the vector of sorting subscripts into b.

PRINT, b

3 4 1 0 2

SPAWN Procedure (UNIX/OpenVMS) 855

PRINT, a(b)

; Print the sorted vector by using b as the subscript vector for a.
1.00000 2.00000 3.00000 4.00000 7.00000

See Also

AVG, MAX, MIN, MEDIAN, QUERY_TABLE, SORTN, UNIQUE,
WHERE

SPAWN Procedure (UNIX/OpenVMS)
Spawns a child process to execute a given command.

Usage

SPAWN [, command [, result]]

Input Parameters

command — (optional) The name of the command to spawn.

• If present, must be of type string. Under UNIX, command can be an array each
element is passed to the child process as a separate parameter. Under Open-
VMS, command is restricted to being a scalar.

• If not present, starts an interactive shell and PV-WAVE execution suspends
until the new shell process terminates. This ability is provided primarily for
compatibility with the OpenVMS version of PV-WAVE.

TIP Shells that handle process suspension (e.g.,/bin/csh) offer a more efficient
way to get the same effect.

Output Parameters

result — (optional) Indicates where the result is to be directed.

• If present, places the output from the child process into a string array (one line
of output per array element).

• If not present, sends the output from the child shell process to the standard out-
put stream.

856 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Keywords

Count — The number of string elements returned if the output is a string variable.

F77_Unformatted — (UNIX only) If set, opens a pipe to the spawned process in
a mode to do unformatted FORTRAN F77 input/output.

Noclisym — (OpenVMS only) If set, prevents the spawned process from inheriting
CLI symbols from its caller. Otherwise, the subprocess inherits all currently
defined CLI symbols.

TIP You may want to specify Noclisym to help prevent commands redefined by
symbol assignments from affecting the spawned commands.

Nolognam — (OpenVMS only) If set, prevents the spawned process from inherit-
ing process logical names from its caller. Otherwise, the subprocess inherits all
currently defined process logical names.

TIP You may want to specify Nolognam to help prevent commands redefined by
logical name assignments from affecting the spawned commands.

Noshell — (UNIX only) If present and nonzero, specifies that command should
execute directly as a child process without an intervening shell process. In this case,
command must be specified as a string array in which the first element is the name
of the command to execute and the following parameters are the parameters to be
passed to the command.

Noshell is useful when performing many spawned operations from a program and
speed is a primary concern. Since no shell is present, wildcard characters are not
expanded, and other tasks normally performed by the shell do not occur.

Notify — (OpenVMS only) If set, broadcasts a message to SYS$OUTPUT when
the subprocess completes or aborts. Otherwise, no message is broadcast. This key-
word should not be set unless the Nowait keyword is also set.

Nowait — (OpenVMS only) If set, causes the calling process to continue executing
in parallel with the subprocess. Otherwise, the calling process waits until the sub-
process completes.

Pid — A named variable for storing the process identification number of the child
process.

Sh — (UNIX only) If present and nonzero, forces the use of the Bourne shell.

Unit — A named variable for storing the number of the file unit.

SPAWN Procedure (UNIX/OpenVMS) 857

If present, causes SPAWN to create a child process in the usual manner, but instead
of waiting for the specified command to finish, SPAWN attaches a bidirectional
pipe between the child process and PV-WAVE. From the PV-WAVE session, the
pipe appears as a logical file unit. The other end of the pipe is attached to the child
process standard input and output.

NOTE If the Unit keyword is used, the command parameter must also be present,
and result is not allowed.

Discussion

Under UNIX, the shell used (if any) is obtained from the SHELL environment vari-
able. Under OpenVMS, the DCL command language interpreter is used.

Once the child process is started, the PV-WAVE session can communicate with it
using the normal input/output facilities. After the child process has done its task,
the CLOSE procedure is used to delete the process and close the pipe.

Since SPAWN uses GET_LUN to allocate the file unit, FREE_LUN should be used
to free the unit.

Example
SPAWN,’ps -a’

See Also

CALL_UNIX, CLOSE, FREE_LUN, GET_LUN,
LINKNLOAD, UNIX_LISTEN, UNIX_REPLY

NOTE Also see the PV-WAVE Application Developer’s Guide.

858 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

SORTN Function
Standard Library function that sorts an array of n-tuples.

Usage

result = SORTN(a)

Input Parameters

a — An (m,n) array of m n-tuples.

Returned Value

result — An array of indices, such that a(result,*) is the sorted version of a.

Keywords

None.

Examples
a = BYTSCL(RANDOMU(seed,9,2), Top=5)

PM, a

b = SORTN(a)

PM, b

PM, a(b,*)

See Also

SORT, UNIQUE, UNIQN

SPAWN Procedure (Windows) 859

SPAWN Procedure (Windows)
Spawns a child process to execute a given command.

Usage

SPAWN [, command [, result]]

Input Parameters

command — (optional) The name of the command to spawn.

• If present, must be of type string and must be a scalar.

• If not present, starts an interactive shell in a new Command window and
PV-WAVE execution suspends until the new Command window is closed.

Output Parameters

result — (optional) Indicates where the result is to be directed.

• If present, places the output from the child process into a string array (one line
of output per array element).

• If not present, sends the output from the child shell process to the standard out-
put stream. The standard output stream is either the new Command window if
one was created or the current Command window.

Keywords

Console — If present and nonzero, a new Command window is created and all
input and output is directed through the new Command window. This parameter is
ignored when the output parameter result is specified. The default is to create the
new Command window.

NOTE No keyboard input can be directed to the spawned child process unless a
new Command window has been created.

Count — The number of string elements returned if the output is a string variable.

Noshell — If present and nonzero, specifies that command should execute directly
as a child process without an intervening shell process. In this case, command must
be specified as a string in which the first element is the name of the command to

860 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

execute and the following tokens are the parameters to be passed to the command.
The command that is executed with the Noshell option cannot be a command that
itself creates a shell, such as dir.

Noshell is useful when performing many spawned operations from a program and
speed is a primary concern. Since no shell is present, wildcard characters are not
expanded, and other tasks normally performed by the shell do not occur.

Nowait — If set, causes the calling process to continue executing in parallel with
the subprocess. Otherwise, the calling process waits until the subprocess
completes.

Example
SPAWN,’dir’

See Also

CD, LINKNLOAD

For background information, see .

SPHERE Function
Defines a spherical object that can be used by the RENDER function.

Usage

result = SPHERE()

Parameters

None.

Returned Value

result — A structure that defines an ellipsoidal object.

SPHERE Function 861

Keywords

Color — A 256-element double-precision floating-point vector containing the
color (intensity) coefficients of the object.
(Default: Color(*)=1.0) For more information, see .

Decal — A 2D array of bytes whose elements correspond to indices into the arrays
of material properties. For more information, see .

Kamb — A 256-element double-precision floating-point vector containing the
ambient (flat shaded) coefficients.
(Default: Kamb(*)=0.0) For more information, see .

Kdiff — A 256-element double-precision floating-point vector containing the
diffuse reflectance coefficients.
(Default: Kdiff(*)=1.0) For more information, see .

Ktran — A 256-element double-precision floating-point vector containing the
specular transmission coefficients.
(Default: Ktran(*)=0.0) For more information, see .

Transform — A 4-by-4 double-precision floating-point array containing the local
transformation matrix whose default is the identity matrix. For more information,
see .

Discussion

A SPHERE is used by the RENDER function to render ellipsoid objects, such as
for spherical inverse mapping or molecular modeling (atoms). It is centered at the
origin, with a radius of 0.5.

You can alter its diameter and orientation with the Transform keyword.

Example
ds = 6

checks = BYTARR(ds, ds)

checks(*) = 255

FOR x=0, ds - 1 DO $
FOR y=0, ds - 1 DO $
IF ((x mod 2) EQ (y mod 2)) THEN $

checks(x, y) = 128

; Create a 6-by-6 checkerboard image.

two = FLTARR(256)

862 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

two(128) = 0.5 & two(255) = 1.0

; Set checks to be full and one-half intensity.

s = SPHERE(Decal=checks, Color=two)

TV, RENDER(s)

; Render the sphere with the checkerboard decal mapped on.

See Also

CONE, CYLINDER, MESH, RENDER, VOLUME

For more information, see .

SPLINE Function
Standard Library function that performs a cubic spline interpolation.

Usage

result = SPLINE(x, y, t [, tension])

Input Parameters

x — A vector containing the independent coordinates of the dataset. The vector
must be monotonic and increasing.

y — A vector containing the dependent coordinates of the dataset.

t — A vector containing the independent coordinates for which the ordinates are
desired. Must be monotonic and increasing.

tension — (optional) The amount of tension to be put on the spline curve. The
default value is 1.0 (see Discussion).

Returned Value

result — A vector containing interpolated ordinate values. In other words,
result(i) = value of the function at T(i).

Keywords

None.

SPLINE Function 863

Discussion

SPLINE performs a cubic spline interpolation of the input vector in order to obtain
a vector of interpolated dependent values. The dependent values are calculated at
the independent values given by the vector t.

A tension curve always passes through each known data point. The optional tension
parameter controls the smoothness of the fitted curve. The higher the tension, the
more closely the curve approximates the set of line segments that connect the data
points. A lower tension produces a smoother curve that may deviate considerably
from the straight-line path between points.

When tension is set close to zero (e.g., 0.01), the curve is virtually a cubic spline
fit. When tension is set to a large value (e.g., >10.0), then the fitted curve will be
similar to that obtained from a polynomial interpolation, such as POLY_FIT or
POLYFITW.

The SPLINE function can be useful for those applications where you need to fit the
data with a smoother or stiffer curve than that obtained with an interpolating poly-
nomial. Splines also tend to be more stable than polynomials, with less possibility
of wild oscillation between the data points.

Example 1
x = FINDGEN(10)

y = RANDOMN(seed, 10)

; Create the data.

t = FINDGEN(100)/11.

; Create a vector containing the independent points at which
; the dependent points are calculated.

PLOT, y

; Plot the original data.

PLOT, t, SPLINE(x, y, t), Xstyle=4, Ystyle=4,$
/Noerase, linestyle=2

; Plot using 100 independent points and a default tension of 1.

PLOT, t, SPLINE(x, y, t, 8.), Xstyle=4, $
Ystyle=4, /Noerase, Linestyle=3

; Plot using 100 independent points and a tension of 8.

Example 2
x = [2.0, 3.0, 4.0]

; X values of the original function.

864 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

y = (x - 3)^2

; Y formed from a quadratic function.

t = FINDGEN(20) / 10. + 2

; Twenty values from 2 to 3.90 for the interpolated points.

z = SPLINE(x, y, t)

; Do the interpolation.

See Also

CURVEFIT, GAUSSFIT, POLY_FIT, POLYFITW, SVDFIT

SQRT Function
Calculates the square root of the input variable.

Usage

result = SQRT(x)

Input Parameters

x — The value or array of values for which the square root is desired.

Returned Value

result — The square root of x.

Keywords

None.

Discussion

SQRT handles complex numbers (defined by c = a + ib), in the following manner:

where

c1 2⁄ 1
2
--- r a+()

1 2⁄
i

1
2
--- r a–()

1 2⁄
±=

STDEV Function 865

The ambiguous sign is taken to be the same as the sign of b.

If x is of double-precision floating-point or complex data type, SQRT yields a result
of the same type. All other types yield a single-precision floating-point result.

If x is an array, the result of SQRT has the same dimensions, with each element con-
taining the square root of the corresponding element of x.

Example
x = [3, 5, 7, 9]

PRINT, SQRT(x)

1.73205 2.23607 2.64575 3.00000

See Also

For a list of other transcendental functions, see Transcendental Mathematical
Functions on page 32 in Volume 1 of this reference.

STDEV Function
Standard Library function that computes the standard deviation and (optionally)
the mean of the input array.

Usage

result = STDEV(array [, mean])

Input Parameters

array — The array to be processed. Can be of any data type except string.

Output Parameters

mean — (optional) The mean of array.

r a2 b2+=

866 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Returned Value

result — The standard deviation of array. If the Dimension keyword is used, then
the value of result and mean will each have the structure of the input array, but with
dimension n collapsed.

Keywords

Dimension — An integer (n ≥ 0) indicates that the standard deviation is to be com-
puted over dimension n of the input array.

Variance — If nonzero, the variance of array is returned instead of the standard
deviation.

Discussion

Mean, standard deviation and variance are basic statistical tools used in a variety
of applications. They are computed as follows:

where n is the number of elements in array.

These equations are implemented as follows:

mean = TOTAL(array) / N_ELEMENTS(array)

std = SQRT(TOTAL((array – mean)^2) / (N_ELEMENTS(array) – 1))

The variance is implemented as follows:

variance = TOTAL((array – mean)^2) / (N_ELEMENTS(array) – 1)

mean

arrayi
i 0=

n

∑
n

--------------------------=

STD

arrayi mean–()2

i 0=

n

∑
n 1–

---=

Variance

arrayi mean–()2

i 0=

n

∑
n 1–

---=

STOP Procedure 867

Example
y = [1, 5, 9, 3, 10, 4]

; Create a simple array.

std = STDEV(y, arrmean)

; Compute the standard deviation and mean array value.

PRINT, std, arrmean

3.50238 5.33333

; Print the results.

See Also

AVG, SIGMA

STOP Procedure
Stops the execution of a running program and returns control to the interactive
mode.

Usage

STOP [, expr1, ... , exprn]

Input Parameters

expri — (optional) One or more expressions whose value is printed. If no parame-
ters are present, a brief message describing where the STOP was encountered is
printed.

Keywords

None.

See Also

BREAKPOINT, RETALL, RETURN

868 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

STRARR Function
Returns a string array.

Usage

result = STRARR(dim1, ... , dimn)

Input Parameters

dimi — The dimensions of the result. May be any scalar expression. Up to eight
dimensions may be specified.

Returned Value

result — A string array.

Keywords

None.

Example
r = STRARR(2)

r(0) = ’one’

r(1) = ’two’

PRINT, r

one two

See Also

BYTARR, COMPLEXARR, DBLARR, FLTARR, INTARR,
LONARR, MAKE_ARRAY, SINDGEN, STRLEN

STRCOMPRESS Function 869

STRCOMPRESS Function
Compresses the white space in an input string.

Usage

result = STRCOMPRESS(string)

Input Parameters

string — The string to be compressed.

Returned Value

result — A string with all white space (blank spaces and tabs) compressed to a sin-
gle space or completely removed. If string is an array, the result is an array with the
same structure—each element contains a compressed copy of the corresponding
element of string.

Keywords

Remove_All — If nonzero, removes all white space. Otherwise, all white space is
compressed to a single space (the default).

Discussion

If not of type string, string is converted to string using the default formatting rules
of PV-WAVE. (These rules are described in .)

Example 1

In this example, STRCOMPRESS is used to remove the excess white space in a
string.

s = ’ This string has extra white space’

; Create a string with excess white space characters.

PRINT, STRCOMPRESS(s)

; Display the string with all excess white space removed.

This string has extra white space

870 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example 2

This example uses STRCOMPRESS to remove all white space from each element
of a three-element string array.

s = strarr(3)

; Create a three-element string array.

s(0) = ’a b c’

s(1) = ’ d e f’

s(2) = ’g h i’

; Assign a string to each element of the array.

PRINT, TRANSPOSE(STRCOMPRESS(s, /Remove_All))

abc

def

ghi

; Remove all spaces from each element of the array and display
; the resulting array. TRANSPOSE is used to display the array as
; a column vector.

See Also

STRLEN, STRPOS, STRPUT, STRTRIM

STRETCH Procedure
Standard Library procedure that linearly expands the range of the color table cur-
rently loaded to cover an arbitrary range of pixel values.

Usage

STRETCH, low, high

Input Parameters

low — The lowest pixel value in the selected range; in other words, this is the pixel
value that will be displayed with color index 0. (Default: 0)

high — The highest pixel value in the selected range; in other words, this is the
pixel value that will be the highest color index available on a particular device (nor-
mally 255 on an eight-bit plane device). (Default: !D.N_Colors – 1)

STRETCH Procedure 871

Keywords

None.

Discussion

STRETCH linearly interpolates new Red, Green, and Blue color vectors between
low and high, and then loads them into the image display with LOADCT. The color
vectors in the COLORS common block are unchanged.

For example, the command:

STRETCH, 100, 150

expands the color table so that the pixels in the range of 100 to 150 fill the entire
color-intensity range.

To revert to a normal color table, call STRETCH with no parameters.

Example 1
mandril = BYTARR(512, 512)

OPENR, unit, !Data_dir + ’mandril.img’,/Get_lun

READU, unit, mandril

FREE_LUN, unit

; Read the image.

WINDOW, /Free, Colors=128, XSize=512, YSize=512

TVSCL, mandril

; Display the original image using 128 colors.

LOADCT, 4

COLOR_PALETTE

; Change the color palette and display it for reference.

!Err = 0

WHILE !Err LE 0 DO BEGIN

CURSOR, x, y, /Change, /Normal

range = FIX(y * 128.0 + 5.0)

STRETCH, 64-range, 64+range

ENDWHILE

; Use the position of the cursor to compress or expand the
; palette about the middle using the STRETCH function.

872 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example 2

A simplified version of STRETCH can be written as:

PRO STRETCH, lo, hi

; Procedure definition.

COMMON colors, r_orig, g_orig, b_orig, r_curr, g_curr, b_curr

; Access the color table common block used by
; PV-WAVE procedures.

t = BYTSCL(INDGEN(256), Min = lo, Max = hi)

; Make a vector of subscripts into the color table arrays.

TVLCT, r_orig(t), g_orig(t), b_orig(t)

; Load colors from the original tables transformed by t.
RETURN

END

See Also

LOADCT, MODIFYCT, TVLCT, WgCtTool

System Variables: !D.N_Colors

For more information about how to access the three color variables in the color
table common block, see .

For more information about stretching color tables, see .

STRING Function
Converts the input parameters to characters and returns a string expression.

Usage

result = STRING(expr1, ... , exprn)

Input Parameters

expri — The expressions to be converted to type string.

Returned Value

result — The string value for expr.

STRING Function 873

Keywords

Format — Allows the format of the output to be specified in precise detail, using
a FORTRAN-style specification. FORTRAN-style formats are described in the
PV-WAVE Programmer’s Guide.

Print — If present and nonzero, specifies that any special case processing should
be ignored, and that STRING should behave exactly as the PRINT procedure.

Discussion

STRING can be used to convert one or more expressions to string data type. You
can use the Format keyword to explicitly specify the format in the converted string.
The format specification string used with the Format keyword follows this syntax:
"(q1f1s1f2s2...fnqn)"

where:

• q — is an optional slash (/) record terminator. During output, each record ter-
minator causes the output to move to a new line. During input, each record
terminator causes the next line of input to be read.

• f — is a FORTRAN-style format string. Some format strings specify how data
should be transferred while others control some other function related to how
I/O is handled. If you do not specify a format string, the result is formatted
automatically.

For more information about the FORTRAN format codes that can be used,
refer to the PV-WAVE Programmer’s Guide.

• s — is a comma (,) or a slash (/) that is used to separate input values. The only
restriction on these separators is that two commas cannot occur side by side.

NOTE The quotation marks and parentheses surrounding the format string are
required. The quotation marks can be either single or double quotation marks.

If the Format keyword is not present, PV-WAVE uses its default rules for format-
ting the output. These rules are described in .

STRING is similar to the PRINT procedure, except that its output is placed in a
string rather than being output to the terminal.

Example 1

The following three commands all yield the string scalar ’ABC’:

874 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

x = STRING([65B,66B,67B])

y = STRING([byte(’A’), byte(’B’), byte(’C’)])

z = STRING(’A’ + ’B’ + ’C’)

In the first expression, the input x is a byte vector, and STRING converts it into a
string scalar. The first parameter is 65B, which is a notation indicating that the
parameter uses a byte data type, but the result is equal to the decimal ASCII code
65.

Example 2

STRING can also be used with a floating-point variable.

x = 123.45

result = STRING(x)

PRINT, result

123.45

Example 3

Here are some examples using the Format keyword. In these examples, the Format
keyword instructs the STRING function to convert numbers to a string data type,
using an integer format with a maximum field width of 2 characters. In all three
cases, the STRING command entered is:

result = STRING(numbers, Format="(I2)")

• Case 1: When numbers = [36, 9, 72], and result is computed with
the format string shown, the result is:

PRINT, result

36 9 72

The values are converted to strings, using a maximum field width of two
characters.

• Case 2: When numbers = [5, 7, 9, 100], and result is computed
with the format string, the result is:

PRINT, result

5 7 9 **

The two asterisks indicate that the integer value 100 was too big to be read with
an I2 FORTRAN format.

• Case 3: When numbers = [6.12, 4.507, 4.339], and result is
computed with the format string, the result is:

PRINT, result

STRJOIN Function 875

6 4 4

As this example shows, an integer format can be used to output floating point
data, but all digits after the decimal point are lost.

See Also

PRINT, STRARR, XYOUTS

For more information on string formats, see

For more information on format specification codes, see the PV-WAVE
Programmer’s Guide.

STRJOIN Function
Concatenates all of the elements of a string array into a single scalar string.

Usage

result = STRJOIN(string [, sep])

Input Parameters

string — A string array whose elements are to be concatenated.

sep — (optional) A scalar string that is used to separate adjoining elements of the
input array.

Returned Value

result — A scalar string.

Keywords

None.

Example

A string array of directory names is concatenated into a string that can be used for
a !Path system variable definition.

dirs = [’/bin’,’/usr/bin’,’/usr/local/bin’, $

876 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

’/etc’,’/usr/ucb/bin’, ’/usr/sbin’]

path = STRJOIN(dirs, ’:’)

PRINT, path

/bin:/usr/bin:/usr/local/bin:/etc:/usr/ucb/bin:/usr/sbin

See Also

STRSPLIT

STRLEN Function
Returns the length of the input parameter.

Usage

result = STRLEN(expr)

Input Parameters

expr — The expression for which the string length is desired.

If not of type string, expr is converted to string using the default formatting rules
of PV-WAVE. (These rules are described in .)

Returned Value

result — A long integer containing the string length of expr. If expr is an array, the
result is an array with the same structure, with each element containing the length
of the corresponding expr element.

Keywords

None.

Example

This example uses STRLEN to determine the length of several different strings.

a = ’a b c’

; Create a scalar string.

PRINT, STRLEN(a)

STRLOOKUP Function 877

5

; Display the length of a.

b = 45

; Create an integer scalar variable.

PRINT, STRLEN(b)

8

; Display the length of b converted to string type.

c = STRING(FINDGEN(4), Format = ’(f3.1)’)

; Create a four-element vector of strings.

PRINT, TRANSPOSE(c)

0.0

1.0

2.0

3.0

; Display the contents of c as a column vector.

PRINT, TRANSPOSE(STRLEN(c))

3

3

3

3

; Display the vector of lengths of elements of c as a column vector.
; This vector is returned by STRLEN.

See Also

STRMID, STRPOS, STRPUT, STRTRIM

STRLOOKUP Function
Queries, creates, saves, or modifies a string server database.

Usage

value = STRLOOKUP([name])

Input Parameters

name — (optional) Specifies the string name for the database search. The name
parameter is used to query the string database for its associated value.

878 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Returned Value

value — The returned value depends on the input parameter and/or the use of key-
words as shown in the following table.

Keywords

Add — A string containing a name: value pair to merge into the string database for
the current session. If the specified string already exists in the database, the Add
keyword takes precedence. If the string specified with the Add keyword doesn’t
already exist in the database, it is created.

Default — (Used only if name is specified.) A string containing a default value to
be returned, if no match is found in the database for name.

Load — A string specifying the pathname of a file of strings to be loaded, or
merged with the existing string database. Strings merged into the database with the
Load keyword that match existing strings supercede the existing string definitions
in the database.

Save — A string specifying the pathname in which to save the strings currently
defined in the string database. If the file specified already exists, the contents will
be overwritten.

Discussion

STRLOOKUP provides access to a string database of name: value pairs. The string
database is created by loading strings from an existing file with the Load keyword,
or changed by merging strings into the existing database using the Add keyword.

String resource files are identified by the application default string (.ads) file
extension.

TIP This function is designed specifically for use in application internationaliza-
tion, or other customized applications. Internationalization may be achieved by

Value Returned Parameter or Keywords Used

The value associated with the named
string, or a default value if the string isn’t
found.

name,
or name with Default keyword

An integer value of 1 indicating
success, or 0 indicating failure.

Add, Load, or Save keywords

STRLOWCASE Function 879

saving all language-specific messages in one file to be accessed using
STRLOOKUP.

Examples

In this example code, STRLOOKUP is used to create the string database by loading
a file containing the strings into the string database for the current session.

status = STRLOOKUP(Load=’/usr/mydir/myapp/myapp.errors’)

The following example illustrates the syntax for merging a name: value pair into
the existing string database using the Add keyword.

status = STRLOOKUP(Add=’msg_NoSuchFile: No such file’)

In this example, STRLOOKUP is used to determine if a specific string exists in the
string database, and to obtain the value associated with it if it does. If a matching
string name is not found in the string database, the default is set to return the mes-
sage File OK.

value = STRLOOKUP(’msg_FileOK’, Default=’File OK’)

The following example illustrates how to save all strings currently in the string
database to a file.

status = STRLOOKUP(Save=’/usr/mydir/myapp/myapp.new’)

See Also

WoLoadResources, WoLoadStrings in the PV-WAVE Application Developer’s
Guide.

STRLOWCASE Function
Converts a copy of the input string to lowercase letters.

Usage

result = STRLOWCASE(string)

Input Parameters

string — The string to be converted.

880 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

If not of type string, string is converted to string using the default formatting rules
of PV-WAVE. (These rules are described in .)

Returned Value

result — A copy of string converted to lowercase letters. If string is an array, the
result is an array with the same structure, with each element containing the sub-
string of the corresponding string element.

Keywords

None.

Discussion

Only uppercase characters are modified by STRLOWCASE; lowercase and nonal-
phabetic characters are copied without change.

Example

This example uses STRLOWCASE to convert uppercase characters to lowercase
in several different strings.

a = ’A StRInG OF mIXeD CaSe’

; Create a string with a mix of uppercase and lowercase characters.

PRINT, STRLOWCASE(a)

a string of mixed case

; Convert the string in a to lowercase and display the result.

b = 45

; Create an integer scalar variable.

INFO, STRLOWCASE(b)

<Expression> STRING = ’ 45’

; Examine the result of STRLOWCASE applied to b. Note that b is
; converted to a string.

c = STRARR(3)

; Create a three-element string vector.

c(0) = ’StrInG 0’

c(1) = ’sTrINg 1’

c(2) = ’StrinG 2’

; Assign a string with a mix of uppercase and lowercase characters
; to each element of c.

PRINT, TRANSPOSE(STRLOWCASE(c))

STRMATCH Function 881

string 0

string 1

string 2

; Display the vector of strings of c after converting them to lowercase.
; Use TRANSPOSE to view the vector as a column.

See Also

MESSAGE, PRINT, STRING, STRUPCASE, XYOUTS

STRMATCH Function
Matches a specified string to an existing regular expression.

Usage

result = STRMATCH(string, expr [, registers])

Input Parameters

string — A string or array of strings to be compared to a regular expression.

expr — A regular expression describing the pattern of matching strings for
comparison.

Output Parameters

registers — (optional) A string array containing the text of string, and matching
the regular expression and sub-expressions. The first part of string that matches the
regular expression is stored in element 0, and any additional matching sub-expres-
sions are stored in elements 1 – 9. If string is an array of strings, registers only
returns the matches for the first element of string.

Returned Value

result — A byte value indicating the success or failure of the match.

1 Indicates the string matches the regular expression.

0 Indicates no match.

882 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

If string is an array of strings, result is an array with the same structure. Each ele-
ment in the result array contains a value of 1 or 0 (indicating a match, or no match
respectively) for the corresponding string element.

Keywords

Grep — If nonzero, the regular expression follows the syntax used by the UNIX
command grep. Using Grep is equivalent to specifying a Syntax value of 20.

Egrep — If nonzero, the regular expression follows the syntax used by the UNIX
command egrep. Using Egrep is equivalent to specifying a Syntax value of 51.

Exact — If nonzero, the string must match the regular expression exactly.

Length — Specifies a named variable in which to store the number of characters
in string that match the regular expression. If Exact is used with Length, the result-
ing operation is equivalent to STRLEN(string).

Position — If nonzero, specifies a named variable into which the position in string
where the match occurred is stored. If Exact is used with Position, the position of
the matched string will be zero.

If string is an array of strings, the return values of Length and Position are arrays
with the same structure as string.

Syntax — The regular expression syntax encoded as bits in a longword. The table
in the Discussion section provides the syntax details.

Discussion

A regular expression is a string that uses special characters to represent patterns.

NOTE STRMATCH uses regular expressions, not wildcard characters, for pattern
matching. To use STRMATCH, it is crucial that you understand regular expres-
sions. For a detailed discussion of regular expressions, see the chapter Working
with Text in the PV-WAVE Programmer’s Guide.

By default, STRMATCH uses a regular expression syntax compatible with the
UNIX command awk. This is equivalent to specifying a Syntax value of 35. Key-
words are used so STRMATCH uses a syntax compatible with the UNIX
commands grep or egrep; or a completely arbitrary syntax can be specified
using Syntax. The following table lists information pertinent to Syntax.

STRMATCH Function 883

Example 1

This example uses STRMATCH to determine if a user’s response to a prompt was
valid.

x = '' & READ, 'Enter a letter or number: ', x

; Prompt the user for a response.

IF NOT STRMATCH(x, '[a-zA-Z0-9]', /Exact) THEN PRINT, 'Invalid
response.'

; If the response is not a single letter or number, an error message is
; issued.

Example 2

In this example, STRMATCH is used to ensure that names entered by a user are
always in “First name, Last name” order.

name = 'Smith, Bill J.'

IF STRMATCH(name, '^(.*), *(.*)$', reg) THEN name = reg(2) + ' ' +
reg(1)

; If two parts of name are separated by a comma, store the two parts
; in the register and then concatenate them back together to form the
; new name.

Bit Value Function

0 1 If this bit is set, then ‘(’ and ‘)’ are used for grouping.
Otherwise, ‘\(’ and ‘\)’ are used for grouping.

1 2 If this bit it set, then ‘|’ is used as the OR operator.
Otherwise, ‘\|’ is used as the OR operator.

2 4 If this bit is set, then ‘\+’ and ‘\?’ are operators.
Otherwise, ‘+’ and ‘?’ are operators.

3 8 If this bit is set, then ‘|’ binds tighter than ‘^’ and ‘$’.
Otherwise, the opposite is true.

4 16 If this bit is set, then newline is treated as an OR opera-
tor. Otherwise, newline is treated as a normal character.

5 32 If this bit is set, then certain characters (‘^’, ‘$’, ‘*’, ‘+’
and ‘?’) only have special meaning in certain contexts.
Otherwise, they always have their special meaning,
regardless of the surrounding context.

884 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

PRINT, name

Bill J. Smith

Example 3

This example demonstrates how to use the STRMATCH function in conjunction
with WHERE to perform data subsetting.

owners = ['Bill', 'Kathy', 'Janis', 'Ken']

pets = ['cat', 'rabbit', 'fish', 'dog']

; The two string arrays associate the owners with their pets.

w = STRMATCH(pets, 'cat|dog')

PRINT, owners(WHERE(w)), Format='(A)'

Bill

Ken

; Print the names of any owners of a cat or dog.

See Also

PRINT, STRING, STRSPLIT, STRSUBST

For detailed information on regular expressions, see the chapter Working with Text
in the PV-WAVE Programmer’s Guide.

STRMESSAGE Function
Returns the text of the error message specified by the input error number.

Usage

result = STRMESSAGE(errno)

Input Parameters

errno — The error number for which the message text is desired.

Returned Value

result — The text of the error message specified by errno.

STRMESSAGE Function 885

Keywords

None.

Discussion

This function is especially useful in conjunction with the !Err system variable,
which always contains the error number of the last error.

However, you should take care not to make the assumption in your programs that
certain error numbers always correspond to certain error messages, as this corre-
spondence may change as PV-WAVE is modified over time.

Example

The following procedure uses function STRMESSAGE to display the error mes-
sage associated with an input/output error trapped by procedure ON_IOERROR.

FUNCTION READ_DATA, file_name

; Define a function to read, and return a 100-element, floating-point
; array.

ON_IOERROR, bad

; Declare error label.

OPENR, unit, file_name, /Get_Lun

; Open the file and use the Get_Lun keyword to allocate a logical file
; unit.

a = FLTARR(100)

; Define data array.

READU, unit, a

; Read data.

GOTO, DONE

; Clean up and return.
bad:

; Exception label.

PRINT, STRMESSAGE(!ERROR)

; Print the error message associated with the error number in
; !ERROR. Note that STRMESSAGE is used to display the message.

DONE:

FREE_LUN, unit

; Close and free the input/output unit.

RETURN, a

886 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

; Return the result. Variable a is undefined if an error occurred.

END

See Also

MESSAGE, ON_ERROR, ON_IOERROR, PRINT

System Variables: !Err, !Err_String

For more information on error handling, see .

STRMID Function
Extracts a substring from a string expression.

Usage

result = STRMID(expr, first_character, length)

Input Parameters

expr — The expression from which the substring is to be extract-ed.

If not of type string, expr is converted to string using the default formatting rules
of PV-WAVE. (These rules are described in .)

first_character — The starting position within expr at which the substring starts.
The first character position is position 0.

length — The length of the substring. If there are not enough characters left in the
main string to obtain length characters, the substring will be truncated.

Returned Value

result — A string of length characters taken from expr, starting at character posi-
tion first_character. If expr is an array, the result is an array with the same structure,
with each element containing the substring of the corresponding expr element.

Keywords

None.

STRPOS Function 887

Example

In this example, STRPOS is used to locate the first occurrence of the string a within
a larger string. Function STRMID is then used to extract a substring from that posi-
tion. Function STRPOS is used to locate the second occurrence of the string a, and
finally, STRMID is used to extract another substring from this second position
within the larger string.

a = ’Extract a substring from a string’

; Create a string in the variable a.

POS = STRPOS(a, ’a ’)

; Locate first occurrence of the string “a ”.

PRINT, STRMID(a, pos, 11)

a substring

; Extract 11 characters from a, starting at POS.

POS = STRPOS(a, ’a ’, pos + 1)

; Search for the second occurrence of the string “a ” by searching
; from the character position that is one greater than the first
; occurrence of that string. Extract 8 characters from a, starting at the
; new POS.

PRINT, STRMID(a, pos, 8)

a string

See Also

STRLEN, STRPOS, STRPUT

STRPOS Function
Searches for the occurrence of a substring within an object string, and returns its
position.

Usage

result = STRPOS(object, search_string [, position])

Input Parameters

object — The expression in which to search for the substring.

888 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

search_string — The substring to be searched for within object.

If object or search_string are not of type string, they are converted to string using
the default formatting rules of PV-WAVE. (These rules are described in .)

position — (optional) The character position at which the search is begun. If posi-
tion is omitted or is less than zero, the search begins at the first character (character
position 0).

Returned Value

result — If search_string occurs in object, STRPOS returns the character position
of the match; otherwise, it returns –1.

If object is an array, result is an array of the same structure, and each element con-
tains the position of the substring within object.

If search_string is the null string, STRPOS returns the smaller of position or one
less than the length of object.

Keywords

None.

Example

See the example for STRMID.

See Also

STRLEN, STRLOWCASE, STRMESSAGE, STRPUT, STRUPCASE

STRPUT Procedure 889

STRPUT Procedure
Inserts the contents of one string into another.

Usage

STRPUT, destination, source [, position]

Input Parameters

destination — The string into which source will be inserted. Must be a named vari-
able of type string. Cannot be an element of an array. If destination is an array,
source is inserted into every element.

source — The string to be inserted into destination. Must be scalar.

If not of type string, source is converted to string using PV-WAVE’s default for-
matting rules. (These rules are described in .)

position — (optional) The character position at which the insertion is begun. If
position is omitted or is less than zero, the search begins at the first character (char-
acter position 0).

Keywords

None.

Discussion

The source string is inserted into the destination string, starting at the given posi-
tion. All characters in destination that occur either before the starting position, or
after the starting position plus the length of source, remain unchanged.

Example

This example uses STRPUT to insert a substring into a larger string, starting at
position 0 of the destination string. Clipping is then demonstrated by using
STRPUT to insert a substring that would otherwise extend the length of the desti-
nation string.

a = ’Strings are fun’

; Create a string in the variable a.

STRPUT, a, ’PV-WAVE is ’

890 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

; Insert the string “PV-WAVE is” into a, starting at position 0.

PRINT, a

PV-WAVE is fun

; Display the result.

STRPUT, a, ’fun to use’, 12

; Insert a string into a that would extend its length.

PRINT, a

PV-WAVE is fun

; Display the result. Note that the inserted string was clipped so the
; length of a did not change.

See Also

STRLEN, STRLOWCASE, STRMESSAGE, STRPOS, STRUPCASE

STRSPLIT Function
Splits a string into an array of substrings called tokens.

Usage

tokens = STRSPLIT(string, pattern)

Input Parameters

string — The scalar string that is scanned and split into tokens.

pattern — A scalar string specifying a regular expression. This regular expression
is the delimiter used to determine where to split the string.

Returned Value

tokens — A string array of substrings.

Keywords

None.

STRSPLIT Function 891

Discussion

NOTE STRSPLIT uses regular expressions, not wildcard characters, for pattern
matching. To use STRSPLIT, it is crucial that you understand regular expressions.
For a detailed discussion of regular expressions, see the chapter Working with Text
in the PV-WAVE Programmer’s Guide.

Example

In this example, a string containing a colon (:) separated list of directories is split
into a string array of directories.

PATH = ’/bin:/usr/bin:/usr/local/bin:’ +$
’/etc:/usr/ucb/bin:/usr/sbin’

dirs = STRSPLIT(path, ’:’)

PRINT, dirs, Format=’(A)’

/bin

/usr/bin

/usr/local/bin

/etc

/usr/ucb/bin

/usr/sbin

See Also

STRJOIN, STRMATCH

For detailed information on regular expressions, see the chapter Working with Text
in the PV-WAVE Programmer’s Guide.

892 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

STRSUBST Function
Performs search and replace string substitution.

Usage

result = STRSUBST(expr, pattern, repl)

Input Parameters

expr — The original scalar string expression.

pattern — A scalar string specifying the regular expression for the search pattern.

repl — The replacement scalar string.

Returned Value

result — A scalar string containing the given substitutions.

Keywords

Global — If nonzero, causes the pattern to be replaced everywhere in the string
with repl.

Discussion

NOTE STRSUBST uses regular expressions, not wildcard characters, for pattern
matching. To use STRSUBST, it is crucial that you understand regular expressions.
For a detailed discussion of regular expressions, see the chapter Working with Text
in the PV-WAVE Programmer’s Guide.

By default, only the first occurrence of pattern is replaced. Use the Global keyword
to replace all occurrences of pattern.

Example 1

In this example, a list of .pro files is converted to .cpr files.

source = ’foo.pro, bar.pro’

cprfiles = STRSUBST(source, ’pro’, ’cpr’, $
/Global)

STRSUBST Function 893

; The letters “pro” are replaced by “cpr”.

PRINT, cprfiles

foo.cpr, bar.cpr

Example 2

Suppose that you wish to change the file extension in the following string from.pp
to .dat.

str1=’$MDATA/ppt/thefile.pp’

You might try the following STRSUBST command:

str2=STRSUBST(str1, ’.pp’, ’.dat’)

Unfortunately, this command returns the following string, which is not the desired
result:

PRINT, str2
$MYDATA/.datt/thefile.pp

The reason for this is that the pattern expression, ’.pp’, contains the regular
expression special character . (dot), which means “match any single character
except newline”. One way to obtain the correct result is to “escape” this special
character with the backslash (\), as follows:

str2=STRSUBST(str1, ’\\.pp’, ’.dat’)

PRINT, str2
$MYDATA/ppt/thefile.dat

NOTE Two backslashes are needed because in PV-WAVE strings, you need a pair
of backslashes to make a single backslash. For more information on this subject,
see the chapter Working with Text in the PV-WAVE Programmer’s Guide.

See Also

STRPUT, STRMATCH

For detailed information on regular expressions, see the chapter Working with Text
in the PV-WAVE Programmer’s Guide.

894 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

STR_TO_DT Function
Converts date and time string data to date/time values.

Usage

result = STR_TO_DT(date_strings [, time_strings])

Input Parameters

date_strings — A string constant or string array that contains date strings.

time_strings — (optional) A string constant or string array that contains time
strings.

Returned Value

result — A date/time variable containing the converted date/time data.

Keywords

Date_Fmt — Specifies the format of the date data in the input variable. Possible
values are 1, 2, 3, 4, or 5, as summarized in the following table:

where the asterisk (*) represents one of the following separators: dash (–), slash
(/), comma (,), period (.), or colon (:).

Time_Fmt — Specifies the format of the time portion of the data in the input vari-
able. Possible values are –1 or –2, as summarized in the following table:

Value Format Description
Examples for
May 1, 1992

1 MM*DD*[YY]YY 05/01/92

2 DD*MM*[YY]YY 01-05-92

3 ddd*[YY]YY 122,1992

4 DD*mmm[mmmmmm]*[YY]YY 01/May/92

5 [YY]YY*MM*DD 1992-05-01

STR_TO_DT Function 895

where the asterisk (*) represents one of the following separators: dash (–), slash
(/), comma (,), or colon (:). No separators are allowed between hours and minutes
for the –2 format. Both hours and minutes must occupy two spaces.

For a detailed description of the date and time formats, see .

CAUTION Date and time separators are specified with the !Date_Separator and
!Time_Separator system variables. The STR_TO_DT function only recognizes the
standard separators listed above. If any other separator is specified, this function
does not work as expected.

Discussion

You can convert just date strings, just time strings, or both. If you do not pass in a
date string, the resulting date portion of the date/time structure defaults to the value
in the system variable !DT_Base. If you do not pass in a time string, the time por-
tion of the resulting date/time variable defaults to zero.

Example 1
x = [’3-13-92’, ’4-20-83’, ’4-24-64’]

; Create an array that contains some date strings with the MM DD YY
; date format.

y = [’1:10:34’, ’16:18:30’, ’5:07:25’]

; Create an array that contains some time strings with the HH Mn SS
; date format.

date1 = STR_TO_DT(x, y, Date_Fmt=1, Time_Fmt =-1)

; Use the formats1 and -1 to return date/time data.

DT_PRINT, date1

3/13/1992 01:10:34

4/20/1983 16:18:30

4/24/1964 05:07:25

Value Format Description Examples for 1:30 p.m.

–1 HH*Mn*SS[.SSSS] 13:30:35.25

–2 HHMn 1330

896 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example 2
date2 = STR_TO_DT(’3-13-92’, Date_Fmt=1)

PRINT, date2

{ 1992 3 13 0 0 0.00000 87474.000 0 }

See Also

DT_TO_STR, JUL_TO_DT, SEC_TO_DT, VAR_TO_DT

For more information on using date/time functions, see .

STRTRIM Function
Removes extra blank spaces from an input string.

Usage

result = STRTRIM(string [, flag])

Input Parameters

string — The string that will have leading and/or trailing blanks removed.

If not of type string, string is converted to string using the default formatting rules
of PV-WAVE. (These rules are described in .)

flag — Controls the action of STRTRIM:

• If zero or not present, removes trailing blanks.

• If 1, removes leading blanks.

• If 2, removes both leading and trailing blanks.

Returned Value

result — A copy of string with extra (leading and/or trailing) blank spaces
removed. If string is an array, the result is an array with the same structure—each
element contains a trimmed copy of the corresponding element of string.

Keywords

None.

STRTRIM Function 897

Example

In this example, STRTRIM is used to trim trailing, leading, then trailing and lead-
ing blanks from a string.

a = ’ A String ’

; Create a string with both leading and trailing blanks.

INFO, a

; Examine the contents of a. Note the presence of both leading and
; trailing blanks.

VARIABLE STRING = ’ A String ’

b = STRTRIM(a)

; Remove trailing blanks from a.

INFO, b

VARIABLE STRING = ’ A String’

; Note that all trailing blanks are removed.

b = STRTRIM(a, 1)

; Remove leading blanks from a.

INFO, b

VARIABLE STRING = ’A String ’

; Examine the results. Note that all leading blanks are removed.

b = STRTRIM(a, 2)

; Remove both leading and trailing blanks from a.

INFO, b

VARIABLE STRING = ’A String’

; Note that all leading and trailing blanks are removed.

See Also

STRCOMPRESS

898 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

STRUCTREF Function
Returns a list of all existing references to a structure.

Usage

result = STRUCTREF({structure})

Input Parameters

structure — The structure name. The name can be specified as {structure}, "struc-
ture", or x , where x is a variable of type structure.

Returned Value

result — A list of the variables, structures, definitions, and common blocks that ref-
erence structure.

Keywords

None.

Discussion

Use STRUCTREF before you use DELSTRUCT to check if the structure you want
to delete is currently referenced by any variables, common blocks, or other struc-
ture definitions.

You cannot delete a structure that is currently referenced.

If you want to delete a structure that is referenced, you can either:

• Delete the references (variables, structures, etc.) returned by STRUCTREF,
and then use the DELSTRUCT procedure.

• Use the DELSTRUCT procedure with the Rename keyword. This renames the
structure.

If you are trying to free memory, then you must pursue the first option. If you want
to delete a structure, and memory is not a concern, then the second option is prob-
ably the best choice.

STRUPCASE Function 899

Example
x = {struct1, a:float(0)}

PRINT, structref(x)

<procedure $MAIN$, symbol X>

See Also

DELFUNC, DELPROC, DELSTRUCT, N_TAGS, TAG_NAMES

For more information on structures, see .

STRUPCASE Function
Converts a copy of the input string to uppercase letters.

Usage

result = STRUPCASE(string)

Input Parameters

string — The string to be converted.

If not of type string, string is converted to string using the default formatting rules
of PV-WAVE. (These rules are described in .)

Returned Value

result — A copy of string converted to uppercase letters. If string is an array, the
result is an array with the same structure, with each element containing the sub-
string of the corresponding string element.

Keywords

None.

Discussion

Only lowercase characters are modified by STRUPCASE; uppercase and nonal-
phabetic characters are copied without change.

900 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example

This example uses STRUPCASE to convert lowercase characters to uppercase in
several different strings.

a = ’A StRInG oF miXeD caSE’

PRINT, STRUPCASE(a)

A STRING OF MIXED CASE

; Create a string with a mix of uppercase and lowercase characters.
; Convert the string in a to uppercase and display the result.

b = 45

INFO, STRUPCASE(b)

<Expression> STRING = ’ 45’

; Create an integer scalar variable. Examine the result of
; STRUPCASE applied to b. Note that b is converted to a string.

c = STRARR(3)

; Create a three-element string vector.

c(0) = ’StrInG 0’

c(1) = ’sTrINg 1’

c(2) = ’StrinG 2’

; Assign a string with a mix of uppercase and lowercase characters
; to each element of c.

PRINT, TRANSPOSE(STRUPCASE(c))

STRING 0

STRING 1

STRING 2

; Display the vector of strings of c after converting it to uppercase.
; Use TRANSPOSE to view the vector as a column.

See Also

MESSAGE, PRINT, STRLOWCASE, STRING, XYOUTS

SUM Function 901

SUM Function
Sums an array of n dimensions over one of its dimensions.

Usage

result = SUM (array, dim)

Input Parameters

array — An array of n dimensions of any data type except string.

dim — The dimension over which array is summed. The dim parameter must be a
number in the range 0 ≤ dim ≤ (n–1), where n is the number of dimensions in array.

Returned Value

result — A scalar value equal to the sum of the array elements over the specified
dimension.

Keywords

None.

Discussion

If array is either a single or double-precision complex, or a double-precision float-
ing-point data type, the result is of the same data type. SUM returns a single-
precision floating-point value for all other acceptable data types.

Example

This example illustrates SUM being used for a variety of arrays of different sizes.

array1 = FINDGEN(2)

array2 = FINDGEN(2,2)

; Create two arrays, array1, a one-dimensional array with two
; elements and array2, a two-dimensional array with four elements,
; using FINDGEN.

PRINT, array1

0.00000 1.00000

902 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

PRINT, array2

0.00000 1.00000

2.00000 3.00000

PRINT, SUM(array1, 0)

1.00000

PRINT, SUM(array2, 0)

1.00000 5.00000

PRINT, SUM(array2, 1)

2.00000 4.00000

; Print the arrays then sum each array over each of its dimensions
; and print the result.

See Also

AVG, MAX, MEDIAN, MIN, STDEV, TOTAL

SURFACE Procedure
Draws the surface of a two-dimensional array with hidden lines removed.

Usage

SURFACE, z [, x, y]

Input Parameters

z — A two-dimensional array containing the values that make up the surface. If x
and y are supplied, the surface is plotted as a function of the X,Y locations specified
by their contents. Otherwise, the surface is generated as a function of the array
index of each element of z.

x — (optional) A vector or two-dimensional array specifying the x-coordinates for
the surface.

• If x is a vector, each element of x specifies the x-coordinate for a column of z.
For example, x(0) specifies the x-coordinate for z(0, *).

• If x is a two-dimensional array, each element of x specifies the x-coordinate of
the corresponding point in z (xij specifies the x-coordinate for zij).

y — (optional) A vector or two-dimensional array specifying the y-coordinates for
the surface.

SURFACE Procedure 903

• If y is a vector, each element of y specifies the y-coordinate for a row of z. For
example, y(0) specifies the y-coordinate for z (*, 0).

• If y is a two-dimensional array, each element of y specifies the y-coordinate of
the corresponding point in z (yij specifies the y-coordinate for zij).

Keywords

Keywords let you control many aspects of the plot’s appearance. SURFACE key-
words are listed below. For a description of each keyword, see Chapter 3, Graphics
and Plotting Keywords.

Discussion

Note the following restrictions on the use of SURFACE. If the X,Y grid is not reg-
ular or nearly regular, errors in hidden line removal will occur.

If the T3D keyword is set, the 3D to 2D ;transformation matrix contained in !P.T
must project the Z axis to a line parallel to the device Y axis, or errors will occur.

Ax Noclip [XYZ]Gridstyle

Az Nodata [XYZ]Margin

Background Noerase [XYZ]Minor

Bottom Normal [XYZ]Range

Channel Position [XYZ]Style

Charsize Save [XYZ]Tickformat

Charthick Skirt [XYZ]Ticklen

Clip Subtitle [XYZ]Tickname

Color T3d [XYZ]Ticks

Data Thick [XYZ]Tickv

Device Tickformat [XYZ]Title

Font Ticklen YLabelCenter

Horizontal Title ZAxis

Linestyle Upper_Only ZValue

Lower_Only [XYZ]Charsize

904 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example

This example displays the surface described by the function

where

.RUN

FUNCTION f, x, y

RETURN, x * SIN(y) + y * COS(x)

END

; Define the function.

x = FINDGEN(101)/5-10

; Create vector of x-coordinates.

y = x

; Create vector of y-coordinates.

z = FLTARR(101, 101)

; Create an array to hold the function values.

FOR i = 0, 100 DO FOR j = 0, 100 DO z(i, j) = f(x(i), y(j))

; Evaluate the function at the given x- and y-coordinates and
; place the result in z.

SURFACE, z, x, y, Ax = 50, XCharsize = 2, $
YCharsize = 2, ZCharsize = 2

; Display the surface. The Ax keyword is used to specify the
; angle of rotation about the x-axis. The XCharsize, YCharsize,
; and ZCharsize keywords are used to enlarge the characters
; used to annotate the axes.

XYOUTS, 163, 477, $
"f(x, y) = x*sin(y) + y*cos(x)", Charsize = 2, /Device

; Place a title on the window. Note that the CURSOR procedure
; with the Device keyword was used to locate the proper position
; for the title.

f x y,() x y() y x()cos+sin=

x y,() IR 2 x y 10– 10,[]∈,{ }∈

SURFACE_FIT Function 905

Figure 2-65 Surface with title.

See Also

SHADE_SURF, SHADE_SURF_IRR, SURFACE_FIT, SURFR,
T3D, THREED

System Variables: !P.T

For more information, see .

SURFACE_FIT Function
Standard Library function that determines the polynomial fit to a surface.

Usage

result = SURFACE_FIT(array, degree)

Input Parameters

array — The two-dimensional array of data to which the surface will be fit. The
two dimensions do not have to be the same size. The number of data points must
be ≥ (degree + 1)2.

906 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

degree — The maximum degree of the fit (in one dimension).

Returned Value

result — A two-dimensional array of values as calculated from the least-squares fit
of the data.

Keywords

None.

Discussion

SURFACE_FIT first determines the coefficients of the polynomials in both direc-
tions, using the least-squares method of the POLYWARP function. It then uses
these coefficients to calculate the data points of the result array.

Example
OPENR, 1, !Data_dir + ’pikeselev.dat’

data = FLTARR(60, 40)

READF, 1, data

; Read in the data from the pikes elevation file.

CLOSE, 1

; Close the input file.

SURFACE, data

; Show the raw data without fitting.

SURFACE, SURFACE_FIT(data, 1)

; Approximate a linear least-squares fit.

SURFACE, SURFACE_FIT(data, 2)

; Do a second-degree polynomial fit.

SURFACE, SURFACE_FIT(data, 3)

; Do a third-degree polynomial fit.

SURFACE, SURFACE_FIT(data, 4)

; Do a forth-degree polynomial fit.

SURFACE, SURFACE_FIT(data, 5)

; Do a fifth-degree polynomial fit.

SURFR Procedure 907

See Also

POLY_FIT, POLYWARP, SURFACE

SURFR Procedure
Standard Library procedure that duplicates the rotation, translation, and scaling of
the SURFACE procedure.

Usage

SURFR

Parameters

None.

Keywords

Ax — The angle of rotation about the x-axis in degrees. (Default: 30 degrees)

Az — The angle of rotation about the z-axis in degrees. (Default: 30 degrees)

Discussion

SURFR should be used for axonometric projections only. The 4-by-4 matrix in the
system variable !P.T receives the homogeneous transformation matrix generated by
this procedure.

SURFR performs the following steps:

❑ Translates the unit cube so that the center (.5, .5, .5) is moved to the origin.

❑ Rotates –90 degrees about the x-axis to make the +z-axis of the data the +y-axis
of the display. The +y data axis extends from the front of the display to the
back.

❑ Rotates about the y-axis Az degrees. This rotates the result counterclockwise as
seen from above the page.

❑ Rotates about the x-axis Ax degrees, tilting the data towards the viewer.

❑ Translates back to the origin and scales the data so that the data are still con-
tained within the unit cube after the transformation. (This step uses the
SCALE3D procedure.)

908 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Example 1
TEK_COLOR

; Load a color table.

data = HANNING(50, 50)

SURFR

; Create the 3D spatial transformation. By default, the angle of
; rotation is defined as 30 degrees around the x- and y-axes.

CONTOUR, data, Nlevels=20, /Follow, /T3D, $
Charsize=1.5

; Create the contour plot in the 3D space.

SURFR,Ax=45, Az=10

; Now try it with different angles of rotation.

CONTOUR, data, Nlevels=20, /Follow, /T3D, $
Charsize=1.5

; Create the contour plot in the 3D space.

TIP For an informative display, the above example could be done using the
SHADE_SURF or SURFACE procedures instead of SURFR, as shown below.
(SURFR is not needed in this case because these two procedures themselves set up
the 3D view area.)

SURFACE, data, /Save, Color=3

CONTOUR, data, Nlevels=20, /Follow, /T3D, Charsize=1.5

Example 2

 This example displays a cube as a shaded surface and rotates it.

xmin = 0 & xmax = 1

xmin = xmin - 1.5 & xmax = xmax+1.5

!x.s = [-xmin,1.0] / (xmax - xmin)

!y.s = !x.s

!z.s = !x.s

; Set up scaling for the 3D view.

vert = FLTARR(3, 8)

FOR i = 1, 2 DO vert(0, i) = 1

FOR i = 5, 6 DO vert(0, i) = 1

FOR i = 2, 3 DO vert(1, i) = 1

FOR i = 6, 7 DO vert(1, i) = 1

FOR i = 4, 7 DO vert(2, i) = 1

; Create the array of vertices.

SURFR Procedure 909

poly = FLTARR(30)

poly(0:4) = [4, 0, 3, 2, 1]

poly(5:9) = [4, 1, 2, 6, 5]

poly(10:14) = [4, 5, 6, 7, 4]

poly(15:19) = [4, 4, 7, 3, 0]

poly(20:24) = [4, 3, 7, 6, 2]

poly(25:29) = [4, 0, 1, 5, 4]

; Create the connectivity array.

SURFR

img = POLYSHADE(vert, poly, /T3D, /Data)

TV, img

; Display the cube with the default rotations.

SURFR, Ax=50, Az=10

img = POLYSHADE(vert, poly, /T3D, /Data)

TV, img

; Display the cube rotated 50 degrees around the x-axis and 10
; degrees around the z-axis.

TIP This example can be done more simply with the CENTER_VIEW procedure,
which is available in the Advanced Rendering Library. This library is located:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory. For more information, view
the .pro file for this procedure.

See Also

SCALE3D, SURFACE, T3D

System Variables: !P.T

910 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

SVBKSB Procedure
Uses “back substitution” to solve the set of simultaneous linear equations Ax = b,
given the u, w, and v arrays created by the SVD procedure from the matrix a.

Usage

SVBKSB, u, w, v, b, x

Input Parameters

u — The m-by-n column matrix of the decomposition of a, as returned by SVD.

w — The vector of singular values, as returned by SVD.

v — The n-by-n orthogonal matrix of the decomposition of A, as returned by SVD.

b — The vector containing the right-hand side of the equation.

Output Parameters

x — A variable containing the result.

Keywords

None.

Discussion

Since no input quantities are destroyed, SVBKSB may be called numerous times
with different b vectors.

Example

Here’s a typical use of SVD and SVBKSB to solve the system Ax = b:

SVD, A, w, u, v

; Decompose square matrix A.

small = WHERE(w LT MAX(w) * 1.0e-6, count)

; Get subscripts of singular values, using a given threshold.

IF count NE 0 THEN w(small) = 0.0

; Zero singular values less than the threshold. See the Numerical
; Recipes book (referred to in the See Also section) for details.

SVD Procedure 911

SVBKSB, u, w, v, b, x

; The vector x now contains the solution.

PRINT, TOTAL(ABS(A # x - b))

; The residual, |Ax – b| should be near 0.

See Also

SVD

SVBKSB is based on the routine of the same name in Numerical Recipes in C: The
Art of Scientific Computing, by Flannery, Press, Teukolsky, and Vetterling, Cam-
bridge University Press, Cambridge, MA, 1988. It is used by permission.

SVD Procedure
Performs a singular value decomposition on a matrix.

Usage

SVD, a, W [, u [, v]]

Input Parameters

a — The two-dimensional matrix to be decomposed. It has m rows and n columns,
and m must be greater than or equal to n.

Output Parameters

W — An n-element vector of “singular values” equal to the diagonal elements of
w: wi, j = Wj, wi, j = 0 for i ≠ j.

u — (optional) The m-by-n column matrix of the decomposition of a.

v — (optional) The n-by-n orthogonal matrix of the decomposition of a.

Keywords

None.

912 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Discussion

SVD performs a singular value decomposition on a matrix a. It is useful for solving
linear least-squares equations. SVD is able to deal with matrices that are singular
or very close to singular.

The SVD procedure function transforms an m-by-n matrix a to the product of an
m-by-n column orthogonal matrix u, an n-by-n diagonal matrix w, and the trans-
pose of an n-by-n orthogonal matrix v. In other words, u, w, and v are matrices that
are calculated by SVD.

By definition, the product of these three matrices (u, w, v) is equal to a:

a = uwvt

where the superscript t denotes the matrix transpose.

In a linear system of equations,

Ax = b

where there are at least as many equations as unknowns, the least-squares solution
vector x is given by:

x = v . [diag(1/wj)](ut . b)

Example

A PV-WAVE function that returns x, given A and b is:

Function SVD_SOLVE, A, b

; Return the vector x, the solution of the system of equations Ax = b.
; A is an (m, n) matrix, where m ≥ n.

SVD, A, w, u, v

; Call SVD to decompose A.

n = N_ELEMENTS(w)

; Make the diagonal matrix Wi,i = 1/wi.

wp = FLTARR(n,n)

FOR i=0, n-1 DO IF w(i) NE 0 THEN wp(i,i) = 1./w(i)

RETURN, v # wp # (TRANSPOSE(u) # b)

; Calculate x from equation and return.

END

SVDFIT Function 913

See Also

SVBKSB

The SVD function is based on the subroutine SVDCMP in Numerical Recipes in
C: The Art of Scientific Computing, by Flannery, Press, Teukolsky, and Vetterling,
Cambridge University Press, Cambridge, MA, 1988, and is used by permission.

PV-WAVE’s SVD is a translation of the ALGOL procedure SVD described in Lin-
ear Algebra, Vol. II of The Handbook for Automatic Computation, by Wilkinson
and Reinsch, Springer-Verlag, New York, NY, 1971.

For more information on SVD, also consult Computer Models for Mathematical
Computations, by Forsythe, Malcom, and Moler, Prentice Hall, Englewood Cliffs,
NJ, 1977.

SVDFIT Function
Standard Library function that uses the singular value decomposition method of
least-squares curve fitting to fit a polynomial function to data.

Usage

result = SVDFIT(x, y, m)

Input Parameters

x — A vector containing the independent x-coordinates of the data.

y — A vector containing the dependent y-coordinates of the data. This vector
should have the same number of elements as x.

m — The number of coefficients in the fitted function. For polynomials, m is one
more than the degree of the polynomial.

Returned Value

result — A vector containing the coefficients of the polynomial equation which
best approximates the data. It has a length of m.

914 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Keywords

Chisq — The sum of the squared errors, multiplied by the weights, if Weight is
specified.

Covar — The covariance matrix of the m coefficients.

Funct — The name of a user-supplied basis function with m coefficients (see User-
Supplied Basis Function).

Singular —The number of singular values (i.e., the number of values that are
inconsistent with the other data) encountered in evaluating the fit. Should be 0; if
not, the computed polynomials probably do not accurately reflect the data.

Variance — The estimated variance (sigma squared) for each of the m coefficients.

Weight — A vector of weighting factors for determining the weighting of the least-
squares fit. Must have the same number of elements as x.

Yfit — A vector containing the calculated y values of the fitted function.

Discussion

You must define any keywords to be returned by SVDFIT before calling it. The
value or structure of the variable doesn’t matter, since the variable will be redefined
dynamically in the function call. For example:

yf = 1

; Define the output variable yf.

c = SVDFIT(x, y, m, Yfit=yf)

; Do the SVD fit and return the Yfit vector in the variable yf.

User-Supplied Basis Function

If Funct is not supplied, a polynomial function is used as the basis function. This
function is of the form:

result(i, j) = x(i) j

The function is called with two parameters in the following fashion:

result = FUNCT(x, m)

where x and m are as defined above.

The file containing Funct should reside in the current working directory or in the
search path defined by the system variable !Path.

SYSTIME Function 915

If Funct does not have the file extension .pro, it should be compiled before it is
called in SVDFIT.

See the Standard Library function cosines.pro, which defines a basis function
of the form:

result(i, j) = COS(j * x(i))

Weighting is useful when you want to correct for potential errors in the data you
are fitting to a curve. The weighting factor, Weight, adjusts the parameters of the
curve so that the error at each point of the curve is minimized. For more informa-
tion, see the section Weighting Factor on page 180 under the CURVEFIT function
in Volume 1 of this reference.

See Also

COSINES, FUNCT, REGRESS

For more examples of basis functions, see Numerical Recipes in C: The Art of Sci-
entific Computing, by Flannery, Press, Teukolsky, and Vetterling, Cambridge
University Press, Cambridge, MA, 1988.

SYSTIME Function
Returns the current system time as either a string or as the number of seconds
elapsed since January 1, 1970.

Usage

result = SYSTIME(param)

Input Parameters

param — If present and nonzero, causes the number of seconds elapsed since Jan-
uary 1, 1970 to be returned as a double-precision floating-point value. Otherwise,
a scalar string containing the current date/time in standard system format is
returned.

Returned Value

result — Either a value representing the number of seconds since January 1, 1970
or a string containing the time in the standard system time format.

916 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 2

Keywords

None.

Example
t1 = SYSTIME(1)

; Calculate number of seconds elapsed since January 1, 1970.

t2 = SYSTIME(0)

; Calculate the current date/time in standard system format.

PRINT, t1, t2

6.9248465e+08 Wed Dec 11 13:48:33 1991

See Also

For information on other ways that PV-WAVE can handle dates and times, see the
PV-WAVE User’s Guide.

T3D Procedure 917

2
Procedure and Function Reference

T3D Procedure
Standard Library procedure that accumulates one or more sequences of translation,
scaling, rotation, perspective, or oblique transformations and stores the result in the
system variable !P.T.

Usage

T3D

Parameters

None.

Keywords

Reset — A scalar which, if nonzero, resets !P.T (the transformation matrix) back
to the default identity matrix.

Translate — A three-element vector containing the specified translations in the x,
y, and z directions.

Scale — A three-element vector containing the specified scaling factors in the x, y,
and z directions.

Rotate — A three-element vector, in units of degrees, containing the specified rota-
tions about the x-, y-, and z-axes. Rotations are performed in the order of X, Y, and
then Z.

Perspective — A scalar (p) indicating the z distance to the center of the projection.
Objects are projected onto the XY plane at Z=0, and the “eye” is located at point
(0, 0, p).

Oblique — A two-element vector containing the oblique projection parameters.
Points are projected onto the XY plane at Z=0 as follows:

X' = X + Z(d * cos(a))

Y' = Y + Z(d * sin(a))

where Oblique(0) = d and Oblique(1) = a

XYexch — If nonzero, exchanges the x- and y-axes.

XZexch — If nonzero, exchanges the x- and z-axes.

YZexch — If nonzero, exchanges the y- and z-axes.

918 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Discussion

All parameters are entered in the form of keywords. The transformation specified
by each keyword is performed in the order of its description above. For example,
if both Translate and Scale are specified, the translation is done first, even if Scale
is the first keyword in the procedure call.

The 4-by-4 transformation matrix, !P.T, is updated by this procedure, but the sys-
tem variable !P.T3d is not set. This means that for the transformations to take effect,
you must set !P.T3d equal to 1, or use the T3d keyword, in any plotting procedure
that will make use of this transformation. Since all the graphic routines use the !P.T
matrix for output, the T3D procedure can be used to effect graphic output.

CAUTION It is possible to create a transformation matrix with T3D that will not
work correctly with the SURFACE or SHADE_SURF procedures. The only T3D
transformations allowed with these procedures are those that end up with the z-axis
placed vertically on the display screen.

This procedure follows the example given in Fundamentals of Interactive Com-
puter Graphics, by Foley and Van Dam, Addison Wesley Publishing Company,
Reading, MA, 1982.

NOTE The matrix notation used in the procedure is reversed from the normal
PV-WAVE sense in order to conform to this reference. Moreover, a right-handed
system is used, meaning that positive rotations are counterclockwise when looking
from a positive axis to the origin.

Example 1
T3D, /Reset, Rotate=[30,0,0], Perspective=-1

; Reset transformation, rotate 30 degrees about the x-axis, and then
; do a perspective transformation with the center of the projection at
; (0, 0, –1).

Example 2

Transformations may also be cascaded. For example:

T3D, /Reset, Translate=[-.5,-.5,0], Rotate=[0,0,45]

; Reset, translate the center (.5, .5, 0) to the origin, and rotate
; 45 degrees counterclockwise about the z-axis.

T3D Procedure 919

T3D, Translate=[.5,.5,0]

; Move the origin back to the center of the viewport.

Example 3
b = FINDGEN(37)*10

y = SIN(b*!Dtor)/EXP(b/200)*4

sz = SIZE(y)

j = REFORM(y, sz(1), 1)

; Create the data, and reform it into a 2D array so that it can be used
; with the SURFACE procedure.

SURFACE, j, /Nodata, /Save, YMargin=[0, 0], $
ZStyle=1, ZRange=[0, 1]

; Draw a 3D axis and set up a 3D screen.

T3D, /YZexch

; Exchange the y- and z-axes so that plots are stacked one in front of
; the other along the usual y-axis.

TEK_COLOR

PLOT, b, y, /T3d, ZValue=1.0, YMargin=[0, 0], /Noerase

; Create a line plot stacked on the 3D axis.
POLYFILL, b, y, /T3d, Color=6, Z=1.0

; Fill under the curve.
PLOT, b, y, /T3d, ZValue=0.5, YMargin=[0, 0], /Noerase

POLYFILL, b, y, /T3d, Color=8, Z=0.5

; Create and fill a second curve.
PLOT, b, y, /T3d, ZValue=0.0, YMargin=[0, 0], /Noerase

POLYFILL, b, y, /T3d, Color=7, Z=0.0

; Create and fill a third curve.
T3D, /Reset

See Also

SURFR

System Variables: !P.T, !P.T3d

For more information and examples, see .

920 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

TAG_NAMES Function
Returns a string array containing the names of the tags in a structure expression.

Usage

result = TAG_NAMES(expr)

Input Parameters

expr — The expression for which the tag names will be returned. Must be of struc-
ture type.

Returned Value

result — The string array containing the names of the tags. If expr is a structure
containing nested structures, only the names of tags in the outermost structure are
returned (as TAG_NAMES does not search for tags recursively).

Keywords

None.

Example

This example uses TAG_NAMES to display the tag names of a structure and one
of its fields, which is also a structure.

a = {struc1, t1: 0.0D, t2: {struct2, $
t2_t1: INTARR(3), t2_t2: 0.0, t2_t3: 0L},$
t3: FLTARR(12), t4: 0L}

; Create a structure containing four fields, the second of which is also a structure.

PRINT, TAG_NAMES(a)

T1 T2 T3 T4

; Display tag names of a.

PRINT, TAG_NAMES(a.t2)

T2_T1 T2_T2 T2_T3

; Display tag names of the structure in the second field of a.

See Also

DELSTRUCT, N_TAGS, STRUCTREF

TAN Function 921

TAN Function
Returns the tangent of the input variable.

Usage

result = TAN(x)

Input Parameters

x — The angle, in radians, that is evaluated. Cannot be a complex data type.

Returned Value

result — The tangent of x.

Keywords

None.

Discussion

If x is of double-precision floating-point, TAN yields a result of the same data type.
All other data types, except complex, yield a single-precision floating-point result.

If x is an array, the result of TAN has the same dimensions, with each element con-
taining the tangent of the corresponding element of x.

Example
x = [-60, -30, 0, 30, 60]

PRINT, TAN(x * !Dtor)

-1.73205 -0.577350 0.00000 0.577350 1.73205

See Also

ATAN, COS, SIN, TANH

For a list of other transcendental functions, see Transcendental Mathematical
Functions in Volume 1 of this reference.

922 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

TANH Function
Returns the hyperbolic tangent of the input variable.

Usage

result = TANH(x)

Input Parameters

x — The angle, in radians, that is evaluated.

Returned Value

result — The hyperbolic tangent of x.

Keywords

None.

Discussion

TANH is defined by:

If x is of double-precision floating-point or of complex data type, TANH yields a
result of the same type. All other data types yield a single-precision floating-point
result.

If x is an array, the result of TANH has the same dimensions, with each element
containing the hyperbolic tangent of the corresponding element of x.

Example
x = [0.3, 0.5, 0.7, 0.9]

PRINT, TANH(x)

0.291313 0.462117 0.604368 0.716298

See Also

ATAN, COSH, SINH, TAN

For a list of other transcendental functions, see Transcendental Mathematical
Functions in Volume 1 of this reference.

x()tanh
ex e x––
ex e x–+
------------------≡

TAPRD Procedure (OpenVMS) 923

TAPRD Procedure (OpenVMS)
Reads the next record on the selected tape unit into the specified array.

Usage

TAPRD, array, unit [, byte_reverse]

Input Parameters

array — A named variable into which the data should be read. The length of array
and the records on the tape may range from 14 to 65,235 bytes.

• If array is larger than the tape record, the last portion of array is not changed.

• If array is shorter than the tape record, a data overrun error occurs.

unit — A number between 0 and 9 specifying the magnetic tape unit to rewind. (Do
not confuse this parameter with file logical unit numbers.)

byte_reverse — (optional) If present, causes the even and odd numbered bytes to
be swapped after reading, regardless of the type of data or variables. This facilitates
reading tapes written on IBM machines.

Keywords

None.

Discussion

No data or format conversion, with the exception of optional byte reversal, is per-
formed by TAPRD. The input array must be defined with the desired type and
dimensions.

If the read is successful, the system variable !Err is set to the number of bytes read.

See Also

SKIPF, TAPWRT

For more information, see the section Accessing Magnetic Tape in Chapter 8 of the
PV-WAVE Programmer’s Guide.

924 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

TAPWRT Procedure (OpenVMS)
Writes data from the input array to the selected tape unit.

Usage

TAPWRT, array, unit [, byte_reverse]

Input Parameters

array — The variable from which the data should be output. May be an expression.
The length of array and the records on the tape may range from 14 to 65,235 bytes.

unit — A number between 0 and 9 specifying the magnetic tape unit to rewind. (Do
not confuse this parameter with file logical unit numbers.)

byte_reverse — (optional) If present, causes the even and odd numbered bytes to
be swapped on output, regardless of the type of data or variables. This facilitates
writing tapes compatible with IBM machines.

Keywords

None.

Discussion

One physical record containing the same number of bytes as array is written each
time TAPWRT is called.

See Also

SKIPF, TAPRD

For more information, see the section Accessing Magnetic Tape in Chapter 8 of the
PV-WAVE Programmer’s Guide.

TEK_COLOR Procedure 925

TEK_COLOR Procedure
Standard Library procedure that loads a color table, which contains 32 distinct col-
ors and is similar to the default Tektronix 4115 color table, into the display.

Usage

TEK_COLOR

Parameters

None.

Keywords

None.

Discussion

TEK_COLOR loads the first 32 elements of the color table with the Tektronix 4115
default color map. This creates a useful color table if you desire distinctive colors.

Example 1
b = FINDGEN(37)

x = b * 10

y = SIN(x * !Dtor)

; Create an array containing the values for a sine function from 0 to
; 360 degrees.

PLOT, x, y, XRange=[0,360], XStyle=1, YStyle=1

; Plot data and set the range to be exactly 0 to 360.
COLOR_PALETTE

; Put up a window containing a display of the current color table and
; its associated color indices.

TEK_COLOR

; Load a predefined color table that contains 32 distinct colors.
POLYFILL, x, y, Color=6

POLYFILL, x, y/2, Color=3

POLYFILL, x, y/6, Color=4

; Fill in areas under the curve with different colors.
z = COS(x * !Dtor)

; Create an array containing the values for a COS function from 0 to 360 degrees.

926 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

OPLOT, x, z/8, Linestyle=2, Color=5

; Plot the cosine data on top of the sine data.

Example 2

This example creates a contour plot of Pike’s Peak, with the area in between the
contour lines filled with a solid color.

OPENR, 1, !Data_dir + ’pikeselev.dat’

pikes = FLTARR(60, 40)

READF, 1, pikes

; Read in the data file.

CLOSE, 1

c_pikes = FLTARR(62, 42)

c_pikes(1, 1) = pikes

; Close any open contours.

TEK_COLOR

; Load a color table.

CONTOUR2, c_pikes, $
Levels=[5,6,7,8,9,10,11,12,13,14,15]*1000,$

XStyle=1, YStyle=1, /Fill

; Produce a filled contour plot.

pikes = REBIN(pikes, 600, 400)

; Enlarge the original dataset for better display.
TV, BYTSCL(pikes, Top=10)

; Display the plot as an image similar to the filled contour plot. (Displaying it
; as an image allows access to image processing and analysis
; routines, such as DEFROI, HISTOGRAM, and PROFILES.)

See Also

C_EDIT, COLOR_EDIT, COLOR_PALETTE, LOADCT,
PALETTE, TVLCT

TENSOR Functions 927

TENSOR Functions
Compute the generalized tensor product of two arrays.

Usage
c = TENSOR_ADD(a, b)

c = TENSOR_DIV(a, b)

c = TENSOR_EQ(a, b)

c = TENSOR_EXP(a, b)

c = TENSOR_GE(a, b)

c = TENSOR_GT(a, b)

c = TENSOR_LE(a, b)

c = TENSOR_LT(a, b)

c = TENSOR_MAX(a, b)

c = TENSOR_MIN(a, b)

c = TENSOR_MOD(a, b)

c = TENSOR_MUL(a, b)

c = TENSOR_NE(a, b)

c = TENSOR_SUB(a, b)

Input Parameters

a — An array.

b — An array.

Keywords

None.

Returned Value

c — The generalized tensor product of a and b. For logical operators (EQ, NE, etc.),
a byte type result is returned. Otherwise, the result type depends on the type(s) of
the input parameters.

If a is an m dimensional array of dimension lengths a1, ...am and if b is an n dimen-
sional array of dimension lengths b1, ...bn then c is a m+n dimensional array with
dimension lengths a1, ...am, b1, ...bn.

928 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Each element of c is computed as:

c(i1 , . . im, j1 , . . jn) = a(i1 , . . im) % b(j1 , . . jn)

where % symbolizes the operator associated with the selected function:

Discussion
The TENSOR functions are useful when it is necessary to apply a binary operator
to all combinations of elements of one array with elements of a second array.

NOTE The combined dimensions of the two input parameters cannot exceed eight
(8). If it does, an error is printed. If input parameters are not of the same type, one
will be converted according to the rules used by PV-WAVE binary operators.

Example
Refer to the Standard Library routine WHEREIN, where TENSOR_EQ is used to
perform intersections and other related set operations.

(UNIX) <vni_dir>/wave/lib/std/wherein.pro

(Windows) <VNI_DIR>\wave\lib\std\wherein.pro

(OpenVMS) <VNI_DIR>:[WAVE.LIB.STD]WHEREIN.PRO

Function PV-WAVE Operator

TENSOR_ADD +

TENSOR_DIV /

TENSOR_EQ EQ

TENSOR_EXP ^

TENSOR_GE GE

TENSOR_GT GT

TENSOR_LE LE

TENSOR_LT LT

TENSOR_MAX >

TENSOR_MIN <

TENSOR_MOD MOD

TENSOR_MUL *

TENSOR_NE NE

TENSOR_SUB –

THREED Procedure 929

See Also

WHEREIN

THREED Procedure
Standard Library procedure that plots a two-dimensional array as a pseudo three-
dimensional plot on the currently selected graphics device.

Usage

THREED, array [, space]

Input Parameters

array — The two-dimensional array to plot.

space — The spacing between lines of the plot:

• If space is omitted, spacing will be set to (MAX(A) – MIN(A))/ROWS.

• If space is negative, no hidden lines will be removed.

Keywords

Title — A string containing the main plot title.

XTitle — A string containing the title of the x-axis.

YTitle — A string containing the title of the y-axis.

Discussion

The orientation of the data plotted by THREED is fixed.

Example
OPENR, 1, !Data_dir + ’pikeselev.dat’

data = FLTARR(60, 40)

READF, 1, data

CLOSE, 1

THREED, data

SURFACE, data

930 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

See Also

SURFACE, T3D

TODAY Function
Returns a date/time variable containing the current system date and time.

Usage

result = TODAY()

Parameters

 None.

Returned Value

result — A date/time variable containing the current system date and time.

Keywords

None.

Example
dttoday = TODAY()

PRINT, dttoday

{1992 4 29 14 47 55.0000 87521.617 0}

DT_PRINT, dttoday

04/29/1992 14:47:55

See Also

DTGEN

For more information, see Chapter 8, Working with Date/Time Data, in the
PV-WAVE User’s Guide.

TOTAL Function 931

TOTAL Function
Sums the elements of an input array.

Usage

result = TOTAL(array)

Input Parameters

array — The array that is totalled. Can be of any data type except string.

Returned Value

result — A scalar value equal to the sum of all the elements of array. If the Dimen-
sion keyword is used, then result will have the structure of the input array, but with
the specified dimensions collapsed.

Keywords

Dimension — A scalar or array of integers (n ≥ 0) that specifies the dimension(s)
over which to operate.

Discussion

If array is of double-precision floating-point or complex data type, the result is of
the same type. If array is any other data type, TOTAL returns single-precision
floating-point.

The Dimension keyword lets you sum the elements across one or more dimensions
of the input array. The following examples best illustrate the use of Dimension.

NOTE If the input is of type byte, integer, or long, TOTAL performs its summation
in long arithmetic. This is faster than performing the summation in floating-point
arithmetic. To sum an array of longs with floating-point arithmetic, you must first
convert the long values to double precision.

932 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Example 1

In this example, TOTAL is used to compute the sums of all elements in various
rows and columns of a 3-by-2 integer array.

a = INDGEN(3, 2)

; Create a 3-by-2 integer array. Each element has a value equal to its ; one-dimensional
subscript.

PRINT, a

0 1 2

3 4 5

PRINT, TOTAL(a(*, 0))

3.00000

; Display the sum of the elements in the first row.

PRINT, TOTAL(a(1, *))

5.00000

; Display the sum of the elements in the second column.

PRINT, TOTAL(a)

15.0000

; Display the sum of all elements in the array.

PRINT, TOTAL(a, Dim=0)

3.0000

12.0000

; Display the sum of elements across dimension 0.

PRINT, TOTAL(a, Dim=1)

3.00000 5.00000 7.00000

; Display the sum of elements across dimension 1.

PRINT, TOTAL(a, Dim=[0,1])

4.00000

; Display the sum of elements on the diagonal.

Example 2
a = INDGEN(4, 4) & PM, a

 0 4 8 12

 1 5 9 13

 2 6 10 14

 3 7 11 15

PM, TOTAL(a, d=0)

 6.00000 22.0000 38.0000 54.0000

TOTAL Function 933

PM, TOTAL(a, d=1)

 24.0000

 28.0000

 32.0000

 36.0000

PM, TOTAL(a, d=[0,1]) ; trace

 30.0000

a = INDGEN(2, 2, 4) & PM, a

 0 2

 1 3

 4 6

 5 7

 8 10

 9 11

 12 14

 13 15

PM, TOTAL(a, d=2)

 24.0000 32.0000

 28.0000 36.0000

PM, TOTAL(a, d=[0,1])

 3.00000

 11.0000

 19.0000

 27.0000

a = INTARR(5, 10, 5, 10, 5)

INFO, TOTAL(a, d=1)

934 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

<Expression> FLOAT = Array(5, 1, 5, 10, 5)

INFO, TOTAL(a, d=[0,2])

<Expression> FLOAT = Array(1, 10, 1, 10, 5)

See Also

AVG, MAX, MEDIAN, MIN, SIZE

TQLI Procedure
Uses the QL algorithm with implicit shifts to determine the eigenvalues and eigen-
vectors of a real, symmetric, tridiagonal matrix.

Usage

TQLI, d, e, z

Input Parameters

d — An n-element vector. On input, it contains the diagonal elements of the matrix.

e — An n-element vector. On input, it contains the off-diagonal elements of the
matrix. e0 is arbitrary.

Output Parameters

d — An n-element vector. On output, it contains the eigenvectors.

e — An n-element vector. On output, it is destroyed.

z — A matrix containing the n eigenvectors. The eigenvectors are stored by rows;
for example, z(*, 0) contains the first eigenvector.

Keywords

None.

Discussion

The TRED2 procedure may be used to reduce a real symmetric matrix to the tridi-
agonal form that is suitable for input to TQLI.

TQLI Procedure 935

If the eigenvectors of a tridiagonal matrix are desired, z should be input as an iden-
tity matrix. If the eigenvectors of a matrix that has been reduced by TRED2 are
desired, z should be input as the matrix Q output by TRED2.

TQLI is based on the routine of the same name found in Numerical Recipes in C:
The Art of Scientific Computing, by Flannery, Press, Teukolsky, and Vetterling,
Cambridge University Press, Cambridge, MA, 1988. It is used by permission.

However, because the order of subscripts in PV-WAVE are reversed in comparison
to those in Numerical Recipes, the z matrix is transposed from the result described
in that book.

Example

To determine the eigenvalues and eigenvectors of a real, symmetric matrix A:

asave = A

; Save original matrix, as TRED2 destroys its input.

TRED2, A, d, e

; Reduce matrix A to tridiagonal form.

TQLI, d, e, A

; Obtain n eigenvalues in d, and n eigenvectors in A(*, i).

To verify the operation of these routines, use the definition of eigenvalues and
eigenvectors. Matrix A is said to have an eigenvector x and corresponding eigen-
value λ if:

A . x = λx

This is demonstrated by the following code fragment:

FOR i=0, N_ELEMENTS(d)-1 DO BEGIN

; For each eigenvector/value:

PRINT, ’Eigenvalue’, i, ’=’, d(i)

; Print the eigenvalue.

PRINT, ’Eigenvector = ’, Aa(*,i)

; Print the computed eigenvector.

PRINT, ’A x / lambda = ’, asave # A(*,i)/d(i)

; Print the eigenvector again. This row vector should be equal to the
; eigenvector printed above.

ENDFOR

936 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

See Also

TRED2

TRANSPOSE Function
Transposes the input array.

Usage

result = TRANSPOSE(array)

Input Parameters

array — The array to be transposed. In previous versions of PV-WAVE, the input
array had to be one or two dimensions. The input array can have any number of
dimensions.

Returned Value

result — The transposed array.

Keywords

Dimension — A vector of two integers (n ≥ 0) designating the dimensions to trans-
pose. Default: [0,1]

Discussion

TRANSPOSE provides a convenient way to convert a row vector into a column
vector, or the reverse. For example, it can be used to change a two-dimensional
array into a one-dimensional vector, or to change an m-by-n array into an n-by-m
array.

Example 1

For example, executing the statements:

a = INDGEN(10)

; Create a 10-element row vector, a.

b = TRANSPOSE(a)

TRANSPOSE Function 937

; Create a 10-element column vector, b using the TRANSPOSE function

INFO, a, b

a INT = Array(10)

b INT = Array(1, 10)

Example 2

TRANSPOSE can also be used to shift the elements of a square array around the
diagonal. For example, suppose you have the following array:

Applying TRANSPOSE to this array will yield the following result:

Example 3

Here is what an aerial image looks like before and after applying TRANSPOSE.

Figure 2-66 TRANSPOSE has been used with this 512-by-512 aerial image to flip it diag-
onally (rotate it and create a mirror image).

Example 4
a = INDGEN(2, 4, 3) & PM, a

0 2 4 6

1 3 5 7

1 2 2

3 1 2

3 3 1

1 3 3

2 1 3

2 2 1

938 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

8 10 12 14

9 11 13 15

16 18 20 22

17 19 21 23

PM, TRANSPOSE(a, d=[0,2])

0 2 4 6

8 10 12 14

16 18 20 22

1 3 5 7

9 11 13 15

17 19 21 23

See Also

INVERT, ROT, ROTATE

TRED2 Procedure
Reduces a real, symmetric matrix to tridiagonal form, using Householder’s
method.

Usage

TRED2, a [, d [, e]]

Input Parameters

a — An n-by-n real, symmetric matrix.

TRIDAG Procedure 939

Output Parameters

a — This input parameter is replaced, on output, by the orthogonal matrix Q,
effecting the transformation. The TQLI procedure uses this result to find the eigen-
vectors of the matrix A.

d — (optional) An n-element vector containing the diagonal elements of the tridi-
agonal matrix.

e — (optional) An n-element vector containing the off-diagonal elements of the tri-
diagonal matrix.

Keywords

None.

See Also

TQLI

TRED2 is based on a routine of the same name in Numerical Recipes in C: The Art
of Scientific Computing, by Flannery, Press, Teukolsky, and Vetterling, Cambridge
University Press, Cambridge, MA, 1988. It is used by permission.

TRIDAG Procedure
Solves tridiagonal systems of linear equations.

Usage

TRIDAG, a, b, c, r, u

Input Parameters

a — An n-element vector containing n – 1 subdiagonal elements. Element a0 is
ignored.

b — An n-element vector containing n diagonal elements.

c — An n-element vector containing n – 1 superdiagonal elements. Element cn–1 is
ignored.

r — An n-element vector containing the right-hand side of the equation ATu = r.

940 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Output Parameters

u — An n-element floating-point vector containing the solution for tridiagonal sys-
tems of linear equations.

Keywords

None.

Discussion

The input vectors a, b, c, and r are not modified by TRIDAG. They contain, respec-
tively, the subdiagonal, diagonal, and superdiagonal elements of A, and the right-
hand side of the equation:

ATu = r

The solution is stored in the variable u.

NOTE Because PV-WAVE subscripts are in column-row order, the above equa-
tion is written as ATu = r, rather than as Au = r.

See Also

LUBKSB, LUDCMP, MPROVE, SVBKSB

TRIDAG is based on a routine of the same name in Numerical Recipes in C: The
Art of Scientific Computing, by Flannery, Press, Teukolsky, and Vetterling, Cam-
bridge University Press, Cambridge, MA, 1988, and is used by permission.

TRNLOG Function (OpenVMS) 941

TRNLOG Function (OpenVMS)
Searches the OpenVMS name tables for a specified logical name and returns the
equivalence string(s) in a variable.

Usage

result = TRNLOG(logname, value)

Input Parameters

logname — A scalar string containing the name of the logical to be translated.

Output Parameters

value — A variable into which the equivalence string is placed. If logname has
more than one equivalence string, the first one is used unless the Full_Translation
keyword is also used.

Returned Value

result — The OpenVMS status code associated with the translation as a longword
value:

• An odd value (the least significant bit is set) indicates success.

• An even value indicates failure.

Keywords

Acmode — An integer specifying the access mode to be used in the translation.
Valid access mode values are as follows:

0 Kernel

1 Executive

2 Supervisor

3 User

942 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

If you use the Acmode keyword, all names at access modes less privileged than the
specified mode are ignored.

If you don’t use Acmode, the translation proceeds without regard to access mode.
However, the search proceeds from the outermost (User) to the innermost (Kernel)
mode. Thus, if two logical names with the same name but different access modes
exist in the same table, the name with the outermost access mode is used.

Full_Translation — If present and nonzero, turns the value parameter into a string
array containing all of the equivalence strings.
If Full_Translation is not present, value only receives the first equivalence string
as a scalar value, when translating a multi-valued logical name.

For example, under recent versions of OpenVMS, the SYS$SYSROOT logical can
have multiple values. To see these values from within PV-WAVE:

ret = TRNLOG(’SYS$SYSROOT’, trans, /Full, /Issue_Error)

; Translate the logical.

PRINT, trans

; View the equivalence strings.

Issue_Error — If present and nonzero, causes TRNLOG to issue an error message
if the translation fails.

Result_Acmode — If present, specifies a named variable into which the access
mode value of the translated logical will be placed. (The access mode values are
summarized in the Acmode keyword description.)

Result_Table — If present, specifies a named variable into which the name of the
logical table containing the translated logical will be placed, as a scalar string.

Table — A scalar string giving the name of the logical table in which the search for
logname will occur. If Table is not specified, the standard OpenVMS logical tables
are searched until a match is found, starting with LNM$PROCESS_TABLE and
ending with LNM$SYSTEM_TABLE.

See Also

DELETE_SYMBOL, DELLOG, GET_SYMBOL, SETLOG,
SET_SYMBOL

TV Procedure 943

TV Procedure
Displays images without scaling the intensity.

Usage

TV, image [, x, y [, channel]]

TV, image [, position]

Input Parameters

image — A vector or two-dimensional matrix to be displayed as an image.

If image is not already of byte type, it is converted prior to use, although the con-
version may distort the data contained in the image.

NOTE To insure data integrity, use the TVSCL procedure instead of TV. TVSCL
does a byte scaling before displaying the image.

x, y — (optional) The lower-left x- and y-coordinates of the displayed image.

channel — (optional) The memory channel to be written. If not specified, it is
assumed to be zero. This parameter is ignored on display systems that have only
one memory channel.

position — (optional) A number specifying the position of the image. Positions run
from the left of the window to the right, and from the top of the window to the bot-
tom (see the Discussion section for details).

Keywords

Centimeters — If present, specifies that all position values (the x y parameters and
the XSize and YSize keywords) are in centimeters from the origin. This is useful
when dealing with devices that do not provide a direct relationship between image
pixels and the size of the resulting image, such as PostScript printers.

If Centimeters is not present, position values are taken to be in device coordinates.

Channel — The memory channel to be written. This keyword is identical to the
channel input parameter; only one needs to be used.

944 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Data — If present, specifies that all position and size values are in data coordinates.
This is useful when drawing an image over an existing plot, since the plot estab-
lishes the data scaling.

Device — If present, specifies that all position and size values are in device coor-
dinates. This is the default.

Inches — If present, specifies that all position and size values are in inches from
the origin. This is useful when dealing with devices that do not provide a direct
relationship between image pixels and the size of the resulting image, such as Post-
Script printers.

Normal — If present, specifies that all position and size values are in normalized
coordinates in the range 0.0 to 1.0. This is useful when you want to draw an image
in a device-independent manner.

Order — If specified, overrides the current setting of the !Order system variable
for the current image only. If nonzero, Order causes the image to be drawn from
the top-down, instead of from the bottom-up (the default).

True — (UNIX/OpenVMS Only) If present and nonzero, indicates that a true-color
(24-bit) image is to be displayed and specifies the index of the dimension over
which color is interleaved:

NOTE To use True, the image parameter must have three dimensions, one of
which is equal to 3.

XSize — The width of the resulting image. This keyword is intended for devices
with scalable pixel size (such as PostScript), and is ignored by pixel-based devices
that are unable to change the size of their pixels.

YSize — The height of the resulting image, with the same limitations as XSize.

Z — The z position. The value of z is of use only if the three-dimensional transfor-
mation is in effect via the T3d keyword.

1 Displays pixel-interleaved images of dimensions (3, m, n).

2 Displays row-interleaved images of dimensions (m, 3, n).

3 Displays image-interleaved images of dimensions (m, n, 3).
(Image interleaving is also known as band interleaving.)

TV Procedure 945

Discussion

Windows USERS Because Windows NT reserves 20 out of the available 256
colors, you might achieve better results displaying color images with the TVSCL
procedure. TVSCL automatically scales the color intensities to the full range of
available colors.

If position is used instead of the x and y parameters, the position of the image is
calculated based on the largest grid of images of this size that will fit on the display,
numbered from left to right and top to bottom. Specifically, the position is calcu-
lated as explained below.

The starting x-coordinate position is defined as:

The starting y-coordinate position is defined as:

where

YSize is the height of the display or window,

xdim and ydim are the dimensions of the array,

and the images across the display surface are defined as:

For example, when displaying 128-by-128 images on a 512-by-512 display, the
position numbers run from 0 to 15 as follows:

x xdim positionmoduloN x
•=

y YSize ydim int 1 position N x⁄()+()•–=

N x
Xsize
Ysize
--------------=

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

946 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Example 1
mandril = BYTARR(512, 512)

OPENR, unit, !Data_dir + ’mandril.img’, /Get_lun

READU, unit, mandril

FREE_LUN, unit

; Read the image.

WINDOW, XSize=512, YSize=512

TV, mandril

; Display the image.

TV, mandril, /Order

; Display the image from bottom-up instead of top-down; this inverts
; the image.

small_img = CONGRID(mandril, 100, 100)

; Interpolate a smaller image of size 100-by-100 pixels.

CONTOUR, small_img

TV, small_img, 0, 0, /Data

; Create a contour plot of the data and overlay the image at the origin,
; specifying the image position in data coordinates.

FOR i=0, 24 DO TV, small_img, i

; Tile the entire window with images, using the position parameter
; rather than specifying X and Y locations.

Example 2

This example uses TV in conjunction with the REBIN and CONGRID procedures
to enlarge small images.

data = BYTSCL(DIST(60))

; Create the data.

TV, data

; Display the data.

LOADCT, 5

; Load a color table.

enlarge = REBIN(data, 480, 480)

; Enlarge the original data.

TV, enlarge

; Display the area enlarged with REBIN.

enlarge = REBIN(data, 480, 480, /Sample)

TVCRS Procedure 947

TV, enlarge

; Redisplay the area enlarged with REBIN using the nearest neighbor
; method for the sampling.

enlarge = CONGRID(data, 480, 480)

TV, enlarge

; Display the area enlarged with CONGRID.

enlarge = CONGRID(data, 480, 480, /Interp)

TV, enlarge

; Redisplay the area enlarged with CONGRID using the bilinear
; interpolation method for the sampling.

See Also

BYTSCL, TVCRS, TVLCT, TVRD, TVSCL, TVSIZE

System Variables: !Order

For more information, see .

TVCRS Procedure
Manipulates the cursor within a displayed image, allowing it to be enabled and dis-
abled, as well as positioned.

Usage

TVCRS [, on_off]

TVCRS [, x, y]

Input Parameters

on_off — (optional) Specifies whether the cursor should be on or off. If present and
nonzero, enables the cursor. If zero or not specified, disables the cursor.

x — (optional) The column to which the cursor will be positioned.

y — (optional) The row to which the cursor will be positioned.

948 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Keywords

Centimeters — If present, specifies that all position values are in centimeters from
the origin.

Data — If present and nonzero, specifies that the cursor position is in data
coordinates.

Device — If present and nonzero, specifies that the cursor position is in device
coordinates.

Hide — If present and nonzero, causes a disabled cursor to always be blanked out.

By default, disabling the cursor works differently for window systems than for
other devices. For window systems, the cursor is restored to the standard cursor
used for non-PV-WAVE windows (and remains visible), while for other devices it
is completely blanked out.

Inches — If present, specifies that all position values are in inches from the origin.

Normal — If present and nonzero, specifies that the cursor position is in normal-
ized coordinates.

T3d — If present, indicates that the generalized transformation matrix in !P.T is to
be used. (For a description of !P.T, see the Save plotting keyword in Chapter 3,
Graphics and Plotting Keywords.)

If not present, the user-supplied coordinates are simply scaled to screen
coordinates.

Z — The z position. The value of z is of use only if the three-dimensional transfor-
mation is in effect via the T3d keyword.

Discussion

Normally, the cursor is disabled and is not visible. Using TVCRS with one param-
eter allows the cursor to be enabled or disabled, while using TVCRS with two
parameters enables the cursor and places it on pixel location (X, Y).

Example

To enable the image display cursor and position it at device coordinate, use the fol-
lowing command:

TVCRS, 100, 100

To enable the image display cursor and position it at data coordinate, use the fol-
lowing command:

TVLCT Procedure 949

TVCRS, 0.5, 3.2, /Data

To disable and hide the image display cursor, use the following command:

TVCRS, /Hide_Cursor

To enable the image display cursor but not set the cursor position, use the following
command:

TVCRS, 1

See Also

CURSOR, TVRD

For more information, see .

TVLCT Procedure
Loads the display color translation tables from the specified variables.

Usage

TVLCT, v1, v2, v3 [, start]

Input Parameters

v1, v2, v3 — Contain the three values to be used for the specified color system (HLS,
HSV, or RGB, as detailed in the Discussion section below). May be either scalar or
vector expressions.

start — (optional) An integer value specifying the starting point in the color trans-
lation table into which the color intensities are loaded.

If start is not specified, a value of zero is used, causing the tables to be loaded start-
ing at the first element of the translation tables.

Keywords

Cmy — Indicates that the parameters specify color using the CMY (cyan, magenta,
yellow) color system.

Get — If set to 1, returns the actual RGB values loaded into the device when either
the Hls or Hsv keywords are present. (The Get keyword has no effect when loading
RGB tables.)

950 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

For example, the statements:

TVLCT, H, S, V, /Hsv

TVLCT, R, G, B, /Get

load a color table based on the HSV system, and store the equivalent RGB values
into the H, S, and V vectors.

Hls — Indicates that the parameters specify color using the HLS color system.

Hsv — Indicates that the parameters specify color using the HSV color system.

Discussion

Color tables may be based on the following color systems: RGB (red, green, blue;
the default), CMY (cyan, magenta, yellow), HLS (hue, lightness, saturation), and
HSV (hue, saturation, value).

The meaning and type for the v1, v2, and v3 parameters are dependent upon the color
system selected, as described below. If no color-system keywords are present, the
RGB color system is used.

• CMY — Parameters contain the cyan, magenta, and yellow values. All
parameters are interpreted as integers in the range of 0 to 255 (255 being full
intensity). May be scalars or may contain up to 256 elements.

• HLS — Parameters contain the hue, lightness, and saturation values. All
parameters are floating-point. Hue is expressed in degrees and is reduced
modulo 360. v2 and v3 may range from 0 to 1.0.

• HSV — Parameters contain the hue, saturation, and value (similar to intensity)
values. All parameters are floating-point. Hue is expressed in degrees. The
saturation and value may range from 0 to 1.0.

• RGB — Parameters contain the red, green, and blue values. Values are
interpreted as integers in the range of 0 to 255 (255 being full intensity). May
be scalars or may contain up to 256 elements.

See Also

COLOR_EDIT, LOADCT, MODIFYCT, STRETCH,
TEK_COLOR, WgCtTool

For more information, including a comparison of TVLCT and LOADCT, see the
section Experimenting with Different Color Tables in Chapter 11 of the PV-WAVE
User’s Guide.

TVRD Function 951

TVRD Function
Returns the contents of the specified rectangular portion of a displayed image.

Usage

result = TVRD(x0, y0, nx, ny [, channel])

Input Parameters
x0 — The starting column of data to read.

y0 — The starting row of data to read.

nx — The number of columns to read.

ny — The number of rows to read.

channel — (optional) The memory channel to be read. If not specified, it is
assumed to be zero. This parameter is ignored on display systems that only have
one memory channel.

Returned Value

result — Byte array of dimensions nx-by-ny.

UNIX and OpenVMS USERS If the display is a 24-bit display, and both the
channel parameter and True keyword are absent, the maximum RGB value in each
pixel is returned.

Keywords
Channel — The memory channel to be read. This keyword is identical to the chan-
nel input parameter; only one needs to be specified.

Order — If specified, overrides the current setting of the !Order system variable
for the current image only. If nonzero, Order causes the image to be drawn from
the top-down, instead of from the bottom-up (the default).

True — (UNIX/OpenVMS Only) If present and nonzero, indicates that a true-color
(24-bit) image is to be read and specifies the index of the dimension over which
color is interleaved:

1 Displays an array that is pixel-interleaved and has dimensions of (3, nx, ny).

2 Displays a line-interleaved array of dimensions (nx, 3, ny).

3 Displays an image-interleaved array of dimensions (nx, ny, 3).

952 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Example

For an example of TVRD, see the REBIN function.

See Also

TV, TVSCL, ZOOM

System Variables: !Order

For more information, see .

TVSCL Procedure
Scales the intensity values of an input image into the range of the image display,
usually from 0 to 235 on Windows and 0 to 255 on X Windows systems, and out-
puts the data to the image display at the specified location.

Usage

TVSCL, image [, x, y [, channel]]

TVSCL, image [, position]

Input Parameters

image — A vector or two-dimensional matrix to be displayed as an image. If image
is not already of byte type, it is converted prior to use.

x, y — (optional) The lower-left x- and y-coordinates of the displayed image.

channel — (optional) The memory channel to be written. If not specified, it is
assumed to be zero. This parameter is ignored on display systems that have only
one memory channel.

position — (optional) Number specifying the position of the image. Positions run
from the left of the window to the right, and from the top of the window to the bot-
tom (see Discussion for details).

Keywords

Bottom — Specifies the lower bound when scaling the intensity values.

TVSCL Procedure 953

Centimeters — If present, specifies that all position values (the x y parameters and
the XSize and YSize keywords) are in centimeters from the origin. This is useful
when dealing with devices that do not provide a direct relationship between image
pixels and the size of the resulting image, such as PostScript printers.

If Centimeters is not present, position values are taken to be in device coordinates.

Channel — The memory channel to be written. This keyword is identical to the
channel input parameter; only one needs to be used.

Data — If present, specifies that all position and size values are in data coordinates.
This is useful when drawing an image over an existing plot, since the plot estab-
lishes the data scaling.

Device — If present, specifies that all position and size values are in device coor-
dinates. This is the default.

Inches — If present, specifies that all position and size values are in inches from
the origin. This is useful when dealing with devices that do not provide a direct
relationship between image pixels and the size of the resulting image, such as Post-
Script printers.

Normal — If present, specifies that all position and size values are in normalized
coordinates in the range 0.0 to 1.0. This is useful when you want to draw an image
in a device-independent manner.

Order — If specified, overrides the current setting of the !Order system variable
for the current image only. If nonzero, Order causes the image to be drawn from
the top-down, instead of from the bottom-up (the default).

Top — Specifies the upper bound when scaling the intensity values.

True — (UNIX/OpenVMS Only) If present and nonzero, indicates that a true-color
image is to be displaced and specifies the index of the dimension over which color
is interleaved:

NOTE To use True, the image parameter must have three dimensions, one of
which is equal to 3.

1 Displays pixel-interleaved images of dimensions (3, m, n).

2 Displays row-interleaved images of dimensions (m, 3, n).

3 Displays image-interleaved images of dimensions (m, n, 3). (Image
interleaving is also known as band interleaving.)

954 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

XSize — The width of the resulting image. This keyword is intended for use by
devices with scalable pixel size (such as PostScript), and is ignored by pixel-based
devices that are unable to change the size of their pixels.

YSize — The height of the resulting image, with the same limitations as XSize.

Discussion

If position is used instead of the x and y parameters, the position of the image is
calculated based on the largest grid of images of this size that will fit on the display,
numbered from left to right and top to bottom. Specifically, the position is calcu-
lated as explained below.

The starting x-coordinate position is defined as:

The starting y-coordinate position is defined as:

where

YSize is the height of the display or window, xdim and ydim are the dimen-
sions of the array,

and the images across the display surface are defined as:

For example, when displaying 128-by-128 images on a 512-by-512 display, the
position numbers run from 0 to 15 as follows:

x xdim positionmoduloN x
•=

y YSize ydim int 1 position N x⁄()+()•–=

N x
Xsize
Ysize
--------------=

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

TVSCL Procedure 955

Example
This example uses TVSCL and TV to exhibit the difference between images whose
intensity values are scaled into the full range of the image display and images that
have not been scaled.

OPENR, unit, FILEPATH(’aerial_demo.img’, $
Subdir=’data’), /Get_Lun

; Open the file containing the image.

img = BYTARR(512, 512)

; Create an array large enough to hold the image.

READU, unit, img

; Read the image data.

FREE_LUN, unit

; Close the file and free the file unit number.

WINDOW, 0, XSize = 1024, YSize = 512

; Create a window large enough to hold two 512-by-512 images.

TV, img

; Display the original image in the left half of the window.

TVSCL, img, 1

; Use TVSCL to display the scaled image in the right half of the window.

Figure 2-67 Unscaled image (left); scaled image (right).

See Also
BYTSCL, TV, TVCRS, TVLCT, TVRD, TVSIZE

System Variables: !Order

For more information, see .

956 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

TVSIZE Procedure
Displays or prints images at the current or specified size and device resolution.

Usage
TVSIZE, image [, x, y [, channel]]

TVSIZE, image [, position]

Input Parameters
image — A 2D array containing the image data.

x, y — (optional) The lower-left position of the displayed image.

channel — (optional) The memory channel to be written. If not specified, it is
assumed to be zero. This parameter is ignored on display systems that have only
one memory channel.

position — (optional) A number specifying the position of the image. Positions run
from the left of the window to the right, and from the top of the window to the
bottom.

Keywords
Bottom — Specifies that the image intensity values are to be scaled (as with the
TVSCL procedure). The value specified is the lower bound of the intensity values.

Centimeters — If present and non-zero, specifies that the XSize and YSize keyword
parameters are in centimeters. This is the default.

Channel — The memory channel to be written. This keyword is identical to the
channel input parameter; only one needs to be used.

Data — If present and non-zero, specifies the (x, y) position parameters are in data
coordinates.

Device — If present and non-zero, specifies the (x, y) position parameters are in
device coordinates.

Inches — If present and non-zero, specifies that the XSize and YSize keyword
parameters are in inches. (Default: centimeters)

Normal — If present and non-zero, specifies the (x, y) position parameters are in
normal coordinates.

TVSIZE Procedure 957

Order — If specified, overrides the current setting of the !Order system variable
for the current image only. If nonzero, Order causes the image to be drawn from
the top-down, instead of from the bottom-up (the default).

Resize_Device — If present and non-zero, resizes the output device to match the
size of the image. This keyword is ignored when the current device is a screen
device, such as X or WIN32. See the Discussion section for more information.

Top — Specifies that the image intensity values are to be scaled (as with the
TVSCL procedure). The value specified is the upper bound of the intensity values.

Screen_Dpi — Specifies the resolution of the screen in pixels per inch. Default:
100 dpi.

XSize — Specifies the width of the displayed (or printed) image. The default is to
display it with the same width it would have if displayed on the screen.

YSize — Specifies the height of the displayed (or printed) image. The default is to
display it with the same height it would have if displayed on the screen.

Z — The z position. The value of z is of use only if the 3D transformation is in
effect via the T3d keyword.

Discussion

TVSIZE lets you easily control the size of a displayed or printed PV-WAVE image.

It is usually the case that the resolution of an output device, such as a laser printer,
does not match the resolution of your computer screen. Because of this difference
in resolution, you may notice that printed images look smaller than images that
appear on your screen. TVSIZE detects these differences in display resolution and
automatically adjusts the size of the image, if necessary.

By default, a screen resolution of 100 dots per inch (dpi) is assumed for your sys-
tem. (If you wish, you can specify your screen resolution precisely using the
Screen_Dpi keyword.) The screen dpi is compared to the value of the system vari-
ables !D.X_Px_Cm and !D.Y_Px_Cm. (These system variables hold the (x, y)
resolution in number of pixels per centimeter for the currently active output
device.) If there is a difference of greater than 20% between the screen resolution
and the output device resolution, TVSIZE resizes the image accordingly. If the out-
put device does not have scalable pixels, the CONGRID routine is used to expand
the number of pixels to match the given size. If the device supports scalable pixels
it simply receives the requested image size.

If you have annotated an image with text or lines or other graphics objects, you may
notice that the printed output does not appear the way it appears on your screen.

958 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Specifically, the annotations may appear to be moved away from the image. If this
is the case, use the Resize_Device keyword. This keyword explicitly resizes the
output device to match the image size, resulting in output that closely matches the
graphics as they appear on your screen.

TIP TVSIZE assumes that your screen resolution is 100 dots per inch (dpi). To
improve the ability of TVSIZE to estimate the size of the image on the screen and
correctly size the image for printing, do the following:

1. At a point in the application where the screen device is active save the screen res-
olution (in dpi):

scr_dpi = [!D.X_Px_Cm,!D.Y_Px_Cm]*2.54

2. When displaying the image, use the command:

TVSIZE, image, x, y, Screen_Dpi=scr_dpi

Since the values of the system variables !D.X_Px_Cm and !D.Y_Px_Cm change
to match the current device do not use them directly in the TVSIZE command.

NOTE The system variables !D.X_Px_Cm and !D.Y_Px_Cm may not exactly
reflect the resolution of the screen. These values are reported to PV-WAVE and
cannot be verified.

Examples

To print an image at the same physical size displayed:

TVSIZE, image, 0, 0

To print an image so the output is 5 inches wide and 7 inches tall:

TVSIZE, image, 0, 0, XSize=5, YSize=7, /Inches

See Also

TV, TVSCL, CONGRID

UNIQN Function 959

2
Procedure and Function Reference

UNIQN Function
Finds the unique n-tuples from a set of n-tuples.

Usage

b = UNIQN(a)

Input Parameters

a — An m-by-n array of m n-tuples.

Returned Value

b — A p-by-n array of the p unique n-tuples in a.

Example
a = [[0,1,1,0,1], [0,1,1,1,0]] & PM, a

 0 0

 1 1

 1 1

 0 1

 1 0

 PM, UNIQN(a)

 0 0

 0 1

 1 0

 1 1

See Also

SORTN, UNIQUE

960 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

UNIQUE Function
Returns a vector (one-dimensional array) containing the unique elements from
another vector.

Usage

result = UNIQUE(vec)

Input Parameters

vec — A vector containing duplicate values.

Returned Value

result — A new vector containing the unique elements of the original vector.

Keywords

None.

Discussion

This function works on any vector (one-dimensional array) variable.

Example 1

For a very simple example, suppose you have a vector defined as:

vec = [1, 1, 2, 2, 3, 3, 4, 4, 5, 5]

The following command produces a new vector containing only the unique ele-
ments of vec:

result = UNIQUE(vec)

PRINT, result

1 2 3 4 5

Example 2

With UNIQUE, you can determine the unique values in any column of a table.

UNIQUE Function 961

For example, a table called phone_data contains information on phone calls
made during a three-day period. This table contains eight columns of phone infor-
mation: the date, time, caller’s initials, phone extension, area code of call, number
of call, duration, and cost. (For more information on the structure of this table, see
the PV-WAVE User’s Guide.)

To obtain a list of the dates on which calls were made.

dates = UNIQUE(phone_data.DATE)

NOTE Tables are represented as an array of structures. In this command,
phone_data.DATE represents the DATE field of the structure called
phone_data.

The result is a one-dimensional variable called dates that contains a list of the
dates on which calls were made:

PRINT, dates

901002 901003 901004

Example 3

In some applications, it may be possible to generate the text for menu buttons from
the unique elements in a table column. For example, the following commands dis-
play a menu of dates. The menu selection is then passed into the QUERY_TABLE
function where the total cost of calls is calculated for that date.

unique_date = UNIQUE(phone_data.DATE)

; Find the unique dates in the phone_data table.

date_pick = unique_date $
(TVMENU(STRING(unique_date)))

; Display a menu of unique dates. The menu selection returns
; the selected date to the variable date_pick. Note that the
; parameter passed to TVMENU must be type string.

total_cost = QUERY_TABLE(phone_data, $
’DATE, SUM(COST) Where DATE = ’ +$
’date_pick Group By DATE’)

; Find the total cost of calls made on the selected date.

See Also

BUILD_TABLE, GROUP_BY, ORDER_BY, QUERY_TABLE, UNIQN

962 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

UNIX_LISTEN Function (UNIX Only)
Standard Library function that allows PV-WAVE to be called by external routines
written in C.

Usage

result = UNIX_LISTEN ()

Parameters

None.

Returned Value

result — The number of parameters returned to UNIX_LISTEN.

Keywords

Procedure — A string that is set by the client and retrieved by UNIX_LISTEN. Its
intended use is to control program flow within the server (PV-WAVE).

Program — An integer used as an identifier for the external routines. If an external
routine (or client) calls call_wave, UNIX_LISTEN checks if the value of Pro-
gram matches the value of the program parameter in call_wave sent by the
client. The client’s program identifier is set by the program parameter in the
call_wave function call.

User — A string that is set by the client and retrieved by UNIX_LISTEN. Its
intended use is for controlling access to the server, as an authentication mechanism.

Discussion

UNIX_LISTEN waits until an external routine calls the functioncall_wave, and
then returns the number of parameters passed to UNIX_LISTEN.

Parameters are passed into PV-WAVE through the common block
UT_COMMON. A maximum of thirty parameters can be passed to PV-WAVE.

The common block UT_COMMON is included in the server routine with the
command @UT_COMMON. The first of the thirty available parameters is
ut_param0, the second is ut_paraml, and the thirtieth parameter is
ut_param29.

UNIX_REPLY Function (UNIX Only) 963

As well as being returned by UNIX_LISTEN, the number of parameters is also
contained in the variable ut_num_params in the UT_COMMON common
block.

See Also

CALL_UNIX, LINKNLOAD, SPAWN (UNIX/OpenVMS), UNIX_REPLY

For more information and an example, see the PV-WAVE Application Developer’s
Guide.

UNIX_REPLY Function (UNIX Only)
Standard Library function that allows PV-WAVE to return a value or values that it
has calculated to an external routine written in C.

Usage

result = UNIX_REPLY(reply)

Input Parameters

reply — A variable of any data type, except of type structure, representing the
result of an operation that PV-WAVE, as a server, has performed.

Returned Value

result — A number indicating the status of the reply operation. A return value of
–1 indicates an error. Errors can also be trapped by the ON_IOERROR routine.

Keywords

Return_Params — If present and nonzero, causes UNIX_REPLY to return the
modified parameters to the client. The number of parameters to be sent back is the
same as the number that came in with UNIX_LISTEN. This number is tracked
internally by PV-WAVE.

See Also

CALL_UNIX, LINKNLOAD, ON_IOERROR, SORTN, SPAWN (UNIX/
OpenVMS), UNIX_LISTEN

964 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

For more information and an example, see the PV-WAVE Application Developer’s
Guide.

UNLOAD_OPTION Procedure
Explicitly unloads an Option Programming Interface (OPI) optional module.

Usage

UNLOAD_OPTION, option_name

Input Parameters

option_name — A string containing the name of the option to be unloaded.

Keywords

None.

Discussion

The UNLOAD_OPTION procedure explicitly unloads a previously loaded OPI
option. All resources used for the OPI option are freed. OPI options can be loaded
explicitly by any PV-WAVE user using the LOAD_OPTION procedure. These
optional modules can be written in C or FORTRAN, and can contain new system
functions or other primitives. For detailed information on creating OPI options, see
the PV-WAVE Application Developer’s Guide.

Example
WAVE> UNLOAD_OPTION, ’SAMPLE’

See Also

LOAD_OPTION, OPTION_IS_LOADED, SHOW_OPTIONS

UPVAR Procedure 965

UPVAR Procedure
Accesses a variable that is not on the current program level.

Usage

UPVAR, name, local

Input Parameters

name — A string containing the name of a variable that is on the program level
specified by the Level keyword.

Output Parameters

local — The name of the local variable that you want to bind to the variable name.

Keywords

Add — If nonzero, creates a new variable on the $MAIN$ program level if the vari-
able with the name “name” doesn’t already exist.

Level — An integer (n) specifying the program level on which to find the variable
name. (Default: program level 0, which is $MAIN$)

If n ≥ 0, the program level is counted from $MAIN$ (level 0) to the current proce-
dure (absolute).

If n < 0, the program level is counted from the current procedure to the $MAIN$
level (relative).

Discussion

NOTE Creating two or more local bindings to the same variable can result in
unpredictable behavior and is not recommended or supported.

NOTE If you bind a local variable to a variable on the same program level,
UPVAR cannot distinguish between the two, and you may receive unpredictable
results.

966 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

You can use the INFO procedure with the Upvar keyword to determine whether a
variable exists on a specific program level and, if it exists, determine its name. The
name returned by INFO and the Upvar keyword can be used directly in the UPVAR
procedure (see Example 1).

Example 1

A variable name is obtained with the INFO command and its Upvar keyword. The
variable name is then used in the UPVAR command.

INFO, var, Upvar = name

; Obtain the name of the variable “var”, which is on the $MAIN$ program level.

UPVAR, name, local

; Bind the variable “var” from the $MAIN$ program level.

Example 2

UPVAR is useful in VDA Tool development, such as when you need to pass vari-
ables from one program level to another without using Common Blocks. For
example, the following procedure is a callback for a TM_CONVERT method. This
procedure replots a variable whenever a window has been resized. To find out
which variable to plot, it first lists the variables associated with a specific instance
of a VDA Tool, then uses UPVAR to pass the variables into the local procedure.
(Assume that for this VDA Tool, variables were created on the $MAIN$ program
level, which is where UPVAR gets variables by default.)

PRO ConvertPlotTool, tool_name

IF !D.NAME EQ ’X’ THEN BEGIN
plot_var = TmEnumerateVars(tool_name)
UPVAR, plot_var(0), local
PLOT, local, Xstyle=4, Ystyle=4, /Nodata, /Noerase

END

END

See Also

ADDVAR, DELVAR, INFO

USERSYM Procedure 967

USERSYM Procedure
Lets you create a custom symbol for marking plotted points.

Usage

USERSYM, x [, y]

Input Parameters

x, y — Vectors containing the x and y vertices of the symbol to be created. In the
case of vector-drawn symbols, these vertices are connected, in order, with vectors
forming the symbol.

If only x is specified, it must be a (2, n) array of vertices, with element (0, i) con-
taining the x-coordinate of the vertex, and element (1, i) containing the y-
coordinate.

Keywords

Color — An integer specifying the color used to draw the symbols, or used to fill
the polygon. (Default: the line color)

Fill — A flag which, if set, fills the polygon defined by the vertices. If Fill is not
set, lines are drawn connecting the vertices.

Thick — The thickness of the lines drawn in constructing the symbol. (Default:
1.0)

Discussion

The x and y parameters are offsets from the data point, in units of approximately
the size of a character. In other words, a value of 1 corresponds to the actual x or y
size of a character, while a value of .5 is equal to one-half the character size.

Symbols may be drawn with vectors or may be filled. Symbols may be of any size
and may have up to 50 vertices. To use a user-defined symbol, set the value of the
Psym plotting keyword or the !Psym system variable to +8 or –8.

968 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Example

This example uses USERSYM to define a plotting symbol that resembles a house.
The Fill keyword is used to fill the interior of the polygon defining the house. Six
random points are then plotted using the house symbol to mark the data points.

The Psym keyword, in the call to PLOT, is given a value of –8 so that the data points
are connected by lines. Also, the Symsize keyword is used with a value of 6 to
increase the size of the plotting symbols. This example uses PV-WAVE:IMSL Sta-
tistics procedures RANDOMOPT and RANDOM.

x = [0, -0.5, -0.5, 0.5, 0.5, 0]

y = [0.5, 0, -1, -1, 0, 0.5]

; Define the x- and y-coordinates of the vertices.

USERSYM, x, y, /Fill

; Create the filled symbol.

RANDOMOPT, Set = 12542

; Generate six random points.

pts = RANDOM(6)

Range = [-0.1, 5.1]

; Plot the points, using the new user-defined symbol.

Figure 2-68 Scattered data plot with user-defined markers for data points.

See Also

System Variables: !P.Psym

Plotting Keywords: Psym and Symsize

USGS_NAMES Function 969

USGS_NAMES Function
Queries a database containing names, FIPS codes, and longitude/latitude values for
cities and towns in the United States.

Usage

result = USGS_NAMES([name])

Input Parameters

name — (optional) A string parameter containing the name of a city or town. All
names that begin with this string are returned. If you omit the name parameter, then
the entire database if returned.

Keywords

County — Specifies either a string containing the county name or the county FIPS
code. By default, no county is specified.

State — Specifies either a string containing the two-letter state abbreviation or an
integer specifying the state FIPS code. By default, no state is specified.

Returned Value

result — An unnamed structure array containing the city or town name, state FIPS
code, county FIPS code, longitude, and latitude.

Discussion

The search string arguments are not case sensitive. A search for city names
BOULDER and boulder produce identical results.

The result of this function is an unnamed structure array. If state and county are
specified as strings, then the result is given in the form:

{, name:’’, state:0, county:0, lon:0.0, lat:0.0}

where the state and county tags’ fields are FIPS numbers (integers).

If State and County are specified as FIPS numbers (integers), the result is given in
the form:

{, name:’’, state:’’, county:’’, lon:0.0, lat:0.0}

970 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

where the state tag field is a string containing the two-letter state abbreviation
and the county tag field is a string containing the name of the county.

The county tag field will only be included in the output if the County keyword is
specified.

If no matches are found, a structure is returned with all fields set to zero or an empty
string, as appropriate.

Example 1

Find the longitude and latitude of Boulder, Colorado:

boulder = USGS_NAMES(’boulder’, State=’CO’)

PRINT, boulder.lon, boulder.lat

-105.270 40.0150

Example 2

Find the FIPS codes for Colorado and Larimer county:

codes = USGS_NAMES(State=’CO’, County=’Larimer’)

PRINT, codes(0).state, codes(0).county

8 69

Example 3

Find the two-letter state abbreviation and the county name given the FIPS codes:

result = USGS_NAMES(State=8, County=69)

PRINT, result(0).state, ’, ’, result(0).county
CO, Larimer

Example 4

Return all the towns in the database named “Lincoln”:

result = USGS_NAMES(’Lincoln’)

FOR i=0,N_ELEMENTS(result)-1 DO PRINT, result(i)

{ Lincoln 5 143 -94.4233 35.9494}

; This is a one-line sample of the output. The complete output
; is not shown for this example.

VAR_MATCH Function 971

Example 5

Return all the towns in Larimer county, Colorado:

result = USGS_NAMES(State=’CO’, $
County=’Larimer’)

FOR i=0,N_ELEMENTS(result)-1 DO PRINT, result(i)

{ Berthoud 8 69 -105.081 40.3083}

{ Buckeye 8 69 -105.094 40.8272}

{ Drake 8 69 -105.340 40.4319}

; This is a three-line sample of the output. The complete output
; is not shown for this example.

See Also

MAP

VAR_MATCH Function
Standard Library function that scans for PV-WAVE variables that match the given
criteria.

Usage

vars = VAR_MATCH()

Input Parameters

None.

Returned Value

vars — An array of variable names that match the criteria given by the keywords.
If no matches are found a scalar NULL string is returned.

Keywords

Count — If set, returns the number of variables that matched the criteria.

Dimensions — A string or string array specifying the exact dimensions of the vari-
able(s) that you wish to have returned. If an array, returns variables matching any
o*f the dimensions. The string must have the following pattern:

972 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

’NxNx...xN’ or

[’NxNx...xN’, ..., ’NxNx...xN’]

For example:

Dimensions = ’256x256x3’, or

Dimensions = [’256x256x3’, ’3x512’, ’3x640’]

If you set Dimensions equal to N, it will return all 1D arrays with N elements. Sim-
ilarly, Dimensions = ’0’ will return all scalar variables (much like specifying
NDimensions = 0)

Level — Specifies the program level for which variables are to be considered.

If Level ≥ 0, levels are counted up from $MAIN$ to the current level.

If Level ≤ 0, levels are counted down from the current level.

If this keyword is not specified, $MAIN$ is assumed.

Names — Specifies patterns to be matched. The patterns are used to find and dis-
play variable names. If this keyword is not specified, all variables are considered.
As with INFO, the asterisk (*) and question mark (?) may be used to match any
string or a single character, respectively.

NDimensions — A scalar or array specifying the number of dimensions to be
matched.

Type — A scalar or array specifying the type(s) of variables to be matched, accord-
ing to the following table:

Type Codes

Type Code Data Type

0 Undefined

1 Byte

2 Integer

3 Longword integer

4 Floating point

5 Double precision floating

6 Complex single-precision floating

7 String

VAR_TO_DT Function 973

Discussion

The filtering precedence of the VAR_MATCH function is Level, Names, Type,
NDimensions, and Dimensions.

Example

The following line of code finds the names of any byte, integer, or long arrays with
dimensions (3, 256).

var_list = VAR_MATCH(Dimensions = ’3x256’, Type = [1, 2, 3])

See Also

INFO, SIZE, UPVAR

VAR_TO_DT Function
Converts scalar or array values representing dates and times to date/time variables.

Usage

result = VAR_TO_DT(yyyy, mm, dd, hh, mn, ss)

Input Parameters

yyyy — A scalar or array containing year numbers.

mm — A scalar or array containing month numbers (1 – 12).

dd — A scalar or array containing day numbers (1 – 31).

8 Structure

9 (not used)

10 List

11 Associative array

12 Complex double-precision floating

Type Codes (Continued)

Type Code Data Type

974 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

hh — A scalar or array containing hour numbers (0 – 23). If zero or not specified,
hh is 0 hours.

mn — A scalar or array containing minute numbers (0 – 59). If zero or not speci-
fied, mn is 0 minutes.

ss — A scalar or array containing second numbers (0.0000 –59.9999). If zero or not
specified, ss is 0.0 seconds.

Returned Value

result — A date/time variable containing the converted values.

Keywords

None.

Discussion

Use this function to create date/time variables from time stamp data that does not
conform to a format used by the STR_TO_DT function. For example, you can read
the date and time data into atomic variables representing each of the date and time
elements (i.e., year, month, day, etc.). Then the variables can be converted to date/
time variables using VAR_TO_DT.

If the year, month, and day values are all zero, then the value of the !DT_Base sys-
tem variable is used for the date portion of the resulting date/time variable.

The parameters can be arrays of any numeric values, but all parameters must have
the same dimension; that is, the parameters must be either all scalars or all arrays
of the same size. Also you can only omit parameters from the end of the parameter
list.

Example 1

This example illustrates how to convert a single date value into date/time variable.

z = VAR_TO_DT(1992, 11, 22, 12, 30)

; Note that seconds have been omitted. This command creates a
; date/time variable containing November 22, 1992 at 12:30.

PRINT, z

{ 1992 11 22 12 30 0.00000 87728.521 0}

DT_PRINT, z

11/22/1992 12:30:00

VECTOR_FIELD3 Procedure 975

Example 2

This example illustrates how to return a date/time variable for an array containing
values representing dates.

years = [1992,1993]

months = [3,4]

days = [17,18]

; Create arrays that contain date/time information for two days.

y = VAR_TO_DT(years, months, days)

; Convert the date/time arrays to a date/time structure variable.

DT_PRINT, y

03/17/1992

04/18/1993

See Also

DT_TO_VAR, SEC_TO_DT, JUL_TO_DT, STR_TO_DT

For more information, see the PV-WAVE User’s Guide.

VECTOR_FIELD3 Procedure
Plots a 3D vector field from three arrays.

Usage

VECTOR_FIELD3, vx, vy, vz, n_points

Input Parameters

vx — A 3D array containing the x-component of the vector field, or an n-element
vector containing the x-component of the vector field.

vy — A 3D array containing the y-component of the vector field, or an n-element
vector containing the y-component of the vector field.

vz — A 3D array containing the z-component of the vector field, or an n-element
vector containing the z-component of the vector field.

NOTE The arrays vx, vy, and vz must be the same size.

976 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

n_points — If vx, vy, and vz are all 3D arrays and n_points is a (3, n) array, then
n_points is used to specify where the vectors are plotted.

If vx, vy, and vz have the dimensions (i, j, k), then:

n_points(0,*) should range between 0 and i – 1

n_points(1,*) should range between 0 and j – 1

n_points(2,*) should range between 0 and k – 1

If vx, vy, and vz are all 3D arrays and n_points is a single positive value n, then n
vectors are plotted with random starting locations.

If vx, vy, and vz are all 3D arrays and n_points is zero or negative, then one vector
is plotted for each element in vx.

If vx, vy, and vz are n-element vectors and n_points is a (3, n) array, then the starting
locations for each vector are taken from n_points.

Keywords

Axis_Color — The color to use when plotting the axis. To suppress the axis, set
Axis_Color to –1.

Mark_Color — The color index to use when plotting the markers.

Mark_Size — The marker size.

Mark_Symbol — A number ranging from 1 to 7 defining the marker symbol to use.
The default is 3 (a period). Markers are plotted at the tail of each vector. For a list
of symbols, see the description of !Psym in Chapter 4, System Variables.

Max_Color — The highest color index to use when plotting.

Min_Color — The lowest color index to use when plotting. The color of each vec-
tor ranges from Min_Color to Max_Color.

Max_Length — A scalar value for the maximum plotted length of each vector.
Each vector ranges from zero to Max_Length.

Thick — The line thickness (in pixels) to use when plotting vectors.

Vec_Color — A 3D array (with the same dimensions as vx) containing the data for
the vector colors.

A vector plotted where Vec_Color is at its maximum has the color Max_Color,
while a vector plotted at a location where Vec_Color is minimum has the color
Min_Color.

VECTOR_FIELD3 Procedure 977

If Vec_Color is not supplied, then the color of each vector is determined by its
length.

Discussion

VECTOR_FIELD3 plots a 3D velocity vector field from volumetric or 3D data.

Examples
PRO vec_demo1

; This program displays a 3D vector field using x, y, z data.

winx = 800

winy = 600

; Specify the window size.

v_num = 1000

; Specify the number of vectors.

xvec = FLTARR(v_num)

yvec = FLTARR(v_num)

zvec = FLTARR(v_num)

points = FLTARR(3, v_num)

; Create the arrays for the vectors and their starting points.

FOR k=0, 9 DO BEGIN

FOR j=0, 9 DO BEGIN

FOR i=0, 9 DO BEGIN

ind = i + (j * 10) + (k * 10 * 10)

xvec(ind) = COS(!PI * FLOAT(i)/10.0)

yvec(ind) = SIN(!PI * FLOAT(j)/10.0)

zvec(ind) = SIN(!PI * FLOAT(k)/10.0)$
+ COS(!PI * FLOAT(i)/10.0)

points(*, ind) = [i, j, k]

ENDFOR

ENDFOR

ENDFOR

; Create the data for the vectors and their starting points.

T3D, /Reset

T3D, Translate=[-0.5, -0.5, -0.5]

T3D, Scale=[0.5, 0.5, 0.5]

T3D, Rotate=[0.0, 0.0, -30.0]

T3D, Rotate=[-60.0, 0.0, 0.0]

T3D, Translate=[0.5, 0.5, 0.5]

; Set up the transformation matrix for the view.

978 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

WINDOW, 0, XSize=winx, YSize=winy, $
XPos=256, YPos=128, Colors=128, $
Title=’3-D Velocity Vector Field’

LOADCT, 4

; Set up the viewing window and load the color table.

VECTOR_FIELD3, xvec, yvec, zvec, points, $
Max_Length=0.5, Min_Color=32, $
Max_Color=127, Axis_Color=100, $
Mark_Symbol=3, Mark_Color=127, $
Mark_Size=0.5, Thick=2

; Plot the vector field with the vector directions defined by xvec,
; yvec, and zvec, and the vector starting points defined by
; points.

END

For other examples, see the vec_demo2 and vol_demo1 demonstration pro-
grams in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

VOL_MARKER

VEL Procedure
Standard Library procedure that draws a graph of a velocity field with arrows point-
ing in the direction of the field. The length of an arrow is proportional to the
strength of the field at that point.

Usage

VEL, u, v

Input Parameters

u — The x-component of the velocity field at each point. This parameter must be
a two-dimensional array.

VEL Procedure 979

v — The y-component of the velocity field at each point. This parameter must have
the same dimensions as u.

Keywords

Length — The length of each arrow segment, expressed as a fraction of the longest
arrow divided by Nsteps. Length is used to calculate the proportional length of each
arrow segment. (Default: 0.1)

Nsteps — The number of segments in each arrow. (Default: 10)

Nvecs — The number of arrows to draw. (Default: 200)

Xmax — The aspect ratio (the x-axis size as a fraction of the y-axis size). (Default:
1.0)

Discussion

VEL selects Nvecs random points within the boundary of the (u, v) arrays. At each
point, the field is bilinearly interpolated from the (u, v) arrays and a vector of the
correct proportional length is drawn.

The field is recalculated at the endpoint of this vector and a new vector is iteratively
drawn, until an arrow with Nsteps number of segments is drawn.

An arrowhead is drawn at the end of this arrow, and the procedure moves on to
another random point to initiate the loop again. The graph is plotted with the title
“Velocity Field”.

CAUTION Extra care must be taken if you run the PLOT_FIELD and VEL pro-
cedures in the same PV-WAVE session. Each procedure calls a routine named
ARROWS, but the ARROWS routines are slightly different. If you get an error in
the ARROWS routine when you are using VEL, recompile VEL (by typing .RUN
VEL), and then try again.

Examples
u = FLTARR(21, 21)

v = FLTARR(21, 21)

; Create the arrays.

.RUN

; After you type .RUN, the WAVE prompt changes to a dash (–) to
; indicate that you may enter a complete program unit.

980 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

FOR j = 0, 20 DO BEGIN

FOR i = 0, 20 DO BEGIN

x = 0.05 * FLOAT(i)

z = 0.05 * FLOAT(j)

u(i, j) = -SIN(!Pi*x) * COS(!Pi*z)

v(i, j) = COS(!Pi*x) * SIN(!Pi*z)

ENDFOR

ENDFOR

END

; This procedure stuffs values into the arrays; the last END exits the
; programming mode, compiles and executes the procedure, and
; then returns you to the WAVE> prompt.

VEL, u, v

; Display the velocity field with default values ().

Figure 2-69 Velocity field displayed with default values.

VEL, u, v, Nvecs=400

; Display the velocity field using 400 arrows ().

VEL Procedure 981

Figure 2-70 Velocity field displayed with 400 arrows.

VEL, u, v, Nvecs=40, Xmax=.7, Length=.4, Nsteps=20

; Display the velocity field with individual modifications
; ().

Figure 2-71 Velocity field displayed using various keywords.

982 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

See Also

PLOT_FIELD, VELOVECT

VELOVECT Procedure
Standard Library procedure that draws a two-dimensional velocity field plot, with
each directed arrow indicating the magnitude and direction of the field.

Usage

VELOVECT, u, v [, x, y]

Input Parameters

u — The x component of the two-dimensional field. This parameter must be a two-
dimensional array.

v — The y component of the two-dimensional field. This parameter must be a two-
dimensional array of the same size as u.

x — (optional) The abscissa values. This parameter must be a vector whose size
equals the first dimension of u and v.

y — (optional) The ordinate values. This parameter must be a vector whose size
equals the second dimension of u and v.

Keywords

Dots — If present and nonzero, places a dot at the position of the missing data. Oth-
erwise, nothing is drawn for missing points. Dots is only valid if the Missing
keyword is also specified.

Length — A length factor. The default value is 1.0, which makes the longest (u, v)
vector have a length equal to the length of a single cell.

Missing — A two-dimensional array with the same size as the u and v arrays. It is
used to specify that specific points have missing data.

If the magnitude of the vector at (i, j) is less than the corresponding value in Miss-
ing, then the data is considered to be valid. Otherwise, the data is considered to be
missing.

VELOVECT Procedure 983

Thus, one way to set up a Missing array is to initialize all elements to some large
value:

missing_array = FLTARR(n, m) + 1.0E30

Then, if point (i, j) is a missing point, set the corresponding element to a negative
value:

missing_array(i, j) = -missing_array(i, j)

Discussion

VELOVECT draws a two-dimensional velocity field plot. The arrows indicate the
magnitude and the direction of the field.

If missing values are present, you can use the Missing keyword to specify that they
be ignored during the plotting, or the Dots keyword to specify that they be marked
with a dot.

The system variables ![XY].Title and !P.Title may be used to title the axes and the
main plot.

Examples
u = FLTARR(21, 21)

v = FLTARR(21, 21)

; Create the arrays.

.RUN

; After you type .RUN, the WAVE prompt changes to a dash (–) to
; indicate that you may enter a complete program unit.
FOR j = 0, 20 DO BEGIN

FOR i = 0, 20 DO BEGIN

x = 0.05 * FLOAT(i)

z = 0.05 * FLOAT(j)

u(i, j) = -SIN(!Pi*x) * COS(!Pi*z)

v(i, j) = COS(!Pi*x) * SIN(!Pi*z)

ENDFOR

ENDFOR

END

; This procedure stuffs values into the arrays; the last END exits the
; programming mode, compiles and executes the procedure, and
; then returns you to the WAVE prompt.

VELOVECT, u, v

; Display the velocity field with default values ().

984 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Figure 2-72 Velocity field displayed using default values.

VELOVECT, u, v, Length=2

; Display the velocity field using arrows twice the length of a single
; cell ().

Figure 2-73 Velocity field displayed using arrows twice the length of a single cell.

missing = FLTARR(21, 21) + 1.e30

missing(4:6, 7:9) = -1.e30

missing(15:17, 16:19) = -1.e30

VELOVECT, u, v, Missing=missing, /Dots

VIEWER Procedure 985

; Display the velocity field that contains missing data ().

Figure 2-74 Velocity field that contains missing data.

See Also

PLOT_FIELD, VEL

VIEWER Procedure
Lets users interactively define a 3D view, a slicing plane, and multiple cut-away
volumes for volume rendering. (Creates a View Control and a View Orientation
window in which to make these definitions.)

Usage
VIEWER, win_num, xsize, ysize, size_fac, xpos, ypos, colors, retain, xdim, ydim,
zdim

Input Parameters
win_num — The number of the graphics window to use for the View Orientation
window. Since this window is left on the screen when VIEWER returns, it is up to
the calling program to delete it when desired. (The View Control window is
automatically deleted when VIEWER returns.)

xsize, ysize — The X and Y dimensions, respectively, of the graphics window that
VIEWER is setting up the view for.

986 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

size_fac — A factor controlling the size of the View Orientation window. The X
dimension of the View Orientation window is (size_fac * xsize) and the Y
dimension is (size_fac * ysize). Typically, size_fac should be in the range 0.5 to 1.0.

xpos, ypos — The location (x and y positions, respectively) for the View
Orientation and View Control windows.

If the View Orientation window is near the bottom of the screen, then the View
Control window is created above the View Orientation window. Otherwise, the
View Control window is created below the View Orientation window.

colors — The value (number of colors to allocate) to use as the Colors keyword
value in the WINDOW procedure call. A typical value for an 8-bit color system is
128 or 256.

retain — The value (flag) to use as the Retain keyword value in the WINDOW
procedure call. Typically this is the value 1 or 2.

For more information on colors and retain, see the description of the WINDOW
procedure in the PV-WAVE Reference.

xdim, ydim, zdim — The size (first, second, and third dimension, respectively) of
the array containing the data that is displayed using the view specified by
VIEWER.

For example, if a 20-by-30-by-40 array is to be displayed using
SHADE_VOLUME and POLYSHADE, then xdim should be 20, ydim should be
30, and zdim should be 40.

If a 20-by-30 array is to be displayed using the SURFACE or CONTOUR
procedures, then xdim should be 20, ydim should be 30, and zdim should be
(MAX(array)+1.0).

Keywords

Ax — On input, if this keyword is omitted, or if the variable passed to Ax is unde-
fined, then no controls for setting the view rotation about the x-axis are displayed.

If a valid value is passed to Ax, then this value is the initial (default) view rotation
about the x-axis.

Ay — The view rotation about the y-axis (similar to Ax).

Az — The view rotation about the z-axis (similar to Ax).

On output, the Ax, Ay, Az input keywords each return a single floating-point value
containing the x, y, and z rotation, respectively, that was selected.

VIEWER Procedure 987

The calling program does not need to do anything with the returned values Ax, Ay,
and Az, since VIEWER automatically calls CENTER_VIEW to set the system
view transformation !P.T, as well as !P.T3D, !X.S, !Y.S, and !Z.S. The calling pro-
gram may, however, use these returned values in subsequent calls to VIEWER to
let users “pick up where they left off.”

Bg_Color — The window background color. (Default: 0)

Bot_Color — The bottom shadow color for buttons. (Default: 0)

Cut_Plane — On input, if this keyword is omitted, or if the variable passed to
Cut_Plane is undefined, then no controls for setting the slicing plane are displayed.

For the cut-away controls to be displayed, a previously-defined variable must be
passed to Cut_Plane. If this variable is a valid (3, 2) integer array, then it is assumed
to contain the initial (default) slicing plane.

If Cut_Plane is a valid array, then its contents are interpreted as shown in the
following table:

NOTE The slicing plane is rotated about the y-axis first, then about the x-axis. If
the variable passed to Cut_Plane is defined but is not a valid (3, 2) array, then
controls to set the slicing plane are displayed, the initial (default) slicing plane is
defined with no rotation about the x- or y-axes, and the center point of the plane is
at (xdim/2, ydim/2, zdim/2).

On output, the variable passed to Cut_Plane is always a valid (3, 2) single-
precision floating-point array in the form previously described.

You can use the array returned from Cut_Plane as input to the SLICE_VOL
procedure to extract the slice, or in subsequent calls to VIEWER.

Cut_Vol — On input, if this keyword is omitted, or if the variable passed to Cut_Vol
is undefined, then no controls for setting the cut-away volume(s) are displayed.

For the cut-away controls to be displayed, a previously-defined variable must be
passed to Cut_Vol. If this variable is a valid (6, n) integer array, then it is assumed

Cut_Plane(0, 0) The plane’s angle of rotation about the x-axis.

Cut_Plane(1, 0) The plane’s angle of rotation about the y-axis.

Cut_Plane(2, 0) Ignored.

Cut_Plane(0, 1) The x-coordinate of the center of the plane.

Cut_Plane(1, 1) The y-coordinate of the center of the plane.

Cut_Plane(2, 1) The z-coordinate of the center of the plane.

988 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

to contain the initial (default) cutting volumes. This (6, n) array contains the
subscript ranges in the display array that are to be cut away.

For example, if a (6, 2) array called ca is passed in, then two initial cutting volumes
are defined. In this case, the contents of ca are interpreted as follows:

If the variable passed to Cut_Vol is defined, but is not a valid (6, n) array, then no
initial cut-aways are defined, although the controls to define cut-aways are
displayed.

On output, the variable passed to Cut_Vol is always a valid (6, n) integer array of
the form previously described. If you do not define any cut-aways, then this
variable is returned as a (6, 1) array containing all zeroes.

Typically, after the cut-away information is returned to the calling program, the
array of data to be displayed is modified by the calling program using the cut-away
information. This modification usually involves setting portions of the display
array to zero before using the display array with other commands, such as REN-
DER, SHADE_VOLUME, VOL_REND, and VECTOR_FIELD3.

For example, if the display array is a 20-by-30-by-40 array (xdim=20,
ydim=30, zdim=40) and the variable returned from Cut_Vol is a (6, 1) array
containing the values:

[19, 10, 13, 0, 6, 24]

then the portions of the display array da to set to zero are as follows:

da(0:(0+19), 6:(6+10), 24:(24+13)) = 0

You may use the array returned from Cut_Vol in subsequent calls to VIEWER.

Fg_Color — The foreground color. Used for buttons and for the current cut-away
volume. The default is !P.Color.

HL_Color — The color to use when highlighting buttons and for drawing the slic-
ing plane. The default is !P.Color.

ca(0, 0) x dimension of the first cut-away.

ca(1, 0) y dimension of the first cut-away.

ca(2, 0) z dimension of the first cut-away.

ca(3, 0) x position of the first cut-away.

ca(4, 0) y position of the first cut-away.

ca(5, 0) z position of the first cut-away.

ca(0:5, 1) Defines second cut-away (similar to ca(0:5, 0)).

VIEWER Procedure 989

Out_Mode — If present and nonzero, then users are not allowed to exit VIEWER
until they have specified a view in which all the vertices of the view cube lie com-
pletely within the View Orientation window.

NOTE Setting Out_Mode to 1 ensures that VIEWER always sets up a view that is
compatible with POLYSHADE. (POLYSHADE will not work properly if one or
more polygon vertices lie outside the window.)

Persp — On input, if this keyword is omitted, or if the variable passed to Persp is
undefined, then no controls for setting the view perspective projection distance are
displayed.

If a valid value is passed to Persp, then this value is used as the initial (default) set-
ting for the perspective projection, and controls for setting the perspective are
displayed.

On output, this input keyword returns the perspective projection distance that was
selected.

The calling program does not need to do anything with the returned values for
Zoom or Persp, since VIEWER automatically sets the view. However, you may use
the returned value(s) in subsequent calls to VIEWER.

Top_Color — The top shadow color for buttons. Also used to draw the view cube.
The default is !P.Color.

Zoom — On input, if this keyword is omitted, or if the variable passed to Zoom is
not a valid scalar or three-element vector, then no controls for setting the Zoom fac-
tor(s) are displayed.

If the variable passed to Zoom is a single value, then this value is used as the initial
(default) setting for the zoom factor and a single control is provided for zooming
the view equally in all three dimensions (x, y, and z).

If the variable passed to Zoom is a three-element vector, then these three values are
the initial (default) values for the zoom factors and three controls are provided for
zooming the view independently in the x, y, and z directions.

On output, this input keyword returns the Zoom value(s) that was selected.

Discussion
VIEWER returns the view parameters, slicing plane parameters, and cut-away vol-
ume coordinates to the calling program.

VIEWER automatically defines the view by calling the procedure
CENTER_VIEW, but it is up to the calling program to decide what to do with any

990 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

slicing plane or cut-away information returned to it. It is also up to the calling pro-
gram to perform the rendering.

NOTE This procedure sets the system variables !P.T, !P.T3D, !X.S, !Y.S, and !Z.S,
overriding any values you may have previously set. (These system variables are
described in Chapter 4, System Variables.)

Due to the large amount of code in this procedure, the following command must be
entered (once per PV-WAVE session) before any procedure that calls VIEWER
can be run:

WAVE> .size 32766 32766

Interactive Usage

When VIEWER is called, a View Control and a View Orientation window are cre-
ated that let users interactively define 3D viewing parameters. These windows are
shown in and .

Figure 2-75 The View Control window contains buttons used for setting the view, slicing
plane, and cut-away volume parameters.

The controls (buttons) provided for the user depend on the keywords supplied to
VIEWER. For example, if you do not wish the user to be able to set the y rotation
parameter, then do not use the Ay keyword.

TIP It is advisable to use only the Ax, Az, and Zoom keywords when setting up a
view for SURFACE or SHADE_SURF, since these procedures are limited in the
type of viewing transformation they can utilize. (Other commands, such as PLOTS,
POLYFILL, POLY_PLOT, and POLYSHADE, are compatible with most view
transformations; therefore, you may freely use the Ay and Persp keywords when
setting up the view for these routines.)

VIEWER Procedure 991

Figure 2-76 The View Orientation window displays a cube representing the current state
of the parameters set in the View Control window.

The available buttons in the View Control window are for X rotation, Y rotation, Z
rotation, Perspective, and Zoom. Depending on how VIEWER is called, the Zoom
keyword may consist of a single control, in which case the view is zoomed equally
in the x, y, and z dimensions. There may also be three zoom controls provided, in
which case the zoom factors for the x, y, and z dimensions may be set indepen-
dently. There is also a NONE button provided for turning off the perspective
projection.

NOTE If the zoom factor is large, or the perspective parameter is small, then the
cube display in the View Orientation window may be erroneous. To cure the prob-
lem, reduce the zoom or increase the perspective (or set the perspective to NONE).

All of the parameters can be changed by clicking on the plus [+] or minus [–] button
for that parameter. The [+] button increases the value of that parameter and the [–]
button decreases it. For rapid (coarse) control, use the left mouse button. For fine

992 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

control, use the middle mouse button. For extra-fine control, use the right mouse
button.

Windows USERS If you have a two-button mouse, use <Alt> in combination
with the left mouse button.

If the Cut_Plane keyword is supplied to VIEWER, then controls are provided for
setting the slicing plane. The rotation and position of the slicing plane can be set.
The center of the slicing plane can not be located outside the original volume. The
slicing plane is visible in the View Orientation window.

If the Cut_Vol keyword is supplied to VIEWER, then controls are provided for set-
ting the cut-away volume(s). The x size, y size, z size, x position, y position, and z
position for each cut-away volume can be set. The size of the cut-away can not be
larger than the original volume. No part of any cut-away volume may be positioned
outside the original volume.

Three additional buttons, CLEAR, NEXT, and NEW, are also provided in the View
Control window:

• To create a new cut-away, click on the NEW button. This creates a small new
cut-away near the coordinate origin. This cut-away is visible in the View Ori-
entation window. You can then set the size and position of this cut-away by
using the [+] and [–] buttons.

• If multiple cut-aways have been defined, the NEXT button allows users to toggle
between them to modify their size and position.

• The CLEAR button removes all the cut-away volumes.

When you have finished setting the parameters, click the DONE button to set the
view and return the parameters to the calling program.

If the Out_Mode keyword has been set, then clicking the DONE button does not
cause a return to the calling program unless users have specified a view in which
all the vertices of the view cube lie completely within the View Orientation win-
dow. In this case, users then need to change the view parameters (rotation, zoom,
and/or perspective) before they could exit.

When VIEWER returns to the calling program, the View Control window is
deleted, but the View Orientation window is left on the screen.

The RESET button can be used to reset all the parameters to their initial state.

VOL_MARKER Procedure 993

Examples

For demonstrations of the VIEWER procedure, use the 4-D Data, Medical Imaging,
Oil/Gas Exploration, and CFD/Aerospace buttons on the PV-WAVE Demonstration
Gallery. To run the Gallery, enter wave_gallery at the WAVE> prompt.

See Also

CENTER_VIEW

VOL_MARKER Procedure
Displays colored markers scattered throughout a volume.

Usage

VOL_MARKER, vol, n_points

Input Parameters

vol — A 3D volume of data to plot markers in.

n_points — The number of markers to plot.

Keywords

Axis_Color — The color to use when plotting the axis. To suppress the axis, set
Axis_Color to –1.

Copy — If specified, preserves the input variable, vol. If this keyword is not spec-
ified, the input variable is altered during processing.

Mark_Size — The maximum marker size.

Mark_Symbol — A number specifying the marker symbol to use. The number
should be between 1 and 7. The default is 2 (an asterisk). For a list of symbols, see
the description of !Psym in Chapter 4, System Variables.

Mark_Thick — The maximum line thickness to use when plotting markers. Typi-
cally, this is an integer between 1 and 7. (A thickness of 1.0 is normal, 2.0 is twice
as wide, and so on.)

994 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Discussion

VOL_MARKER plots a polymarker field from volumetric data. The color of each
marker displayed by VOL_MARKER is determined by the value of the volumetric
data at the point where the marker is plotted.

Unless the Copy keyword is specified, the original input variable is altered.

Examples
PRO vol_demo2

; This program displays an MRI scan of a human head using three
; different display techniques.

volx = 115

voly = 75

volz = 105

; Specify the size of the volumes.

winx = 512

winy = 512

; Specify the window size.

head = BYTARR(volx, voly, volz)

OPENR, 1, !Data_Dir + ’man_head.dat’

READU, 1, head

CLOSE, 1

; Read in the volumetric data.

band = 5

head = VOL_PAD(head, band)

head = SMOOTH(head, band)

; Pad the volume with zeroes and smooth it.

CENTER_VIEW, Xr=[0, 124], Yr=[0, 84], $
Zr=[0, 114], Az=60.0, Ax=(-60.0), $
Winx=512, Winy=512, Zoom=0.9

WINDOW, 0, XSize=winx, YSize=winx, $
XPos=16, YPos=384, Colors=128

LOADCT, 9

; Set up the viewing window and load the color table.

VOL_MARKER, head, 6000, Axis_Color=100, $
Mark_Symbol=2, Mark_Size=2, Mark_Thick=2

; Render the data using a 3D polymarker field.

WINDOW, 1, XSize=winx, YSize=winx, $
XPos=496, YPos=324, Colors=128

; Create a second window for plotting.

VOL_PAD Function 995

SET_SHADING, Light=[-1.0, 1.0, 0.5], $
/Gouraud, /Reject

; Change the direction of the light source for shading.

SHADE_VOLUME, head, 18, vertex_list, polygon_list, /Low

; Compute the 3D contour surface as a list of polygons.

TVSCL, POLYSHADE(vertex_list, polygon_list,$
XSize=winx, YSize=winy, /Data, /T3d)

; Display the polygon list with light source shading.

WINDOW, 2, XSize=winx, YSize=winy, $
XPos=256, YPos=48, Colors=128

; Create another window for plotting.

head = VOL_TRANS(head, 128, !P.T)

; Transform the volumetric data to the current view.

TVSCL, VOL_REND(head, winx, winy, Depth_Q=0.4)

; Display a translucent image of the data.

END

See Also

VECTOR_FIELD3

VOL_PAD Function
Returns a 3D volume of data padded on all six sides with zeroes.

Usage

result = VOL_PAD(volume, pad_width)

Input Parameters

volume — On input, volume contains the 3D volume of data to pad.

pad_width — The width of the padding around the volume. The size of the result-
ing volume increases by (2 * pad_width) in all three dimensions.

Returned Value

result — The padded volume data.

996 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Keywords

None.

Discussion

For best results, process volumes with VOL_PAD before transforming them with
VOL_TRANS or slicing them with SLICE_VOL. For more information, see .

Examples

See the Examples section in the description of the VOL_MARKER routine.

For other examples, see the vol_demo3, vol_demo4, and grid_demo4 dem-
onstration programs in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

VOL_TRANS, PADIT

VOL_REND Function
Renders volumetric data in a translucent manner.

Usage

result = VOL_REND(volume, imgx, imgy)

Input Parameters

volume — A 3D array containing volumetric data. volume is normally scaled into
the range {0 ... 255}.

imgx — The x dimension of the image to return.

imgy — The y dimension of the image to return.

VOL_REND Function 997

Returned Value

result — An 8-bit image of the volumetric data.

Keywords

Depth_q — A scalar depth queuing factor. The Depth_q keyword values should be
between 0.0 and 1.0:

• A factor of 1.0 causes voxels in the back to be just as bright as the voxels in the
front.

• A factor of 0.5 causes voxels in the back to be half as bright as those in front.

Opaque — A 3D array (with the same dimensions as volume) containing the trans-
lucency values for each voxel. Opaque is normally scaled into the range {0 ... 255},
where 0 is clear and 255 is completely opaque. (Default: 0)

Discussion

If no keywords are used, the final intensity value produced at a given pixel with
VOL_REND is the brightest value along the Z dimension of the volume. This
default behavior can be enhanced, however, by using the Opaque and Depth_q
keywords.

• If Opaque is set to 0, the resulting value will be unaffected; if Opaque is set to
255, then values behind that position in the opaque array will be completely
blocked.

• If Depth_q is set to a value less than 1.0, a bright spot in the back will be
dimmed in proportion to the distance it is from the viewpoint. (A bright spot in
the front will remain bright.)

Typically, you would first process a volume of data with VOL_PAD and
VOL_TRANS, and then render it with VOL_REND.

Examples
PRO vol_demo3

; This program displays 3D fluid data using two display techniques.

volx = 17

voly = 17

volz = 59

; Specify the size of the volumes.

winx = 512

998 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

winy = 512

; Specify the window size.

flow_axial = FLTARR(volx, voly, volz)

OPENR, 1, !Data_Dir + ’cfd_axial.dat’, /Xdr

READU, 1, flow_axial

CLOSE, 1

flow_axial = VOL_PAD(flow_axial, 1)

; Read in the data and pad with zeroes.

CENTER_VIEW, Xr=[0.0, 18.0], $
Yr=[0.0, 18.0], Zr=[0.0, 60.0], $
Az=210.0, Ay=120.0, Ax=0.0, Winx=512, Winy=512, Zoom=0.85

; Set up the view.

SET_SHADING, Light=[-1.0, 1.0, 0.5], /Gouraud, /Reject

; Change the direction of the light source for shading.

SHADE_VOLUME, flow_axial, 110, vertex_list, polygon_list, /Low

; Compute the 3D contour surface as a list of polygons.

WINDOW, 1, XSize=winx, YSize=winx, XPos=16, YPos=256, Colors=128

LOADCT, 3

; Set up the viewing window and load the color table.

img1 = POLYSHADE(vertex_list, polygon_list, $
XSize=winx, YSize=winy, /Data, /T3d)

TVSCL, img1

; Construct the shaded surface representation of the data as a list of
; polygons and display it.

WINDOW, 2, XSize=winx, YSize=winx, $
XPos=496, YPos=324, Colors=128

; Create a new window for plotting.

vol_dim = MAX([volx, voly, volz])

flow_axial = BYTSCL(flow_axial)

; Scale the data into the range of bytes 0 – 255.

vol2 = VOL_TRANS(flow_axial, vol_dim, !P.T)

; Transform the volume of data into the current view.

img2 = VOL_REND(vol2, winx, winy, Depth_q=0.4)

; Render the data as a translucent image.

TVSCL, img2

; Display the image.

END

For other examples, see the demonstration programs vol_demo2 and
vol_demo4 in:

VOL_TRANS Function 999

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

VOL_TRANS

VOL_TRANS Function
Standard Library routine that returns a 3D volume of data transformed by a 4-by-
4 matrix.

Usage

result = VOL_TRANS(volume, dim, trans)

Input Parameters

volume — The 3D volume of data to transform.

dim — A scalar value specifying the x, y, and z dimensions of the transformed vol-
ume to return. Normally, dim is the largest of the three dimensions of the original
volume. Generally, the original volume should “fit” inside the transformed volume.

trans — The 4-by-4 transformation matrix to use for the transformation. trans is
often the system viewing transformation matrix !P.T. (For more information, see
the section Geometric Transformations in Chapter 6 of the PV-WAVE User’s
Guide.

Returned Value

result — A 3D volume of data transformed by a 4-by-4 matrix.

Keywords

None.

Discussion

The returned volume is scaled into the range of bytes. For best results, the volume
to transform should first be processed using the VOL_PAD function. For more

1000 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

information, see the section Volume Manipulation in Chapter 7 of the PV-WAVE
User’s Guide.

Examples

See the Examples sections in the description of the VOL_MARKER and
VOL_REND routines.

For another example, see the vol_demo4 demonstration program in:

(UNIX) <wavedir>/demo/arl

(OpenVMS) <wavedir>:[DEMO.ARL]

(Windows) <wavedir>\demo\arl

Where <wavedir> is the main PV-WAVE directory.

See Also

VOL_PAD, VOL_REND

VOLUME Function
Defines the volumetric data that can be used by the RENDER function.

Usage

result = VOLUME(voxels)

Input Parameters

voxels — A 3D byte array containing voxel data.

Returned Value

result — A structure that defines a volumetric object.

Keywords

Color — A 256-element double-precision floating-point vector containing the
color (intensity) coefficients of the object.
(Default: Color(*)=1.0) For more information, see .

Kamb — A 256-element double-precision floating-point vector containing the
ambient (flat shaded) coefficients.
(Default: Kamb=FINDGEN(256)/255) For more information, see .

VOLUME Function 1001

Kdiff — A 256-element double-precision floating-point vector containing the
diffuse reflectance coefficients.
(Default: Kdiff(*)=0.0) For more information, see .

Ktran — A 256-element double-precision floating-point vector containing the
specular transmission coefficients.
(Default: Ktran(*)=0.0) For more information, see the section Transmission
Component in Chapter 7 of the PV-WAVE User’s Guide.

Transform — A 4-by-4 double-precision floating-point array containing the local
transformation matrix whose default is the identity matrix. For more information,
see the section Setting Object and View Transformations in Chapter 7 of the
PV-WAVE User’s Guide.

Discussion

A VOLUME is used by the RENDER function to render volumetric data. You must
specify a 3D array of bytes that represent this data in the call to VOLUME. Each
byte in the voxel array corresponds to an index into the material properties associ-
ated with the volume.

For example, the material properties used for shading the point (x,y,z) in some
data are Color(voxels(x,y,z)), Kamb(voxels(x,y,z)), etc. The
surface normal at (x,y,z) is calculated using a 3D Sobel gradient operator on
the actual voxel values. The default orientation of a volume is an origin-centered
unit cube. For more information, see the section Defining Object Material Proper-
ties in Chapter 7 of the PV-WAVE User’s Guide.

If the voxels are not cubic, you may adjust the scaling of the dimensions with the
Transform keyword by using a matrix generated by the T3D procedure with the
Scale keyword.

Volumetric data is applicable to any voxel processing domain, such as for the visu-
alization of astronomical, geological, and medical data.

Example
voxels = BYTARR(16, 16, 16)

voxels(*) = 255

diffuse = FLTARR(256)

T3D, /Reset, Rotate=[15, 30, 45]

cube = VOLUME(voxels, Transform=!P.T, $
Kdiff=diffuse, Kamb=FLTARR(256))

TV, RENDER(cube)

1002 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

See Also

CONE, CYLINDER, MESH, RENDER, SHADE_VOLUME, SPHERE

For more information, see the section Ray-tracing in Chapter 7 of the PV-WAVE
User’s Guide.

VRML_AXIS Procedure
Adds an axis to a VRML world.

Usage

VRML_AXIS, origin [, length, range]

Input Parameters

origin — A 3-element array of coordinates specifying the axis origin.

length — (optional) The length of the axis. (Default: 1)

range — (optional) A 2-element array specifying the coordinate values defining
the axis. (Default: [0, 1])

Keywords

Object Properties

The following keywords describe or define the VRML axis object.

Radius — Specifies the radial length of all objects of the axis. (Default: 0.01 of the
length parameter)

Title — A string specifying the axis title.

Transform — A 4-by-4 matrix for rotating an axis.

TIP If you need an axis pointing in some direction other than x, y, or z, then use
the Transform keyword to rotate one of these three axes in the desired direction.

X — Adds an x-axis (the default).

Y — Adds a y-axis.

VRML_AXIS Procedure 1003

Z — Adds a z-axis.

Material Properties

The following properties, when set, are applied to all objects of an axis (cylinders,
cones, cubes, spheres, and text), as applicable.

AmbientColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

DiffuseColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

EmissiveColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

Shininess — Scalar shininess factor.

SpecularColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is taken as grayscale.

Transparency — Scalar transparency factor, in the range of 0 to 255.

Font Family Settings

These three font attributes are mutually exclusive.

Serif — Serif font (the default).

Sans — Sans-serif font.

Typewriter — Monospaced font.

Font Attributes

Either or both of these keywords may be used. If neither is set, then the typeface is
“normal.”

Bold — Boldface type.

Italic — Italic type.

Discussion

The VRML_AXIS procedure has no direct correlation with a VRML predefined
type. This procedure produces a combination of a cylinder (the axis body), a cone
(the axis arrowhead), and text (the axis range and titles).

1004 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Example
VRML_OPEN, ’vrml_axis.wrl’

; Start the VRML file.

VRML_AXIS, Title = ’Default Axis’

; Create a default axis first.

VRML_AXIS, [1, 0, 0], 3, [-100, 200], /Y,$
Radius = .05, Title = ’Testing Y -Sans - Italic Axis’, $
/Sans, /Italic

; Make a Y axis, starting at a different origin.

VRML_AXIS, [0, 0, 0], 3, /Z, $
Title = ’Testing Z Axis’, $
DiffuseColor = [127, 255, 191], $
AmbientColor = [55, 70, 60], $
EmissiveColor = [200, 100, 50], $
Transparency = 120, $
Specular = [10, 10, 10], /Bold, /TypeWriter

; Make a Z axis, with a material list.

VRML_CLOSE

See Also

VRML_CONE, VRML_CYLINDER, VRML_OPEN, VRML_SURFACE,
VRML_TEXT

For a discussion of VRML primitives and color parameter definitions, see The
VRML Sourcebook, by Andrea L. Ames, et al., John Wiley & Sons, Inc., 1996,
Chapter 3.

VRML_CAMERA Procedure
Positions a VRML camera for rendering a VRML view.

Usage

VRML_CAMERA, position

Input Parameters

position — A 3-element array specifying the camera position coordinates.

VRML_CLOSE Procedure 1005

Keywords

FocalLength — Camera focal length. (Default: 5)

LookAt — A 3-element array (x, y, z) of a target location used to calculate the cam-
era orientation. (Default: [0, 0, 0])

ViewAngle — The viewing angle (field of view) in degrees. (Default: 45)

Discussion

A viewpoint, or camera, is a predefined viewing position and orientation in a
VRML world. You can specify the location and viewing direction of the viewpoint
using the VRML_CAMERA procedure.

See Also

VRML_LIGHT, VRML_OPEN, VRML_SPOTLIGHT

For a discussion of VRML cameras, see The VRML Sourcebook, by Andrea L.
Ames, et al., John Wiley & Sons, Inc., 1996, Chapter 22.

VRML_CLOSE Procedure
Closes the VRML file.

Usage

VRML_CLOSE

Input Parameters

None.

Keywords

None.

1006 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Discussion.

The VRML_CLOSE procedure closes a file that was opened using the
VRML_OPEN procedure; it also resets the internal structure that supports the
VRML functions.

See Also

VRML_OPEN

VRML_CONE Procedure
Creates a VRML cone.

Usage

VRML_CONE

Input Parameters

None.

Keywords

Object Properties

The following keywords describe or define the VRML cone object.

Center — A 3-element array specifying the true center of the cone object. (Default:
[0, 0, 0])

Height — Specifies the cone height (Default: 2.0)

Orientation — A 3-element array specifying the orientation of the cone (in the
direction of the apex). (Default: cone axis orientation along y, with the apex at +y)

Radius — Specifies the radius of the cone base from the y-axis. (Default: 1.0)

Transform — A 4-by-4 matrix containing the transformation to be applied to the
cone object; similar to !P.T.

VRML_CONE Procedure 1007

Material Properties

The following properties, when set, are applied to the object.

AmbientColor — A 3-element array of RGB color with each element ranging
between 0 to 255. If the value is scalar, then the color is interpreted as grayscale.

DiffuseColor — A 3-element array of RGB color with each element ranging
between 0 to 255. If the value is scalar, then the color is interpreted as grayscale.

EmissiveColor — A 3-element array of RGB color with each element ranging
between 0 to 255. If the value is scalar, then the color is interpreted as grayscale.

Shininess — Scalar shininess factor, in the range from 0 to 255.

SpecularColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

Texture_Image — A texture image to apply to the object. The image is wrapped
completely around the object. The texture image values and transparency values lie
in the range of 0 to 255.

There are four options:

(w, h) or (1, w, h) — Grayscale image

(2, w, h) — Grayscale in (0, *, *) plus transparency in (1, *, *)

(3, w, h) — True color image (red, green, blue)

(4, w, h) — True color plus transparency in (3, *, *)

Transparency — Scalar transparency factor, in the range of 0 to 255.

Discussion

The VRML_CONE procedure supports the cone node in VRML. The default cone
has a base radius of 1.0 and a height of 2.0 such that it extends +1.0 and –1.0 in
each direction from the object center.

Example

The ’wavelogo.dat’ file used in this example is found in the following
directory:

(UNIX) <wavedir>/demo/web/vrml

(OpenVMS) <wavedir>:[DEMO.WEB.VRML]

(Windows) <wavedir>\demo\web\vrml

1008 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

where <wavedir> is the main PV-WAVE directory.

VRML_OPEN, ’vrml_cone.wrl’

x = [0, 1, 2, 3, 4]

y = [0, 1, 0, 1, 0]

z = [4, 3, 2, 1, 0]

RESTORE, ’wavelogo.dat’ ; img, r, g, b

sz = SIZE(img)

col = TRANSPOSE([[r], [g], [b]])

img24 = REFORM(col(*, img), 3, sz(1), sz(2))

; Create texture.

VRML_CONE

; Create the default cone.

VRML_CONE,Center = [0, 3, 0], Radius = .4, $
Height = 4.0, Texture = img24

; Create the textured cone.

VRML_CONE,Center = [2, 0, 0],$
Radius = 1.4, $
Height = 1.2, $
DiffuseColor = [127, 255, 191], $
AmbientColor = [55, 70, 60], $
SpecularColor = [0, 100, 0]

; Create a colorful cone.

VRML_CLOSE

See Also

VRML_CUBE, VRML_CYLINDER,
VRML_OPEN, VRML_SPHERE, VRML_TEXT

For a discussion of cones and other VRML primitives, see The VRML Sourcebook,
by Andrea L. Ames, et al., John Wiley & Sons, Inc., 1996, Chapter 3.

VRML_CUBE Procedure 1009

VRML_CUBE Procedure
Positions a VRML cube in the world.

Usage

VRML_CUBE

Input Parameters

None.

Keywords

Object Properties

The following keywords describe or define the VRML cube object.

Center — A 3-element array specifying the true center of the cube object. (Default:
[0, 0, 0])

Rotation — A 3-element array of values in degrees, specifying the rotation about
the x, y, and z axes, respectively.

Transform — A 4-by-4 matrix containing the transformation to be applied to the
cube object.

Widths — A scalar value applied to each of the three directions, or a 3-element
array of values specifying the width in each direction (x, y, z) individually. (Default:
2.0)

Material Properties

The following properties, when set, are applied to the object.

AmbientColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

DiffuseColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

EmissiveColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

Shininess — Scalar shininess factor, in the range of 0 to 255.

1010 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

SpecularColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

Texture_Image — A texture image to apply to the object. The image is wrapped
completely around the object. The texture image values and transparency values lie
in the range of 0 to 255.

There are four options:

(w, h) or (1, w, h) — Grayscale image

(2, w, h) — Grayscale in (0, *, *) plus transparency in (1, *, *)

(3, w, h) — True color image (red, green, blue)

(4, w, h) — True color plus transparency in (3, *, *)

Transparency — A scalar transparency factor, in the range of 0 to 255.

Discussion

The VRML_CUBE procedure produces a 2-by-2-by-2 cube centered around a
defined origin. This routine supports the cube node in VRML.

Example

The ’wavelogo.dat’ file used in this example is found in the following
directory:

(UNIX) <wavedir>/demo/web/vrml

(OpenVMS) <wavedir>:[DEMO.WEB.VRML]

(Windows) <wavedir>\demo\web\vrml

where <wavedir> is the main PV-WAVE directory.

RESTORE, ’wavelogo.dat’

; Restore variables for img, r, g, b.

sz = SIZE(img)

col = TRANSPOSE([[r], [g], [b]])

img24 = REFORM(col(*, img), 3, sz(1), sz(2))

VRML_CUBE, Center = [-5, -3, 5], Width = 3, Texture = img24

; A cube with the wave logo on it.

VRML_CUBE, Center = [4, -2, -2], $
Rotation = [0, 0, 0], $
DiffuseColor = [127, 255, 191], $

VRML_CYLINDER Procedure 1011

AmbientColor = [55, 70, 60], $
SpecularColor = [0, 100, 0]

VRML_CUBE, Center = [4, -2, -2], $
Rotation = [45, 0, 0], $
DiffuseColor = [127, 255, 191], $
AmbientColor = [55, 70, 60],$
SpecularColor = [0, 100, 0]

VRML_CUBE,Center = [4, -2, -2], $
Rotation = [0, 45, 0], $
DiffuseColor = [127, 255, 191], $
AmbientColor = [55, 70, 60],$
SpecularColor = [0, 100, 0]

VRML_CUBE,Center = [4, -2, -2], $
Rotation = [0, 0, 45], $
DiffuseColor = [127, 255, 191], $
AmbientColor = [55, 70, 60], $
SpecularColor = [0, 100, 0]

; An Escher-like cube.

See Also

VRML_CONE, VRML_CYLINDER, VRML_OPEN,
VRML_SPHERE, VRML_TEXT

For a discussion of cubes and other VRML primitives, see The VRML Sourcebook,
by Andrea L. Ames, et al., John Wiley & Sons, Inc., 1996, Chapter 3.

VRML_CYLINDER Procedure
Positions a VRML cylinder in the world.

Usage

VRML_CYLINDER

Input Parameters

None.

1012 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Keywords

Object Properties

The following keywords describe or define the VRML cylinder object.

Bottom — Displays the bottom of the cylinder only. (Default: set)

NOTE The default setting for each of the Bottom, Sides, and Top keywords is set,
unless one or more of those keywords is explicitly specified. See the Discussion for
more information.

Center — A 3-element array specifying the true center of the cylinder object.
(Default: [0, 0, 0])

Height — Specifies the cylinder height. (Default: 2.0)

Orientation — A 3-element vector specifying the orientation of the cylinder.
(Default: along the y-axis)

Radius — Specifies the cylinder radius from the axis. (Default: 1.0)

Sides — Displays sides of the cylinder. (Default: set)

Top — Displays the top of the cylinder. (Default: set)

Transform — A 4-by-4 matrix containing the transformation to be applied to the
object.

Material Properties

The following properties, when set, are applied to the object.

AmbientColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

DiffuseColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

EmissiveColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

Shininess — Scalar shininess factor, in the range of 0 to 255.

SpecularColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

Texture_Image — A texture image to apply to the object. There are four options:

VRML_CYLINDER Procedure 1013

(w, h) or (1, w, h) — Grayscale image

(2, w, h) — Grayscale in (0, *, *) plus transparency in (1, *, *)

(3, w, h) — True color image (red, green, blue)

(4, w, h) — True color plus transparency in (3, *, *)

The image is wrapped completely around the object. The texture image values and
transparency values lie in the range of 0 to 255.

Transparency — Scalar transparency factor, in the range of 0 to 255.

Discussion

The VRML_CYLINDER procedure supports the cylinder node in VRML.

The Bottom, Sides and Top keywords all refer to the viewed (solid) surfaces of the
cylinder. If none of the keywords is explicitly specified, the cylinder appears as a
closed solid object. If any of these keywords are specified, the walls corresponding
to the keywords are the only solid walls displayed; the non-specified surfaces do
not appear. For example, If Sides is specified, then neither the top nor the bottom
of the cylinder is displayed, and the cylinder appears to be a hollow tube.

Example
VRML OPEN, ’vrlm_cyldr.wld’

VRML_CYLINDER, Center = [10, 11.5, -10], $
Orientation = [0, 1, 0], Radius = 0.4, $
Height = 0.5, DiffuseColor = [160, 160, 0]

; The cylinder appears as a solid object in this example, because
; none of the surface viewing keywords (Bottom, Sides, or Top) was
; specified.

VRML_CLOSE

See Also

VRML_CONE, VRML_CUBE, VRML_OPEN, VRML_SPHERE,
VRML_TEXT

For a discussion of cylinders and other VRML primitives, see The VRML Source-
book, by Andrea L. Ames, et al., John Wiley & Sons, Inc., 1996, Chapter 3.

1014 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

VRML_LIGHT Procedure
Sets up the light source for a VRML world.

Usage

VRML_LIGHT, position

Input Parameters

position — A 3-element array specifying the positioning of the light source.

Keywords

Color — A 3-element array of RGB values, in the range of 0 to 255. (Default: [255,
255, 255], the color white)

Intensity — A number normalized from 0 to 1, where 1 is full intensity. (Default:1)

Discussion

VRML supports three node types to control lighting. The VRML_LIGHT proce-
dure implements one of the types, the PointLight, which emanates light radially in
all directions.

NOTE See the VRML_SPOTLIGHT procedure for another implementation of the
VRML node types to control lighting.

Example
VRML_OPEN, ’vrml_light.wrl’

...

VRML_LIGHT, [-1, -1, 0], Color = [255, 0, 0], Intensity = 1.0

VRML_CLOSE

See Also

VRML_CAMERA, VRML_SPOTLIGHT

VRML_LINE Procedure 1015

For a discussion of VRML lighting, see The VRML Sourcebook, by Andrea L.
Ames, et al., John Wiley & Sons, Inc., 1996, Chapter 19.

VRML_LINE Procedure
Creates a VRML polyline object.

Usage

VRML_LINE, x, y[, z]

Input Parameters

x, y — Each parameter is a 1D array containing npoint elements specifying the
polyline coordinates.

z — (optional) A 1D array containing npoint elements, specifying a z-axis polyline
coordinate. (Default: 0, a line on the x-y plane)

Keywords

Object Properties

The following keywords describe or define the VRML polyline object.

Transform — A 4-by-4 matrix containing the transformation to be applied to the
polyline object.

Material Properties

The following properties, when set, are applied to the line.

AmbientColor — A (3, n) array of RGB color, in the range of 0 and 255. If Ambi-
entColor is an n-element array, then the color is interpreted as grayscale.

DiffuseColor — A (3, n) array of RGB color, in the range of 0 and 255. If Diffuse-
Color is an n-element array, then the color is interpreted as grayscale.

EmissiveColor — A (3, n) array of RGB color, in the range of 0 and 255. If Emis-
siveColor is an n-element array, then the color is interpreted as grayscale.

MaterialIndices — An array of indices into the material property arrays in the
range of 0 to n – 1, relating each vertex of the polyline to the set of material prop-
erties (AmbientColor, DiffuseColor, EmissiveColor, SpecularColor, Transparency,

1016 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Shininess). There should be NPOINT elements in this array (one per vertex in the
polyline). (Default: n = npoint, where the set of material properties relates one-to-
one to its corresponding vertices)

Shininess — An n-element array of shininess, in the range of 0 to 255.

SpecularColor — A (3, n) array of RGB color, in the range of 0 to 255. If Specu-
larColor is an n-element array, then the color is interpreted as grayscale.

Transparency — An n-element array of transparency, in the range of 0 to 255.

Discussion

The VRML_LINE procedure draws a polyline using an IndexedLineSet node.

Example
VRML_OPEN, ’vrml_line.wrl’

x = FINDGEN(10)/9

y = RANDOMU(s, 10)

VRML_LINE, x, y

VRML_CLOSE

See Also

PLOTS, VRML_OPEN, VRML_POLY

For a discussion of VRML polylines, see The VRML Sourcebook, by Andrea L.
Ames, et al., John Wiley & Sons, Inc., 1996, Chapter 14.

VRML_OPEN Procedure 1017

VRML_OPEN Procedure
Opens a VRML file and writes out header information consistent with VRML
formatting.

Usage

VRML_OPEN [, filename]

Input Parameters

filename — (optional) A string specifying the file in which to write the VRML for-
matting. (Default: ’wave.wrl’)

Keywords

CGI — Writes out http content-type header for a common gateway interface (CGI)
script. The format is of the following form:
Content-type: x-world/x-vrml

SceneInfo — A scalar or array of strings containing comments about the scene.

StdOut — Directs the output to standard out, rather than to a file.

Title — A scalar string specifying the title of the created VRML world.

Version — A scalar string. If the VRML version is not “1.0 ascii”, then this key-
words indicates it: e.g.: Version = ’1.1 qf8b’.

Discussion

The VRML_OPEN procedure opens a .wrl file and writes the required header
information to the file. VRML_OPEN must precede all other VRML routines, and
the file must be closed using the VRML_CLOSE procedure.

Example
VRML_OPEN, ’test_vrml.wrl’, Title = ’Test VRML’

...

VRML_CLOSE

1018 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

See Also

VRML_CLOSE

For a discussion of VRML, see The VRML Sourcebook, by Andrea L. Ames, et al.,
John Wiley & Sons, Inc., 1996.

VRML_POLY Procedure
Constructs a surface or a solid described by a set of polygons.

Usage

VRML_POLY, vlist, plist

Input Parameters

vlist — Vertex list (3,NVERT) of x, y, z coordinates for NVERT vertices of the
polygons.

plist — Polygon list describing NPOLY polygons. (See the POLYSHADE function
for more information about this parameter.)

Keywords

Object Properties

The following keywords describe or define the VRML polygon object.

Solid — If set, indicates that the polygon encloses a solid.

TIP Browser viewing efficiency is enhanced by using the Solid keyword, because
the browser knows to look only at the specified inside or outside of the polygon
shape instead of both.

Transform — A 4-by-4 matrix containing the transformation to be applied to the
object.

Material Properties

The following properties, when set, are applied to the polygons.

VRML_POLY Procedure 1019

AmbientColor — A (3, n) array of RGB color, in the range of 0 and 255. If Ambi-
entColor is an n-element array, then the color is interpreted as grayscale.

DiffuseColor — A (3, n) array of RGB color, in the range of 0 and 255. If Diffuse-
Color is an n-element array, then the color is interpreted as grayscale.

EmissiveColor — A (3, n) array of RGB color, in the range of 0 and 255. If Emis-
siveColor is an n-element array, then the color is interpreted as grayscale.

MaterialIndices — An array of indices into the material property arrays in the
range of 0 to n – 1, relating each polygon face to one of the set of material proper-
ties (AmbientColor, DiffuseColor, EmissiveColor, Shininess, SpecularColor,
Transparency). There should be NPOLY elements in this array (one per polygon).
(Default: n = NPOLY, where the set of material properties relates one-to-one to its
corresponding polygon)

Shininess — An n-element array of shininess, in the range of 0 to 255.

SpecularColor — A (3, n) array of RGB color, in the range of 0 to 255. If Specu-
larColor is an n-element array, then the color is interpreted as grayscale.

Transparency — An n-element array of transparency, in the range of 0 to 255.

VertexColor — If set, MaterialIndices are per-vertex rather than per-polygon, so
that the material properties describe each vertex, rather than describing each
polygon.

Discussion

The VRML_POLY procedure creates a VRML node, based on the PV-WAVE vari-
ables for vertex list and polygon list.

This procedures allows for any polygonal shape to be drawn in a VRML world,
with input parameters tailored to fit in with other PV-WAVE routines.

Example
z = HANNING(14,8) * 10.

POLY_SURF, z, vlist, plist

; Build a vertex/polygon set from surface data.

VRML_OPEN, ’vrml_poly.wrl’

; Open a VRML file.

VRML_LIGHT, [7, 4, 20]

VRML_CAMERA, [0, -0, 20], LookAt = [7, 4, 0]

; Set up a light source and an initial viewpoint.

1020 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

r = BYTSCL(z(*))

g = BYTSCL(DIST(14, 8))

g = g(*)

b = BYTSCL(INDGEN(14, 8))

b = b(*)

; Make up some RGB color values -- one color for each
; element of z (thus, one color per polygon).

rgb = TRANSPOSE([[r], [g], [b]])

; Put the colors into a (3, NPOLY) array.

VRML_POLY, vlist, plist, EmissiveColor = rgb

; Write the surface to the VRML file.

VRML_CLOSE

; Close the VRML file.

See Also

MESH, POLY_MERGE, POLY_PLOT, POLY_SURF,
POLYSHADE, VRML_LINE, VRML_OPEN, VRML_SURFACE

For a discussion of VRML polygons, see The VRML Sourcebook, by Andrea L.
Ames, et al., John Wiley & Sons, Inc., 1996, Chapter 14.

VRML_SPHERE Procedure
Creates a sphere in a VRML world.

Usage

VRML_SPHERE

Input Parameters

None.

Keywords

Object Properties

The following keywords describe or define the VRML sphere object.

VRML_SPHERE Procedure 1021

Center — A 3-element array specifying the center of the sphere object. (Default:
[0, 0, 0])

Radius — Specifies the sphere radius from the center. (Default: 1.0)

Transform — A 4-by-4 matrix containing the transformation to be applied to the
object.

Material Properties

The following properties, when set, are applied to the object.

AmbientColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

DiffuseColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

EmissiveColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

Shininess — A scalar shininess factor, in the range of 0 to 255.

SpecularColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

Texture_Image — A texture image to apply to the object. The texture image is
wrapped completely around object (CLAMPed). Image values and transparencies
lie in range of 0 to 255.

There are four options:

(w, h) or (1, w, h) — Grayscale image

(2, w, h) — Grayscale in (0, *, *) plus transparency in (1, *, *)

(3, w, h) — True color image (red, green, blue)

(4, w, h) — True color plus transparency in (3, *, *)

Transparency — A scalar transparency factor, in the range of 0 to 255.

Discussion

The VRML_SPHERE procedure supports the sphere node in VRML.

Example

The ’wavelogo.dat’ file used in this example is found in the following
directory:

1022 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

(UNIX) <wavedir>/demo/web/vrml

(OpenVMS) <wavedir>:[DEMO.WEB.VRML]

(Windows) <wavedir>\demo\web\vrml

where <wavedir> is the main PV-WAVE directory.

VRML_OPEN, ’vrml_sphere.wrl’

RESTORE, ’wavelogo.dat’ ; img, r, g, b

sz = SIZE(img)

col = TRANSPOSE([[r], [g], [b]])

texture = REFORM(col(*, img), 3, sz(1), sz(2))

; Create the texture, using the PV-WAVE logo.

VRML_SPHERE

; Create a base sphere.

VRML_SPHERE, Center = [-2, -1, 0], Radius =.5, Texture = texture

; Create a textured sphere.

VRML_SPHERE, Center = [2, 0, 2], Radius = 1.5, $
Shininess = 202, Transparency = 170

; Create a somewhat transparent, reflective sphere.

VRML_CLOSE

See Also

POLY_SPHERE, SPHERE, VRML_CUBE,
VRML_CYLINDER, VRML_OPEN, VRML_TEXT

For a discussion of spheres and other VRML primitives, see The VRML Source-
book, by Andrea L. Ames, et al., John Wiley & Sons, Inc., 1996, Chapter 3.

VRML_SPOTLIGHT Procedure
Creates a VRML spotlight.

Usage

VRML_SPOTLIGHT, position

Input Parameters

position — A 3-element array specifying the positioning of the spotlight.

VRML_SPOTLIGHT Procedure 1023

Keywords

Angle — Specifies the angle of the light cone in degrees. (Default: 45)

Color — A 3-element array of RGB values, in the range of 0 to 255. (Default: [255,
255, 255], the color white)

Direction — The orientation of the light cone. (Default: [0, 0, –1])

Intensity — A number normalized from 0 to 1, where 1 is full intensity. (Default:1)

Rate — The exponential drop-off rate for light intensity from the axis of the light
cone. (Default: 0)

Discussion

VRML_SPOTLIGHT implements one of the three types of lighting supported by
VRML. (VRML_LIGHT is another.) A spotlight emanates light inside of a cone
shape.

Example
VRML_OPEN, ’vrml_spotlight.wrl’

...

VRML_SPOTLIGHT, [-1, -1, 0], $
Color = [255, 0, 0], $

VRML_CLOSE

See Also

VRML_CAMERA, VRML_LIGHT, VRML_OPEN

For a discussion of VRML lighting, see The VRML Sourcebook, by Andrea L.
Ames, et al., John Wiley & Sons, Inc., 1996, Chapter 19.

1024 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

VRML_SURFACE Procedure
Creates a VRML surface plot based on PV-WAVE variables.

Usage

VRML_SURFACE, z [, x, y]

Input Parameters

z — A 2D array containing the values that make up the surface. If x and y are sup-
plied, the surface is plotted as a function of the x, y locations. (See the SURFACE
and CONTOUR routines for more information.)

x — (optional) A 1D or 2D array specifying the x-coordinates of the data.

y — (optional) A 1D or 2D array specifying the y-coordinates of the data.

Keywords

Light — A 3-element array of [x, y, z] position for a light source, in normal coor-
dinates (0 to 1 is the normalized range).

Title — A string specifying the plot title.

Transform — A 4-by-4 matrix containing the transformation to apply to the object.

XTitle — A scalar string specifying the x-axis title.

YTitle — A scalar string specifying the y-axis title.

ZTitle — A scalar string specifying the z-axis title.

Discussion

The VRML_SURFACE procedure uses PV-WAVE– type variables as input to cre-
ate a meshed surface in a VRML world.

NOTE The x, y, z data are scaled into a unit cube, so that the axes for the graphic
fall within the range of 0 to 1 for all three axes. Use Transform to move the cube
around, stretch it, and so on.

VRML_TEXT Procedure 1025

Example
x = FINDGEN(21) - 10.0

x = x # REPLICATE(1, 21)

y = TRANSPOSE(x)

; Create 2D arrays of x- and y-coordinates.

z = x * SIN(y) + y * COS(x)

; Evaluate a function of x and y for the surface.

VRML_OPEN, ’vrml_surf.wrl’

; Open the VRML file.

VRML_CAMERA, [1, -3, 1], $
LookAt=[.5, .5, .5]

; Set an initial viewpoint.

VRML_SURFACE, z, x, y, ZTitle = ’f(x, y)’, $
Title = ’f(x, y) = x*sin(y) + y*cos(x)’

 ; Write the surface to the VRML file.

VRML_CLOSE

; Close the VRML file.

See Also

CONTOUR, POLY_SURF, SHADE_SURF, SURFACE, VRML_AXIS,
VRML_OPEN, VRML_POLY

VRML_TEXT Procedure
Creates a VRML text object in an open VRML file.

Usage

VRML_TEXT, text

Input Parameters

text — A string, or array of strings containing the VRML object text.

1026 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Keywords

Object Properties

The following keywords describe or define the VRML text object.

Center — A 3-element array with coordinate position of the text object centered
around designated coordinates [x, y, z].

FontSize — Specifies the point size of the font. (Default: 10)

Left — If set, left-justify the text about the Center-designated coordinates [x, y, z].

NOTE The Left and Right keywords are mutually exclusive.

Right — If set, right-justify the text about the Center-designated coordinates [x, y,
z].

Rotation — A 3-element array specifying rotation angles in degrees around x, y
and z. (Default: orientation is horizontal, with text parallel to the x-y plane, reading
from –x to +x)

Transform — A 4-by-4 matrix containing the transformation to apply to the object.
Applied after Center and Rotation.

Material Properties

The following properties, when set, are applied to the text object.

AmbientColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

DiffuseColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

EmissiveColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

Shininess — A scalar shininess factor, in the range of 0 to 255.

SpecularColor — A 3-element array of RGB color with each element ranging
between 0 and 255. If the value is scalar, then the color is interpreted as grayscale.

Texture_Image — A texture image to apply to the object. The image is wrapped
completely around the object. The texture image values and transparency values lie
in the range of 0 to 255.

There are four options:

VRML_TEXT Procedure 1027

(w, h) or (1, w, h) — Grayscale image

(2, w, h) — Grayscale in (0, *, *) plus transparency in (1, *, *)

(3, w, h) — True color image (red, green, blue)

(4, w, h) — True color plus transparency in (3, *, *)

Transparency — A scalar transparency factor, in the range of 0 to 255.

Font Family Settings

These three font attributes are mutually exclusive.

Serif — Serif font (the default).

Sans — Sans-serif font.

Typewriter — Monospaced font.

Font Attributes

Either or both of these keywords may be used. If neither is set, then the typeface is
“normal.”

Bold — Boldface type.

Italic — Italic type.

Discussion

The VRML_TEXT procedure uses the VRML text and font features, which pro-
vide for 3-D text shapes.

If the text parameter is an array of strings, each string is placed on a separate line
in the VRML world. The lines of text objects are centered about the baseline posi-
tion of the first element string, and the lines are separated based on the point size
of the font used.

Example
VRML_OPEN, ’vrml_text.wrl’

VRML_TEXT,[’Visual Numerics’, ’PV-WAVE’], $
Center = [0, 5, 0], $
EmissiveColor = [0, 0, 255], $
/Bold, /Serif, FontSize = 12

VRML_CLOSE

1028 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

See Also

VRML_CONE, VRML_CUBE, VRML_CYLINDER, VRML_LINE,
VRML_OPEN, VRML_SPHERE, XYOUTS

For a discussion of VRML text and definitions of attributes, see The VRML Sour-
cebook, by Andrea L. Ames, et al., John Wiley & Sons, Inc., 1996, Chapter 4.

vtkADDATTRIBUTE Procedure
Collects point attributes for VTK datasets.

Usage

vtkADDATTRIBUTE, attributes

Input Parameters

attributes — A list variable containing all of the attributes for a dataset. Passing an
undefined variable on the first call to creates the initial list. Using the variable on
subsequent calls will add elements to the list. You should never have to create or
modify the contents of this variable manually.

Keywords

Name — A scalar string specifying a name for this attribute. The default name is
the attribute name in lower case.

Lookup_table_name — Only used with scalar attributes. A scalar string specifying
the name of the lookup table to be associated with a scalar attribute. The default
table is “default.”

One and only one of the following keywords can be used to add an attribute of the
selected type:

Scalars — A vector of floating point numbers containing scalar values for each
entry in points.

Lookup_table — An array of floating point numbers of size (3, m) containing nor-
malized RGB values.

Vectors — An array of floating point numbers of size (3, n), where n equals the
number of Points, containing the x, y, and z components for each vector.

vtkAXES Procedure 1029

Normals — An array of floating point numbers of size (3, n), where n equals the
number of points, containing the x, y, and z components for each normal, where the
x, y, and z values are normalized to a unit length of 1.

Color_scalars — An array of floating point numbers of size (m, n), where n equals
the number of Points and m is the number of values per color scalar. Values are
between 0.0 and 1.0.

Texture_coordinates — An array of floating point numbers of size (m, n), where m
is 1, 2, or 3 and n equals the number of points.

Tensors — An array of floating point numbers of size (3, 3, n), where n equals the
number of points.

Discussion

This procedure allows a set of attributes to be collected and passed to one of the
dataset creation routines: vtkPOLYDATA, vtkSTRUCTUREDPOINTS,
vtkSTRUCTUREDGRID, vtkRECTILINIARGRID, or
vtkUNSTRUCTUREDGRID. Datasets can have one or more attributes associated
with their points, and even more than one attribute of the same type, with the Name
assigned to the attribute used to distinguish them. For Scalars, Normals,
Color_scalars, Texture_coordinates, and Tensors, the number of supplied
attributes must equal the number of points in the dataset to which they will be
assigned.

vtkAXES Procedure
Creates a set of axes.

Usage

vtkAXES

Input Parameters

None.

Keywords

Charsize — A floating point scalar or three-element array, the size of the text for
tickmark labels and axes labels. (Default: 0.4*Lengths)

1030 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Format — A FORTRAN style format string to use for the tick mark labels.
(Default: ’(g10.2)’)

Name — Specify a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Position — An array of three floating point numbers in data coordinates describing
the origin for the axis. (Default: [0, 0, 0])

Lengths — An array of three floating point numbers describing the length of the x,
y, and z axes, respectively, specified in data coordinates. (Default: [1, 1, 1])

Labels — If non-zero, any tick marks drawn are labeled with default values.

LOD — If nonzero, the tickmarks are created as level-of-detail actors to aid in
keeping a high frame-rate during frequent render requests due to user mouse inter-
action. If set to a value greater than 1, the number of points to use in the random
cloud.

Sigfig — An integer, the number of significant figures to use for the tick mark
labels. (Default: 2).

TextColor — The color to use for text used for [XYZ]Title. See vtkWINDOW
(page 1065) for possible ways to specify the color. (Default: ’white’)

Tickscale — A float, a scaling value passed to vtkSCATTER for the tick mark
glyphs. (Default: 0.33)

Ticksymbol — An integer, passed to vtkSCATTER to set the glyph to use for the
tick marks. (Default: 0, a sphere)

Other keywords are listed below. For a description of each keyword, see Chapter 3,
Graphics and Plotting Keywords.

Discussion

This procedure creates three axes displayed as lines in the x, y, and z direction, with
an optional label at the top of each axis.

Example
vtkAxes, lengths = [1,1.5,2]

[XYZ]Tickname [XYZ]Ticks [XYZ]Tickv

[XYZ]Title

vtkCAMERA Procedure 1031

See Also

AXIS

vtkCAMERA Procedure
Changes the camera’s parameters.

Usage

vtkCAMERA

Input Parameters

None.

Keywords

Name — Specify a name to be used to create this object. If an undefined variable
is used or no name is specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Position — An array of three floating point numbers describing the x, y, and z posi-
tion for the camera in data coordinates.

FocalPoint — An array of three floating point numbers describing the x, y, and z
position for the camera’s focal point in data coordinates.

ClippingRange — An array of two floating point numbers describing the distance
from the camera to the front and back clipping planes (in data coordinates).

ViewUp — An array of three floating point numbers describing a vector that repre-
sents the up direction for the view.

Distance — A floating point number describing the distance from the focal point
to the camera (which will modify the FocalPoint value) in data coordinates.

ViewAngle — A floating point number that sets the view angle of the camera in
degrees.

Azimuth — A scalar value describing the angle in degrees to rotate the camera
about the view up vector centered at the focal point. This moves the camera from
side to side.

1032 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Elevation — A scalar value describing the angle in degrees to rotate the camera
about the cross product of the direction of projection and the view up vector cen-
tered on the focal point. This moves the camera up and down.

Roll — A scalar value describing the angle in degrees to rotate the camera about
the direction of projection. This rolls the camera about the direction of projection.

Discussion

A default camera is created for each vtkWINDOW with these properties: position
and focal point such that all objects are visible, with the camera centered on the
entire scene; view up along the Y axis; view angle set to 30 degrees; and a clipping
range set to 0.1, 1000.0.

NOTE vtkSURFACE, vtkSCATTER and vtkPOLYSHADE change this default
and set the up vector to be along the z axis.

Example
pyramid_list = [[0,0,0],[0,1,0],[1,0,0],[1,1,0],[.5,.5,1]]

vertex_list=[3,0,2,4,3,2,3,4,3,3,1,4,3,1,0,4,4,0,1,3,2]

vtkPolyshade, pyramid_list, vertex_list

vtkCamera, Azimuth=25, Elevation=45, ViewAngle=120

vtkCLOSE Procedure
Closes the VTK process.

Usage

vtkCLOSE

Input Parameters

None.

Keywords

None.

vtkCOLORBAR Procedure 1033

Discussion

This procedure closes all VTK windows and shuts down the Tcl/Tk-spawned pro-
cess. It should be called before exiting PV-WAVE.

Example

A standard close call.

vtkCLOSE

See Also

vtkINIT, vtkWINDOW, vtkERASE, vtkWDELETE

vtkCOLORBAR Procedure
Adds a color bar legend to a VTK scene using the current PV-WAVE color table.

Usage

vtkCOLORBAR

Keywords

Vertical — If set, the color bar is aligned vertically. Default alignment is horizontal.

Title — The title of the legend. (Default: none)

Position — A three-element array, the position of the lower left corner of the color
bar. (Default: [0,0,0])

NumLabels — The number of labels to draw. (Default: 5)

Width — The width of the legend in device coordinates. (Default: 0.8, or 0.15 with
/Vertical)

Height — The height of the legend in device coordinates. (Default: 0.15, or 0.9
with /Vertical)

CRange — A two-element vector, the range of colors (Default: [0,255])

LRange — A two-element vector, the label range (Default: CRange)

1034 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Sigfig — An integer, the number of significant figures to use for the labels.
(Default: 3).

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name is specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

NoShadow — If set, labels are drawn without shadows.

vtkCOMMAND Procedure
Sends Tcl and VTK commands to the Tcl process.

Usage

vtkCOMMAND, command

Input Parameters

command — A string representing the VTK command to invoke.

Keywords

Result — A string or string array containing any results from the execution of the
command in the Tcl shell.

Discussion

The Basic interface to send raw Tcl or VTK commands to the spawned Tcl process.

Example

Use vtkCOMMAND to set the background blue.

vtkwindow, 1

vtkcommand, ‘renderer1 SetBackground 0.0 0.0 1.0’

vtkrenderwindow

See Also

vtkRENDERWINDOW

vtkERASE Procedure 1035

vtkERASE Procedure
Erases the contents of the current VTK window.

Usage

vtkERASE [, background_color]

Input Parameters

background_color — (optional) The background color to be used for the window,
specified as a 24-bit color. See vtkWINDOW (page 1065) for possible ways to
specify the color.

Keywords

None.

Discussion

This procedure works like ERASE for PV-WAVE windows. It removes all actors,
cameras, and lights from the current window.

Example

This example shows vtkERASE removing the axes from the window.

vtkwindow, 1

vtkaxes

vtkerase

See Also

ERASE, VtkCLOSE, vtkWINDOW

1036 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

vtkGRID Procedure
Adds 3D grid lines to a VTK scene.

Usage

vtkGRID [, Number=n]

Keywords

Number — A scalar or a three element array, the number of segments with grid
lines in each (x, y, z) direction. (Default: [1,1,1], a box)

Lengths — A scalar or a three-element array, the extent of the grid. (Default:
[1,1,1])

Position — A three-element array, the position of the origin of the grid. (Default:
[0,0,0])

Color — The color to use for the polylines (passed to vtkPLOTS). See vtkWIN-
DOW for possible ways to specify the color. (Default: ’white’)

Thick — A float, the thickness of the grid lines (passed to vtkPLOTS). (Default:
1.0)

Name — A string, the name to be used to create this object. If an undefined variable
is used or no name is specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

UseAxes — If nonzero, the most recently created vtkAXES scale is used to define
the Lengths array, which then does not need to be defined explicitly.

LOD — If nonzero, use level-of-detail actors for the grid lines (passed to
vtkPLOTS).

Example
vtkSURFACE, DIST(20)

vtkGRID, /useAxes, Thick=6

vtkGRID, Number=[2,2,6], Color='red', Thick=4, /useAxes

vtkHEDGEHOG Procedure 1037

vtkHEDGEHOG Procedure
Creates a HedgeHog (vector) plot.

Usage

vtkHEDGEHOG, points, vectors, scalars

Input Parameters

points — A 3, n array of points (location of the lines).

vectors — A 3, n array of vectors (orientation and length of the lines).

scalars — (optional) An n-element array of scalars (colors of the lines).

Keywords

Scalefactor — A float, a scaling factor to control the size of the oriented lines of
the HedgeHog object (Default: 1.0).

SRange — A two-element integer array, the scalar range (Default: [0,255]).

LOD — If nonzero, a level-of-detail actor is created to aid in keeping a high frame-
rate during frequent render requests due to user mouse interaction. If set to a value
greater than 1, the number of points to use in the random cloud.

NoRotate — Does not perform any camera rotations. Used when a previous call to
vtkSURFACE, vtkSCATTER or vtkPOLYSHADE has already set the camera
angle.

NoAxes — If set, no axes are created.

NoErase — If nonzero, prevents the window from being erased to the background
color before drawing the new scene. If not set, then all lights, cameras, and objects
are removed from the scene before objects for the new scene are added.

These keywords are passed to vtkAXES:

See vtkAXES for descriptions.

Charsize TextColor [XYZ]Title [XYZ]Ticks

[XYZ]Tickv [XYZ]Tickn TickScale TickSymbol

Labels Sigfig Format

1038 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Example

This example plots a Hanning surface and its normals.

LOADCT, 2

n = 50

x = REBIN(INDGEN(n),n,n)

y = TRANSPOSE(x)

z = (n/2)*(HANNING(n,n))

norm = NORMALS(JACOBIAN(LIST(x,y,z)))

;

points = FLTARR(3,n*n,/NoZero)

points(0,*) = x(*)

points(1,*) = y(*)

points(2,*) = z(*)

vectors = FLTARR(3,n*n,/NoZero)

vectors(0,*) = (norm(0))(*)*SQRT(z(*))

vectors(1,*) = (norm(1))(*)*SQRT(z(*))

vectors(2,*) = (norm(2))(*)*SQRT(z(*))

scalars = z(*)

;

vtkHedgeHog, points, vectors, scalars, /NoAxes, scalef=0.75

vtkSurface, REFORM(points(2,*),n,n), $

 Shades=REBIN([0.8,0.8,0.8,.75],4,n,n), $

 /NoErase, /NoRotate, /NoAxes

See Also

vtkAXES

vtkINIT Procedure 1039

vtkINIT Procedure
Initializes the VTK system.

Usage

vtkINIT

Input Parameters

None.

Keywords

File — If set, a temporary file is used to communicate data sets to VTK instead of
a socket connection. For very large data sets with many floating-point values, this
method is considerably faster; however, read/write permissions are required. If set
to one (/File), any data set greater than 1024 bytes is written to file. If set to a
value (File=fbytes), data sets larger than fbytes are written to file; smaller data
sets are sent via sockets. Setting /File is equivalent to setting File=1024. This key-
word affects only data: commands are always sent by the socket connection.

Noshell — If set, the keyword is passed along to the SPAWN procedure that ini-
tiates the VTK Tcl process. This keyword is required when calling VTK routines
from a JWAVE wrapper and should not be used otherwise.

Path — Used in conjunction with the File keyword, a string indicating the file path
to the directory where the temporary file(s) are to be created.

Print — If present and nonzero, causes the output from the spawned Tcl/Tk shell
to be sent back to PV-WAVE and displayed in the console. This keyword is useful
for debugging low-level VTK calls.

Timeout — A floating point scalar specifying a time interval in seconds which
vtkINIT will wait before giving up on establishing a socket connection to the
spawned Tcl shell. (Default: 20)

Discussion

This procedure must be performed before any other VTK commands. It causes a
Tcl/Tk shell to be spawned and sets up communication with it. It also initialized
various internal VTK parameters. The following routines will automatically call

1040 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

vtkINIT if it has not already been called: vtkWINDOW, vtkPOLYSHADE, vtk-
SURFACE, and vtkSCATTER.

Example

This example uses vtkINIT to initialize VTK with a timeout of 10 seconds.

vtkINIT, timeout=10

See Also

VtkCLOSE

vtkLIGHT Procedure
Adds a light to a VTK window.

Usage

vtkLIGHT

Input Parameters

None.

Keywords

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Color — The color for the light. See vtkWINDOW (page 1065) for possible ways
to specify the color. (Default: ’white’)

Position — An array of three floating point numbers describing the x, y, and z posi-
tion for the light. The default behavior is to have the light follow the camera
position.

FocalPoint — An array of three floating point numbers describing the x, y, and z
position for the light’s focal point.

Intensity — A float value between 0.0 and 1.0 specifying the intensity of the light.

vtkPLOTS Procedure 1041

DirectionAngle — An array of two floating point numbers that set the position and
focal point of a light based on elevation and azimuth. The light is moved to shine
from the given angle. Angles are given in degrees.

Discussion

A white light, which follows the camera position, is created by default for a VTK
Window.

NOTE Other light parameters not supported in this wrapper can be set using the
assigned Name and vtkCOMMAND.

Example
pyramid_list = [[0,0,0],[0,1,0],[1,0,0],[1,1,0],[.5,.5,1]]

vertex_list=[3,0,2,4,3,2,3,4,3,3,1,4,3,1,0,4,4,0,1,3,2]

vtkPolyshade, pyramid_list, vertex_list

vtkLight, Color='0000FF'XL, Position=[10,10,10]

vtkLight, Color='00FF00'XL, Position=[10,10,-10]

vtkLight, Color='FF0000'XL, Position=[-10,-10,-10]

vtkPLOTS Procedure
Adds a polyline.

Usage

vtkPLOTS, points

Input Parameters

points — An array of floating point numbers of size (3, n) where n is the number
of points. points(0,*) is taken as an x value, points(1,*) is taken as a y
value, and points(2,*) is taken as a z value.

1042 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Keywords

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Color — The color to use for the polyline. See vtkWINDOW (page 1065) for pos-
sible ways to specify the color. (Default: ’white’)

Thick — A float describing the thickness of the polyline. The default is 1.0, which
is scaled to correspond to a radius of 0.001 in data coordinates.

LOD — If nonzero, a level-of-detail actor is created to aid in keeping a high frame-
rate during frequent render requests due to user mouse interaction. If set to a value
greater than 1, the number of points to use in the random cloud.

Nolines — If nonzero, causes a cloud of points to be displayed rather than a
polyline.

Discussion

This procedure is similar to the PLOTS procedure for PV-WAVE windows.
Polylines are drawn as connected cylinders.

Example
z = findgen(1000)/999

x = z*sin(50*z)

y = z*cos(50*z)

vtkplots, transpose([[x],[y],[z]]), thick=5, color='blue'

vtkwindow,2

vtkplots, transpose([[x],[y],[z]]), color='red',/nolines

See Also

PLOTS, vtkSCATTER

vtkPOLYDATA Procedure 1043

vtkPOLYDATA Procedure
Passes vertex/polygon lists, lines, points, and triangles to VTK.

Usage

vtkPOLYDATA, points

Input Parameters

points — A two-dimensional array of floating point numbers of size (3, n) describ-
ing x, y, and z points.

Keywords

Restore — An associative array containing all of the data and attributes for a poly-
data dataset, usually created using the Save keyword. If this parameter is passed,
then only the keywords Name and Filename can be used.

Name — Specifies a name to be used to create this data source. This name can be
used in calls to vtkCOMMAND.

Filename — File to store data using standard VTK ASCII format.

Save — Returns the data in the specified variable stored in an associative array.
Data is not sent to VTK if this parameter is specified.

Polygons — A vector of integers describing polygons, organized as vertex count
followed by indices into points, repeated for all polygons. This is the same format
as a polygon list used in POLYSHADE.

Vertices — A vector of integers describing vertices, organized as vertex count fol-
lowed by indices into points, repeated for all vertices.

Lines — A vector of integers describing polylines, organized as vertex count fol-
lowed by indices into points, repeated for all polylines.

Triangle_Strips — A vector of integers describing triangle strips, organized as ver-
tex count followed by indices into points, repeated for all triangle strips.

Attributes — A list created using vtkADDATTRIBUTE containing one or more
attributes associated with the points in the dataset.

1044 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Discussion

Contains points and polygons (like the polygon vertex list in PV-WAVE) as well
as vertices, lines, and triangle strips. See the VTK documentation, which can be
downloaded from http://public.kitware.com, for more details on the data and
attributes for the PolyData dataset format.

vtkPOLYSHADE Procedure
Renders a polygon object.

Usage
vtkPOLYSHADE, vertices, polygons

Input Parameters
Vertices — A (3, n) array containing the x-, y-, and z-coordinates of each vertex in
data coordinates.
Polygons — An integer or longword array containing the indices of the vertices of
each polygon. The vertices of each polygon should be listed either clockwise or
counterclockwise order when observed from outside the surface. The vertex
description of each polygon is a vector of the form [n, i0, i1, ... , in - 1], and the
array polygons is the concatenation of the lists of each polygon.

Keywords
Name — Specify a name to be used to create this object. If an undefined variable
is used or no name specified then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.
Color — An array expression, of the same dimensions as the number of vertices
passes (the value “n” above), containing the color index at each vertex. Alter-
nately an expression describing one color to be used for the entire polygonal sur-
face or wireframe. If this keyword is omitted, a white surface is displayed.
To specify a single color, see vtkWINDOW (page 1065) for possible ways to
specify the color. If a two-dimensional array of colors is specified (for an image
overlay) the shades variable can be in any of these formats:

FIX(n) A one-dimensional array of short integers or bytes spec-
ifying an index into the current PV-WAVE color table
for each point. The RGB color for each point is
obtained from the corresponding entry in the current
PV-WAVE color table.

vtkPOLYSHADE Procedure 1045

Wireframe — When present and nonzero, a wire-frame mesh is drawn rather than
a shaded surface.

LOD — If nonzero, a level-of-detail actor is created to aid in keeping a high frame-
rate during frequent render requests due to user mouse interaction. If set to a value
greater than 1, the number of points to use in the random cloud.

NoAxes — If set, no axes are created.

NoRotate — Does not perform any camera rotations. Used when a previous call to
vtkSURFACE, vtkSCATTER or vtkPOLYSHADE has already set the camera
angle.

NoErase — If nonzero prevents the window from being erased to the background
color before drawing the new scene. If not set then all lights, cameras, and objects
are removed from the scene before objects for the new scene are added.

These keywords are passed to vtkAXES:

Other keywords are listed below. For a description of each keyword, see Chapter 3,
Graphics and Plotting Keywords.

Discussion

This procedure is similar to the POLYSHADE procedure for PV-WAVE windows.
Wireframes can be produced as well as surfaces shaded in one color or overlaid
with an image. Transparency is also supported.

LONG(n) A one-dimensional array of long integers specifying the
24-bit color at each point.

FLOAT(3, n) A floating point array of size (3, n) containing the nor-
malized values specifying the red, green, and blue com-
ponents of the color at each point.

FLOAT(4, n) A floating point array of size (4, n) containing the nor-
malized values specifying the red, green, blue, and
alpha components of the color at each vertex. The alpha
component is the transparency where 0.0 is completely
transparent and 1.0 is opaque.

[XYZ]Ticks [XYZ]Tickv [XYZ]Tickn TickScale

TickSymbol Labels Sigfig Format

Ax Az

1046 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Example
pyramid_list = [[0,0,0],[0,1,0],[1,0,0],[1,1,0],[.5,.5,1]]

vertex_list=[3,0,2,4,3,2,3,4,3,3,1,4,3,1,0,4,4,0,1,3,2]

vtkPolyshade, pyramid_list, vertex_list, color=’blue’

See Also

AXIS, POLYSHADE

vtkPPMREAD Function
Reads a PPM file.

Usage

image = vtkPPMREAD (filename)

Input Parameters

filename — File path of PPM file.

Returned Value

image — An array (3, width, height) of bytes containing the 24-bit image.

Keywords

None.

Discussion

This function is used to read the rudimentary PPM binary files created by VTK and
containing images stored as RGB values. The images can be displayed with TV,
image, True=1 or converted to an 8-bit image using ipcolor_24_8.

Example

Example of reading the file wave.ppm and storing an image.

Image=vtkppmread(‘wave.ppm’)

vtkPPMWRITE Procedure 1047

See Also

vtkPPMWRITE, vtkTVRD

vtkPPMWRITE Procedure
Writes the contents of a VTK window to a PPM file.

Usage

vtkPPMWRITE [, window_index]

Input Parameters

window_index — (optional) An integer specifying the index of an existing VTK
window. If omitted, the current window is used.

Keywords

Filename — File path to store PPM file. (Default: ’wave.ppm’)

Discussion

This procedure saves a snapshot of the selected window as a PPM file. It is impor-
tant to make sure the VTK window fully visible when this routine is called because
an obscuring portion of another window will be captured as part of the image. This
is a limitation of VTK.

Example 1

Writing a PPM file.

vtkwindow, 1

vtkaxes

vtkPPMWRITE, 1

Example 2

Writing the PPM file to the file name of PV.ppm.

vtkwindow, 2, background=’blue’

1048 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

vtkPPMWRITE, 2, filename=’PV.ppm’

See Also

vtkPPMREAD, vtkTVRD

vtkRECTILINEARGRID Procedure
Passes data describing a rectilinear grid to VTK.

Usage

vtkRECTILINEARGRID, Dimensions

Input Parameters

Dimensions — A 3-element vector of integers describing dimensions in x, y, and z.
Use 1 for the third dimension if only a two-dimensional array is described.

Keywords

Restore — An associative array containing all of the data and attributes for a poly-
data dataset, usually created using the Save keyword. If this parameter is passed,
then only the keywords Name and Filename can be used.

Name — Specifies a name to be used to create this data source. This name can be
used in calls to vtkCOMMAND.

Filename — File to store data using standard VTK ASCII format.

Save — Returns the data in the specified variable stored in an associative array.
Data is not sent to VTK if this parameter is specified.

X_coordinates — A vector of floating point numbers of the same length as the first
dimension in Dimensions describing monotonically increasing coordinate values.
Increasing integers starting with 0 are used as a default.

Y_coordinates — A vector of floating point numbers of the same length as the sec-
ond dimension in Dimensions describing monotonically increasing coordinate
values. Increasing integers starting with 0 are used as a default.

vtkRENDERWINDOW Procedure 1049

Z_coordinates — A vector of floating point numbers of the same length as the third
dimension in Dimensions describing monotonically increasing coordinate values.
Increasing integers starting with 0 are used as a default.

Attributes — A list created using vtkADDATTRIBUTE containing one or more
attributes associated with the points in the dataset.

Discussion

This procedure creates a dataset with a regular topology and semiregular geometry
aligned along the x, y, and z axes. See the VTK documentation, which can be down-
loaded from http://public.kitware.com, for more details on the data and attributes
for the RectiliniarGrid dataset format.

vtkRENDERWINDOW Procedure
Renders a VTK window.

Usage

vtkRENDERWINDOW [, window_index]

Input Parameters

window_index — (optional) An integer specifying the index of an existing VTK
window. If omitted, the current window is used.

Keywords

None.

Discussion

Call this procedure after all objects (lights, cameras, surfaces, polygon meshes,
etc.) have been added to the window. This routine starts the rendering process and
creates the initial rendered scene. You need to call this procedure only if you used
the Norender keyword with vtkWINDOW, or if you are making low-level calls to
VTK using vtkCOMMAND.

1050 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Example 1

This example shows the essense of vtkRENDERWINDOW.

vtkwindow, 1, /norender

vtkaxes

vtkrenderwindow

Example 2

A more complicated example:

vtkwindow, 2, /norender

V=[[0,0,0],[1,0,0],[1,1,0],[0,1,0]]

p=[4,0,1,2,3]

vtkpolyshade, v, p

vtkaxes

vtktext, ‘This is VTK’, charsize=[1.0,1.0,1.0], color=’blue’

vtkrenderwindow, 2

See Also

vtkWINDOW, vtkCOMMAND

vtkSCATTER Procedure
Renders 3D points.

Usage

vtkSCATTER, points

Input Parameters

points — A float array of size (3, n) describing x, y, and z points in data coordinates.

vtkSCATTER Procedure 1051

Keywords

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Symbol — A scalar integer describing the type of marker or glyph to be displayed
for each point. Supported values are 0-4 where:

0 = Sphere

1 = Cube

2 = Cone

3 = Cylinder

4 = Earth

Color — An array expression of the same dimensions as the number of points (the
value n above), containing the color index at each point. Alternately an expression
describing one color to be used for all points. If this keyword is omitted, white
points are displayed.

To specify a single color, see vtkWINDOW (page 1065). If a vector of colors is
specified, the color variable can be in any of these formats:

Scale — A float value specifying the scaling factor for the size of each glyph.
(Default: 1.0)

LOD — If nonzero, the glyphs are created as level-of-detail actors to aid in keeping
a high frame-rate during frequent render requests due to user mouse interaction. If
set to a value greater than 1, the number of points to use in the random cloud.

FIX(n) A one-dimensional array of short integers or bytes spec-
ifying an index into the current PV-WAVE color table
for each point. The RGB color for each point is
obtained from the corresponding entry in the current
PV-WAVE color table.

LONG(n) A one-dimensional array of long integers specifying the
24-bit color at each point.

FLOAT(3, n) A floating point array of size (3, n) containing the nor-
malized values specifying the red, green, and blue com-
ponents of the color at each point.

1052 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

NoRotate — Does not perform any camera rotations. Used when a previous call to
vtkSURFACE, vtkSCATTER or vtkPOLYSHADE has already set the camera
angle.

NoErase — If nonzero, prevents the window from being erased to the background
color before drawing the new scene. If not set, then all lights, cameras, and objects
are removed from the scene before objects for the new scene are added.

NoAxes — If present and non zero, then no x, y, and z axes will be drawn.

TextColor — The color for text used for the axes titles. See vtkWINDOW (page
1065) for possible ways to specify the color. (Default: ’white’)

These keywords are passed to vtkAXES:

Other keywords are listed below. For a description of each keyword, see Chapter 3,
Graphics and Plotting Keywords.

Discussion

This procedure plots points in space using three-dimensional markers (glyphs)
with optional axes.

Example
data=FLTARR(3,200)

; Create the data array.

s=DC_READ_FREE(!Data_Dir+'scattered.dat',data,/Column,/Resize)

; Read in the data

vtkSCATTER,data

; A quick look at the data.

TEK_COLOR

; Set up a color table.

s=SIZE(data) & c=INDGEN(s(2))

; Create an array of color values for the points.

[XYZ]Ticks [XYZ]Tickv [XYZ]Tickn TickScale

TickSymbol Labels Sigfig Format

Ax Az Charsize

[XYZ]Title[[XYZ]Range

vtkSLICEVOL Procedure 1053

 vtkSCATTER,data,Color=c,Xtitle='X Values',Ytitle='Y $
Values', $

Ztitle='Z Values',TextColor=16,ax=10,az=100,Scale=.6

; A better look at the data.

See Also

AXIS vtkPLOTS

vtkSLICEVOL Procedure
Creates a sliced 3D volume at specific x, y, z locations.

Usage

vtkSLICEVOL, v, [sx=sx, sy=sy, sz=sz, xc=xc, yc=yc, zc=zc]

Input Parameters

v — A 3D array, the volume to slice.

Keywords

sx — A 1D array, the x coordinate(s) at which to slice the volume.

sy — A 1D array, the y coordinate(s) at which to slice the volume.

sz — A 1D array, the z coordinate(s) at which to slice the volume.

xc — A 1D array with the same number of elements as the first dimension of v, the
x coordinates of the volume.

yc — A 1D array with the same number of elements as the second dimension of v,
the y coordinates of the volume.

zc — A 1D array with the same number of elements as the third dimension of v, the
z coordinates of the volume.

Interp — If set, the shading is interpolated (passed to RESAMP).

Dim — An integer, the number of vertices on each side of each plane. (Default: 25)

1054 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Wireframe — When present and nonzero, a wire-frame mesh is drawn rather than
a shaded surface.

LOD — If nonzero, a level-of-detail actor is created to aid in keeping a high frame-
rate during frequent render requests due to user mouse interaction. If set to a value
greater than 1, the number of points to use in the random cloud.

NoRotate — Does not perform any camera rotations. Used when a previous call to
vtkSURFACE, vtkSCATTER or vtkPOLYSHADE has already set the camera
angle.

NoErase — If nonzero, prevents the window from being erased to the background
color before drawing the new scene. If not set, then all lights, cameras, and objects
are removed from the scene before objects for the new scene are added.

Other keywords are listed below. For a description of each keyword, see Chapter 3,
Graphics and Plotting Keywords.

Discussion

If no slices are requested through the sx, sy, and sz keywords, the volume is sliced
at the midpoints of each index.If xc, yc, or zc are not provided, indices into v are
used.

Example
x = genvect(-5,5,.25)

y = genvect(-4,4,.2)

z = genvect(-3,3,.15)

v = sqrt(TENSOR_ADD(TENSOR_ADD(x^2,0.3*y^2),1.5*z^2))

vtkSliceVol, v, sx=[-4,.4,2.6], sy=-.15, sz=[-3,1], $

 xc=x, yc=y, zc=z, dim=15

See Also

SLICE

Ax Az

vtkSTRUCTUREDGRID Procedure 1055

vtkSTRUCTUREDGRID Procedure
Passes data describing a structured grid to VTK.

Usage

vtkSTRUCTUREDGRID, dimensions, points

Input Parameters

dimensions — A 3-element vector of integers describing dimensions in x, y, and
z. Use “1” for the third dimension if only a two-dimensional array is described.

points — A two-dimensional array of floating point numbers of size (3, n) describ-
ing x, y, and z points.

Keywords

Restore — An associative array containing all of the data and attributes for a poly-
data dataset, usually created using the Save keyword. If this parameter is passed,
then only the keywords Name and Filename can be used.

Name — Specifies a name to be used to create this data source. This name can be
used in calls to vtkCOMMAND.

Filename — File to store data using standard VTK ASCII format.

Save — Returns the data in the specified variable stored in an associative array.
Data is not sent to VTK if this parameter is specified.

Attributes — A list created using vtkADDATTRIBUTE containing one or more
attributes associated with the points in the dataset.

Discussion

1, 2, or 3D point data on a topological grid, where the actual points are specified as
x, y, and z values in Cartesian coordinates. See the VTK documentation, which can
be downloaded from http://public.kitware.com, for more details on the data and
attributes for the StructuredGrid dataset format.

1056 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

vtkSTRUCTUREDPOINTS Procedure
Passes data describing structured points to VTK.

Usage

vtkSTRUCTUREDPOINTS, dimensions

Input Parameters

dimensions — A 3-element vector of integers describing dimensions in x, y, and z.
Use 1 for the third dimension if only a two-dimensional array is described.

Keywords

Restore — An associative array containing all of the data and attributes for a poly-
data dataset, usually created using the Save keyword. If this parameter is passed
then only the keywords Name and Filename can be used.

Name — Specifies a name to be used to create this data source. This name can be
used in calls to vtkCOMMAND.

Filename — File to store data using standard VTK ASCII format.

Save — Returns the data in the specified variable stored in an associative array.
Data is NOT sent to VTK if this parameter is specified.

Origin — A 3-element vector of floating point numbers containing the x, y, and z
origin point for the data.

Spacing — A 3-element vector of floating point numbers containing the spacing
(width, height, length) of the cubical cells that compose the data set.

Attributes — A list created using vtkADDATTRIBUTE containing one or more
attributes associated with the points in the dataset.

Discussion

Definition of a 1, 2, or 3D arrays (describing lines, grids and voxels), their origin,
and spacing. See the VTK documentation, which can be downloaded from http://
public.kitware.com, for more details on the data and attributes for the Structured-
Points dataset format.

vtkSURFACE Procedure 1057

vtkSURFACE Procedure
Renders a surface.

Usage

vtkSURFACE, z [,x] [,y]

Input Parameters

z — A two-dimensional array containing the values that describe the surface. If x
and y are supplied, the surface is plotted as a function of the x and y locations spec-
ified by their contents. Otherwise, the surface is generated as a function of the array
index of each element of z.

x — (optional) A vector or two-dimensional array specifying the x-coordinates for
the surface.

If x is a vector, each element of x specifies the x-coordinate for a column of z. For
example, x(0) specifies the x-coordinate for z(0, *).

If x is a two-dimensional array, each element of x specifies the x-coordinate of the
corresponding point in z (xij specifies the x-coordinate for zij).

y — (optional) A vector or two-dimensional array specifying the y-coordinates for
the surface.

If y is a vector, each element of y specifies the y coordinate for a row of z. For exam-
ple, y(0) specifies the y-coordinate for z (*, 0).

If y is a two-dimensional array, each element of y specifies the y-coordinate of the
corresponding point in z (yij specifies the y-coordinate for zij).

Keywords

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Shades — An array expression of the same dimensions as z, containing the color
index at each point. Alternately, an expression describing one color to be used for
the entire surface or wireframe. If this keyword is omitted, a white surface is
displayed.

1058 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

To specify a single color, see vtkWINDOW (page 1065). If a two-dimensional
array of colors is specified (for an image overlay), the shades variable can be in any
of these formats:

Fix(x, y) — A two-dimensional array of short integers or bytes specifying an index
into the current PV-WAVE color table for each point. The RGB color for each point
is obtained from the corresponding entry in the current PV-WAVE color table.

Long(x, y) — A two-dimensional array of long integers specifying the 24-bit color.

Float(3, x, y) — A floating point array of size (3, x, y) containing the normalized
values specifying the red, green, and blue components of the color at each point.

Float(4,x) — A floating point array of size (4, x, y) containing the normalized val-
ues specifying the red, green, blue, and alpha components of the color at each
point. The alpha component is the transparency where 0.0 is completely transpar-
ent and 1.0 is opaque.

Wireframe — When present and nonzero, a wire-frame mesh is drawn rather than
a shaded surface.

LOD — If nonzero, a level-of-detail actor is created to aid in keeping a high frame-
rate during frequent render requests due to user mouse interaction. If set to a value
greater than 1, the number of points to use in the random cloud.

NoRotate — Does not perform any camera rotations. Used when a previous call to
vtkSURFACE, vtkSCATTER or vtkPOLYSHADE has already set the camera
angle.

NoAxes — If present and non zero, then no x, y, or z axes will be drawn.

NoErase — If nonzero, prevents the window from being erased to the background
color before drawing the new scene. If not set, then all lights, cameras, and objects
are removed from the scene before objects for the new scene are added.

TextColor — The color to use for text used for the axes titles. See vtkWINDOW
for possible ways to specify the color. (Default: ’white’)

These keywords are passed to vtkAXES:

Other keywords are listed below. For a description of each keyword, see Chapter 3,
Graphics and Plotting Keywords.

[XYZ]Ticks [XYZ]Tickv [XYZ]Tickn TickScale

TickSymbol Labels Sigfig Format

Ax Az Charsize

vtkSURFACE Procedure 1059

Discussion

This procedure is similar to the SURFACE and SHADE_SURF procedures for
PV-WAVE windows. Wireframes can be produced as well as surfaces shaded in
one color or overlaid with an image. Transparency is also supported.

Example

This example demonstrates a surface created in a regular PV-WAVE window com-
pared to one using vtkSURFACE.

pikes=FLTARR(60,40)

s=DC_READ_FREE(!Data_Dir+'pikeselev.dat',pikes)

; Read in the data values for elevation.

snow=FLTARR(60,40)

s=DC_READ_FREE(!Data_Dir+'snowpack.dat',snow)

; Read in the data for snowpack

loadct,5

; Load a color table.

surface,pikes

; Create a wiremesh surface using a regular PV-WAVE window.

vtksurface,pikes/250,/wireframe

; Create a wiremesh surface using the VTK toolkit. Notice that the toolkit doesn’t scale
; the data for you so in order to make sense out of the resulting graphic you need to
; scale the data yourself, in this example it was done by dividing by 250.

shade_surf,pikes,shades=bytscl(snow)

; Create a shaded surface using a regular PV-WAVE window.

vtksurface,pikes/250,shades=bytscl(snow)

; Create a shaded surface using the VTK toolkit. As above, the user does the scaling
; of the data.

See Also

AXIS, vtkAXES

[XYZ]Title[[XYZ]Range

1060 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

vtkSURFGEN Procedure
Generates a 3D surface from sampled points assumed to lie on a surface.

Usage

vtkSURFGEN, points

Input Parameters

points — A 3, n array of points that lie on a surface.

Keywords

Reverse — By default, the normals of the computed surface are inward facing. If
outward normals are required, set this keyword.

Neighbors — An integer, the number of neighbors each points has. Use a larger
value if the spread of points is not even. (Default: 20)

Spacing — A float, the spacing of the 3D sampling grid. If not set, the VTK class
makes a reasonable guess.

Filename — An ASCII VTK file to create containing the dataset generated by the
VTK filter.

Data — (Output). A returned associative array containing two keys:
data(“POINTS”) is a 3, n float array containing the points generated by the VTK
filter and data(“VERTICES”) is an n+1 element long array containing topology
information for the generated dataset. A filename must be defined to have data
returned by this keyword.

Name — A string, the name to be used to create this object. If an undefined variable
is used or no name is specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Color — The color to use for the generated surface. See vtkWINDOW for possible
ways to specify the color. (Default: ’white’)

Wireframe — When present and nonzero, a wire-frame mesh is drawn rather than
a shaded surface.

LOD — If nonzero, a level-of-detail actor is created to aid in keeping a high frame-
rate during frequent render requests due to user mouse interaction. If set to a value
greater than 1, the number of points to use in the random cloud.

vtkTEXT Procedure 1061

This routine also accepts these keywords to control the initial camera and the axes
(see vtkSURFACE and vtkAXES):

Example
@math_startup

s = TRANSPOSE(random(100, /Sphere, Parameter=3))

vtkSURFGEN, s, /NoAxes

vtkSCATTER, s, /NoAxes, Symb=1, Color='red', Scale=0.5, $

 /NoRotate, /NoErase

See Also

vtkAXES, vtkSURFACE

vtkTEXT Procedure
Adds a text string.

Usage

vtkTEXT, string

Input Parameters

string — The scalar string containing the text that is to be output to the display sur-
face. If not of string type, it is converted prior to use.

[XYZ]Range Ax Az NoRotate

NoAxes NoErase Charsize TextColor

[XYZ]Title [XYZ]Ticks [XYZ]Tickv [XYZ]Tickn

Tickscale Ticksymbol Labels Format

Sigfig

1062 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Keywords

Name — Specifies a name to be used to create this object. If an undefined variable
is used or no name specified, then a random name is used. This name can be used
in calls to vtkCOMMAND to modify this object.

Position — An array of three floating point numbers specifying the x, y, and z posi-
tion for the beginning of text. (Default: [0,0,0])

Color — The color to use for text. See vtkWINDOW (page 1065) for possible ways
to specify the color. (Default: ’white’)

Follow — If nonzero, forces the text to always be facing the camera.

Orientation — An array of three floating point numbers specifying the x, y, and z
rotations of text in degrees. The actual rotations are performed in this order: z then
x and finally y. This keyword has no effect if Follow is specified.

Keyword Charsize is also supported. For a description, see Chapter 3, Graphics
and Plotting Keywords.

Discussion

This procedure is similar to the XYOUTS procedure for PV-WAVE windows.

Example
vtkText, "This is vtkText", color="red", charsize=10

vtkTVRD Function
Returns the contents of a VTK window as a bitmapped image.

Usage

image = vtkTVRD([window_index])

Input Parameters

window_index — (optional) An integer specifying the index of an existing VTK
window. If omitted, the current window is used.

vtkUNSTRUCTUREDGRID Procedure 1063

Keywords

Filename — File path to store a temporary PPM file. Default is “wave.ppm.”

Returned Value

image — An array (3, width, height) of bytes containing the 24-bit image.

Discussion

This function works like TVRD for PV-WAVE windows. It uses vtkPPMWRITE
and vtkPPMREAD to save and then read the contents of a window. The temporary
file created is deleted when done.

Example
vtkWINDOW, 7

vtkAXES

tv, vtkTVRD(7), /TRUE

See Also

TVRD, vtkPPMWRITE, vtkPPMREAD

vtkUNSTRUCTUREDGRID Procedure
Passes data describing an unstructured grid to VTK.

Usage

vtkUNSTRUCTUREDGRID, points, cells, cell_types

Input Parameters

points — A two-dimensional array of floating point numbers of size (3, n) describ-
ing x, y, and z points.

cells — A Vector of integers describing cells, organized as vertex count followed
by indices into Points, repeated for all cells.

1064 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Cell_types — A Vector of integers describing the cell type for each cell. Valid types
are values between 1-12.

Keywords

Restore — An associative array containing all of the data and attributes for a poly-
data dataset, usually created using the Save keyword. If this parameter is passed,
then only the keywords Name and Filename can be used.

Name — Specifies a name to be used to create this data source. This name can be
used in calls to vtkCOMMAND.

Filename — File to store data using standard VTK ASCII format.

Save — Returns the data in the specified variable stored in an associative array.
Data is NOT sent to VTK if this parameter is specified.

Attributes — A list created using vtkADDATTRIBUTE containing one or more
attributes associated with the points in the dataset.

Discussion

Arbitrary combinations of twelve (12) cell types, ranging from points, lines, poly-
gons to voxels. See the VTK documentation, which can be downloaded from http:/
/public.kitware.com, for more details on the data and attributes for the UnStruc-
turedGrid dataset format.

vtkWDELETE Procedure
Closes a VTK window without shutting down the Tcl process.

Usage

vtkWDELETE [, window_index]

Input Parameters

window_index — (optional) An integer specifying the index of an existing VTK
window. If omitted, the current window is used.

vtkWINDOW Procedure 1065

Keywords

All — If nonzero, causes all VTK windows to be closed.

Discussion

This procedure works like WDELETE for PV-WAVE windows. It closes an indi-
vidual VTK window but does not shut down the Tcl process. Use vtkCLOSE to
close all windows and shut down the spawned Tcl process.

Example 1

Deleting a window.

vtkwindow, 1

vtkwdelete

Example 2
vtkwindow, 1

vtkwindow,2

vtkwindow,3

vtkwdelete, /all

See Also

vtkCLOSE, vtkWINDOW

vtkWINDOW Procedure
Creates a VTK window.

Usage

vtkWINDOW [,window_index]

Input Parameters

window_index — (optional) An integer specifying the index of the newly created
window.

1066 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

If window_index is omitted, 0 is used as the index of the new window.

If the value of window_index specifies an existing window, the existing window is
deleted and a new window is created.

Keywords

Free — If nonzero, creates a window using an unused window index. This keyword
can be used instead of specifying the window_index parameter.

NoRender — If nonzero, prevents individual objects (vtkLIGHT, vtkAXES, vtk-
POLYSHADE, etc.) from being rendered as they are added to the window.
Specifying NoRender can speed up the initial display of a scene if you have multi-
ple objects in it. If specified, you must manually call vtkRENDERWINDOW after
you have added all of your objects to the window.

Background — Background color for the window. The color can be specified in
any of the following ways (the color ‘red’ is used here as an example):

/NoInteract — If nonzero, indicates that you do not wish to provide the standard
set of mouse controls for viewing the 3D scene. The resulting scene can be manip-
ulated only by programmatically setting the positional parameters for objects or
cameras.

XPos, YPos — The x and y positions of the lower-left corner of the new window,
specified in device coordinates.

If no position is specified, a position of (0,0) is used.

XSize — The width of the window, in pixels. (Default: 400)

‘red’ See the file <vni>/vtk-3_2/lib/vtkcolornames.pro for
a complete list of supported color names, where <vni> is
the path to the PV-WAVE installation.

‘FF0000’XL A long integer hexadecimal value specifying the 24-bit
color.

[1.0, 0.0, 0.0] A three-element vector of normalized floating point val-
ues specifying the red, green, and blue components of the
color.

2 If a short byte or short integer value is passed, the RGB
color is obtained from the corresponding entry in the cur-
rent PV-WAVE color table. In this case, when
TEK_COLOR has been called, color index 2 is red.

vtkWRITEVRML Procedure 1067

YSize — The height of the window, in pixels. (Default: 400)

Discussion

This procedure is similar to the PV-WAVE WINDOW command. It allows the cre-
ated window to have built-in interaction associated with it.

Example 1

This example shows how to bring up a VTK window.

vtkWINDOW, 1

Example 2

This example shows how to bring up a VTK window with a blue background and
with the mouse controls disabled. windownum is the number of the free window.

vtkWINDOW, windownum, /Free, background=’blue’, /nointeract

See Also

vtkRENDERWINDOW, vtkCLOSE, vtkWDELETE, vtkERASE, vtkWSET

vtkWRITEVRML Procedure
Creates a Virtual Reality Modeling Language file (VRML .wrl file) from a scene
in a VTK window.

Usage

vtkWRITEVRML, filename [, WindowID=id, Speed=s]

Input Parameters

Filename — A string, the file to write (should end in “.wrl”).

Keywords

Windowid — An integer, the VTK window to use as the source. (Default: the cur-
rently active VTK window)

1068 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Speed — A float, the navigation speed. (Default: 4.0)

Discussion

To view a VRML .wrl file in a browser, you need a plug-in. Consult the FAQ at
http://www.vrml.org for current information and to obtain a plug-in.

See Also

VRML Routines

vtkWSET Procedure
Sets the active VTK window.

Usage

vtkWSET [, window_index]

Input Parameters

window_index — (optional) An integer specifying the index of an existing VTK
window. If omitted, the current window is used.

Keywords

None.

Discussion

This procedure works like WSET for PV-WAVE windows, which is used to select
the current, or "active" window to be used by the VTK routines.

Example

Setting the window to the first window opened.

vtkwindow, 1

vtkwindow, 2

vtkwindow, 3

vtkWSET Procedure 1069

vtkaxes

vtkwset, 1

vtkaxes

See Also
vtkWINDOW, WSET

1070 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

2
Procedure and Function Reference

WAIT Procedure
Suspends execution of a PV-WAVE program for a specified period.

Usage

WAIT, seconds

Input Parameters

seconds — The duration of the wait, in seconds.

Keywords

None.

Discussion

WAIT is useful in interactive programs that repetitively read cursor positions.

NOTE Because of other activity on the system, the duration of program suspen-
sion may be longer than requested.

See Also

HAK, MESSAGE, TVCRS

WCOPY Function (Windows)
Copies the contents of a graphics window onto the Clipboard.

Usage
status = WCOPY([window_index])

Input Parameters
window_index — (optional) The index of the window to copy to the clipboard. If
not specified, the current window is assumed.

Output Parameters
None.

WCOPY Function (Windows) 1071

Returned Value
status — The value returned by WCOPY; expected values are:

Keywords

None.

Discussion

You can copy graphics to the Clipboard in two ways:

• The WCOPY function

• The Copy to Clipboard option on the graphics window Control menu

Example
This example demonstrates a simple method for resizing graphics using WCOPY
and WPASTE.

WINDOW, 2,

SHADE_SURF, DIST(40)

; Display some graphics in the window.

— Now, resize the window using the mouse. —

NOTE The graphics inside the window are not resized.

status = WCOPY(2)

; Copy the graphics to the Clipboard.

status = WPASTE(2)

; Paste the plot back into the window. The graphics are redrawn to fit
; in the resized window.

See Also

WINDOW, WPASTE

Windows USERS The graphics window Control menu includes a command that
copies graphics to the Clipboard. For information on the Control menu, see , in the
PV-WAVE User’s Guide.

< 0 Indicates an error.

0 Indicates a successful copy.

1072 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

WDELETE Procedure
Deletes the specified window.

Usage

WDELETE [, window_index]

Input Parameters

window_index — (optional) The window index of the window to be deleted. If not
specified, deletes the current window, and the system variable !D.Window is set to
the index of the first open window (or to –1 if no other windows are open).

Keywords

All — If present and nonzero, deletes all open windows.

X_No_Close — (UNIX/OpenVMS Only) If present and nonzero, allows the win-
dow to be deleted for PV-WAVE, but remain active for the X Window System
server. Otherwise, the window is deleted for both systems.

See Also

ERASE, WINDOW, WSET, WSHOW

Windows USERS The graphics window Control menu provides a function for
closing a window. For information on the Control menu, see , in the PV-WAVE
User’s Guide.

WEOF Procedure 1073

WEOF Procedure
(OpenVMS Only) Writes an end-of-file mark on the designated unit at the current
position.

Usage

WEOF, unit

Input Parameters

unit — An integer between 0 and 9 specifying the magnetic tape unit on which the
end-of-file mark will be written. (Do not confuse this parameter with file logical
unit numbers.)

Keywords

None.

Discussion

To use WEOF, you must mount the tape as a foreign volume. The end-of-file mark
is also sometimes called a tape mark.

See Also

SKIPF, TAPRD, TAPWRT

For more information, see in Chapter 8 of the PV-WAVE Programmer’s Guide.

WgAnimateTool Procedure
Creates a window for animating a sequence of images.

Usage

WgAnimateTool, image_data [, parent [, shell]]

Input Parameters

image_data — A 3D array of images. The dimensions of the array are (m, n,
n_frames), where (m,n) is the size of an individual image, and n_frames is the total
number of frames in the sequence.

1074 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

parent — (optional) The widget or shell ID of the parent widget (long). If parent
is not specified, WgAnimateTool runs on its own (i.e., in its own event loop).

Output Parameters

shell — (optional) The ID of the newly created widget. If the procedure fails, zero
(0) is returned.

Keywords

Cmap — The index of the color table to load when the widget is created; a positive
integer in the range (0…15).

Delay — The minimum elapsed time between displayed images, specified in mil-
liseconds (floating point).

Dims — A three-element vector specifying the size of the images to be read from
the file, and the number of images to read. The elements of the vector are [m, n,
n_frames], where (m,n) is the size of an individual image, and n_frames is the total
number of frames in the sequence.

Do_tvscl — Indicates whether TVSCL or TV should be used to scale the image
values to the current color table.

1 Specifies use of TVSCL.

0 Indicates that TV is used instead (no scaling).

File — A string containing the name of the file from which the image data is read.
When using the File keyword, the Dims keyword must also be supplied. If present,
the input variable image_data is ignored.

Order — The order in which the image is drawn. If present and nonzero, the image
is inverted. In other words, the image is drawn from bottom to top instead of from
top to bottom.

Pixmap — Indicates whether pixmaps should be used for the animation.

1 Specifies the use of pixmaps.

0 Specifies the data is stored in a variable.

Pixmaps dramatically improve the speed of the animation, but require more mem-
ory than when data stored in variables is used.

Position — A two-element vector specifying the x- and y-coordinates of the upper-
left corner of the AnimateTool window (long integer). The elements of the vector

WgAnimateTool Procedure 1075

are [x, y], where x (horizontal) and y (vertical) are specified in pixels. These coor-
dinates are measured from the upper-left corner of the screen.

Title — A string containing the title that appears in the header of the AnimateTool
window. Default value is “Animate Tool”.

Color/Font Keywords

For additional information on the color and font keywords, see Setting Colors and
Fonts in the PV-WAVE Application Developer’s Guide.

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Discussion

WgAnimateTool is an interactive window that lets you use the mouse to control the
pace and direction of an animated series of images.

Using the WgAnimateTool window is similar in many ways to using the WgMovi-
eTool window, but WgAnimateTool is intended to be used as a stand-alone utility
widget, while WgMovieTool is designed so that it can be included inside larger lay-
out widgets.

Input Data Requirements

The animation can use data from either pixmaps or a variable. Although the anima-
tion will run faster using pixmaps, it does require more memory to store the data as
a pixmap than as a variable.

When reading the data from a file, the file containing the data must be a binary file
containing the images in sequential order.

Event Handling

You can use the AnimateTool widget in one of the following two ways:

• From the WAVE> prompt — Enter the procedure name at the WAVE> prompt
to display the AnimateTool widget. The AnimateTool widget handles its own
event loop by calling WwLoop.

1076 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

• Stand-alone widget in its own window created by another application —
The AnimateTool widget has its own Main window, but the application (not the
AnimateTool widget) handles the event loop by calling WwLoop.

The output parameter shell can be returned only if you also supply the input param-
eter parent.

Figure 2-77 WgAnimateTool creates an interactive window that lets you use the mouse to
control the orientation, pace, and direction of an animated series of images.

Contents of the Window

The AnimateTool window has two main parts — the display area and the control
area.

AnimateTool Display Area

The display area is the largest area of the window; it is where the animation
sequence takes place.

AnimateTool Control Area

Use the following controls to operate the AnimateTool window:

• Reverse button — Cycle through the images from last to first.

WgAnimateTool Procedure 1077

• Stop button — Freeze display at the current image.

• Forward button — Cycle through the images from first to last.

• Mode — Select Step to have the sequence proceed only when you click on one
of the arrow buttons. Select Continuous to have AnimateTool move through the
images in a non-stop manner, pausing only when you click the Stop button.
Select Auto Stop to have AnimateTool stop sequencing when it reaches either
end of the data.

• Cycle — When enabled, the animation sequences repeatedly through the data,
alternating between forward and reverse. When disabled, the animation returns
to the first (or last) image in image_data after every image in the sequence has
been displayed.

• Timer delay — Decrease or increase the rate of display. The number shown
above the slider is the number of milliseconds delay between contiguous
images in the animation sequence.

• Frame — The ordinal number of the currently displayed image is displayed
above this slider. If you wish, use the left mouse button to drag the slider and
display a different image.

• Flip — When enabled, the first data value is used to draw the pixel in the
upper-left corner of the image. When disabled, the first data value is used to
draw the pixel in the lower-left corner of the image.

• Auto Tvscl — By determining whether the TV or TVSCL is used to draw the
images, controls whether the input image data is automatically scaled to use
the full range of available colors. Selecting this option may increase the con-
trast of the displayed images. Auto Tvscl does not affect the actual data; it only
affects the display of the data.

• Pixmap — When enabled, the data is stored in pixmaps; when disabled, the
data is taken directly from the variable.

• Dismiss — Destroy the AnimateTool window and erase it from the screen.

Example

Enter the commands shown below into a file, and compile the procedure with the
.RUN command. If the variable parent is defined, WgAnimateTool is created as
a child of parent; otherwise, WgAnimateTool runs on its own (i.e., in its own
event loop).

When you are finished interacting with the WgAnimateTool window, close it by
clicking the Dismiss button.

PRO Sample_wganimatetool, parent, tool_shell

1078 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

heart = BYTARR(256, 256, 15)

; Define a variable to hold the data.
IF !Version.platform EQ ’VMS’ THEN $

OPENR, u, GETENV(’WAVE_DIR’)+$
’[data]heartbeat.dat’, /Get_lun $

ENDIF ELSE BEGIN

OPENR, u, !Dir+’/data/heartbeat.dat’, /Get_lun

ENDELSE

READU, u, heart

; Read the file that of images showing a beating human heart.

CLOSE, u

FREE_LUN, u

; Close the file and free the LUN.

IF N_ELEMENTS(parent) NE 0 THEN BEGIN

WgAnimateTool, heart, parent, tool_shell, $
/Do_tvscl, /Pixmap

; Create WgAnimateTool as a child of the widget known as “parent”.
; The window of the newly created widget is returned via the optional
; output parameter “tool_shell”.

ENDIF ELSE BEGIN

WgAnimateTool, heart, /Do_tvscl, /Pixmap

; Create WgAnimateTool and display it as its own Main window. In
; other words, the WgAnimateTool window runs on its own (i.e., in its
; own event loop).

ENDELSE

END

See Also

MOVIE, WgMovieTool

For more information about how to transfer image data to variables, refer to in
Chapter 8 of the PV-WAVE Programmer’s Guide.

For more information about pixmaps, refer to Appendix B, Output Devices and
Window Systems.

For more information about color table indices, refer to in Chapter 11 of the
PV-WAVE User’s Guide.

For more information about how to write an application program based on WAVE
Widgets, refer to . For more information about how to write an application program

WgCbarTool Procedure 1079

based the PV-WAVE Widget Toolbox, refer to , in the PV-WAVE Application
Developer’s Guide.

WgCbarTool Procedure
Creates a simple color bar that can be used to view and interactively shift a color
table.

Usage

WgCbarTool [, parent [, shell [, windowid [, movedCallback], [, range]]]]

Input Parameters

parent — (optional) The widget or shell ID of the parent widget (long). If parent
is not specified, WgCbarTool runs on its own (i.e., in its own event loop).

movedCallback — (optional) A string containing the name of the callback routine
that is executed when the color bar is shifted to the left or right.

range — (optional) The range of colors to be displayed in the color bar. The default
is to display the entire range of colors, as defined in the system variable
!D.Table_Size.

Output Parameters

shell — (optional) The ID of the newly created widget. If the procedure fails, zero
(0) is returned.

windowid — (optional) The window ID of the graphics window. (For information
on window IDs, see the description for the WINDOW procedure.)

Keywords

Cmap — The index of the color table to load when the widget is created; a positive
integer in the range (0…15).

Horizontal — If present and nonzero, the color bar is oriented horizontally (see).
(Default: vertical orientation)

Popup — If present and nonzero, the color bar widget is displayed in its own Main
window.

Position — A two-element vector specifying the x- and y-coordinates of the upper-
left corner of the CbarTool window (long integer). The elements of the vector are

1080 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

[x, y], where x (horizontal) and y (vertical) are specified in pixels. These coordi-
nates are either: 1) if parent is present and the Popup keyword is not specified or
has a value of zero, measured from the upper-left corner of a layout (container)
widget or 2) if the Popup keyword is present and nonzero (regardless of whether
parent is present and/or nonzero), measured from the upper-left corner of the
screen.

Size — A two-element vector specifying the width and height of the color bar (long
integer). If not specified, the default size of the color bar is 30-by-256 pixels.

Title — A string containing the title that appears in the header of the CbarTool win-
dow. Default value is “Color Bar”.

Vertical — If present and nonzero, the color bar is oriented vertically. This is the
default orientation.

Color/Font Keywords

For additional information on the color and font keywords, see

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Attachment Keywords

For additional information on attachment keywords, see

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the color bar widget is attached to the top of the specified widget. If no
widget ID is specified (for example, /Bottom), then the bottom of the color bar
widget is attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the color bar widget is attached to the right side of the specified widget. If no wid-
get ID is specified (for example, /Left), then the left side of the color bar widget
is attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the color bar widget is attached to the left side of the specified widget. If no wid-
get ID is specified (for example, /Right), then the right side of the color bar
widget is attached to the right side of the parent widget.

WgCbarTool Procedure 1081

Top — If a widget ID is specified (for example, Top=wid), then the top of the
color bar widget is attached to the bottom of the specified widget. If no widget ID
is specified (for example, /Top), then the top of the color bar widget is attached to
the top of the parent widget.

Discussion

The color bar displays the colors of the current color table and “rotates” them.

To rotate the color table using the color bar, press and drag the left mouse button
inside the color bar. As you “slide” colors into different color table indices, the col-
ors that “scroll off” the end of the color table are added to the opposite end.

NOTE Use the window manager menu of the window frame to dismiss the Cbar-
Tool window from the screen.

Figure 2-78 WgCbarTool creates an array of colors that match the colors in the current color
table. This color bar widget has been created using the Horizontal option; the default is for
the color bar to be displayed in a vertical orientation.

Event Handling

You can use the color bar widget in one of the following three ways:

• From the WAVE> prompt — Enter the procedure name at the WAVE> prompt
to display the color bar widget. The color bar widget handles its own event loop
by calling WwLoop.

• Stand-alone widget in its own window created by another application —
If the Popup keyword is present and nonzero, the color bar widget has its own
Main window. The application (not the color bar widget) handles the event
loop by calling WwLoop.

• Combined with other widgets in a layout widget — Another application
combines the color bar widget with other widgets inside a layout widget. The
application (not the color bar widget) handles the event loop by calling
WwLoop.

1082 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

When the input parameter parent is present and nonzero, the widget operates in
either the second or third mode listed, depending on the value of the Popup key-
word. The output parameter shell can be returned only if you also supply the input
parameter parent.

You can use the output parameter windowid to keep track of the PV-WAVE win-
dow ID that is assigned to the color bar. You can create multiple instances of the
color bar; each one will be assigned a different PV-WAVE window ID.

The Colors Common Block

This procedure modifies the PV-WAVE internal color table, as well as the color
table variables in the Colors common block.

Most color table procedures maintain the current color table in a common block
called Colors, defined as follows:

COMMON Colors, r_orig, g_orig, b_orig, r_curr, g_curr, b_curr

The variables are integer vectors of length equal to the number of color indices.
Your program can access these variables by declaring the common block. The
modifications you make to the color table by interacting with the CbarTool widget
are stored in r_curr, g_curr, and b_curr.

Example

Enter the commands shown below into a file, and compile the procedure with the
.RUN command. If the variable parent is defined, WgCbarTool is created as a
child of parent; otherwise, WgCbarTool runs on its own (i.e., in its own event
loop).

When you are finished interacting with the WgCbarTool window, close it using the
window manager menu.

PRO Sample_wgcbartool, parent, tool_shell

IF N_ELEMENTS(parent) NE 0 THEN BEGIN

WgCbarTool, parent, tool_shell, /Horizontal, /Popup

; Create WgCbarTool as a child of the widget known as “parent”.
; The window of the newly created widget is returned via the optional
; output parameter “tool_shell”.

ENDIF ELSE BEGIN

WgCbarTool, /Horizontal

; Create a horizontally oriented WgCbarTool and display it as its own
; Main window (see). In other words, the WgCbarTool
; window runs on its own (i.e., in its own event loop).

ENDELSE

WgCeditTool Procedure 1083

END

See Also

WgCeditTool

For more information about color table indices, refer to in Chapter 11 of the
PV-WAVE User’s Guide.

For more information about how to write an application program based on WAVE
Widgets, refer to . For more information about how to write an application program
based on the PV-WAVE Widget Toolbox, refer to .

WgCeditTool Procedure
Creates a full-featured set of menus and widgets enclosed in a window; this win-
dow allows you to edit the values in PV-WAVE color tables in many different
ways.

Usage

WgCeditTool [, parent [, shell]]

Input Parameters

parent — (optional) The widget or shell ID of the parent widget (long). If parent
is not specified, WgCeditTool runs on its own (i.e., in its own event loop).

Output Parameters

shell — (optional) The ID of the newly created widget. If the procedure fails, zero
(0) is returned.

Keywords

Cmap — The index of the color table to load when the widget is created; a positive
integer in the range (0…15).

Position — A two-element vector specifying the x- and y-coordinates of the upper-
left corner of the CeditTool window (long integer). The elements of the vector are
[x, y], where x (horizontal) and y (vertical) are specified in pixels. These coordi-
nates are measured from the upper-left corner of the screen.

1084 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Title — A string containing the title that appears in the header of the CeditTool
window. Default value is “Color Editor”.

Color/Font Keywords

For additional information on the color and font keywords, see

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Discussion
Using the features of this window, you can edit individual color table values, or you
can change ranges of values. (Range of colors can be selected and linearly interpo-
lated.) You can use either sliders or a color wheel to adjust the current color.

You use a palette of color cells to select the current color — point to the color that
interests you and click the left mouse button to select it. In this sense, the CeditTool
window is like an artist’s palette, where basic colors are mixed to produce different
colors.

You can use either the RGB, HLS, or the HSV color system to create a new color
table, and you can view the result as a color bar or as a set of three intensity graphs.
You can store color tables you have modified as custom color tables, and they will
be available for your later use.

In some ways, the WgCeditTool window is similar to the WgCtTool window, in
that it provides easy ways to interactively modify color tables. For example, with
just a few clicks, you can use the WgCeditTool window to edit individual colors in
the color table. Or you can use the Options menu to open several other utility wid-
gets. But if you do not need all the options of the WgCeditTool window, or if you
just need a quick way to stretch or reverse a color table, then use the WgCtTool
window, instead.

WgCeditTool Procedure 1085

Figure 2-79 The WgCeditTool window lets you use the mouse to create a new color table
based on either the HLS, HSV, or RGB color systems.

What is a Color Table?

On workstations that support color, the specific colors that are used depend on the
current color table. A color table maps data values into colors. Many workstations
support thousands of different colors, but only some number, usually 256, can be
displayed at any one time.

By default, WgCeditTool uses as many colors in the color table as are currently
available in the workstation’s colormap. This number depends on the colors that
have already been allocated by other applications running on that workstation.

The Colors Common Block

This procedure modifies the PV-WAVE internal color table, as well as the color
table variables in the COLORS common block.

Most color table procedures maintain the current color table in a common block
called Colors, defined as follows:

COMMON Colors, r_orig, g_orig, b_orig, r_curr, g_curr, b_curr

1086 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

The variables are integer vectors of length equal to the number of color indices.
Your program can access these variables by declaring the common block. The
modifications you make to the color table by interacting with the CeditTool widget
are stored in r_curr, g_curr, and b_curr.

Custom Color Table File

The names of custom color tables that have been saved are stored in a file named
.wg_colors. This file is placed in your home directory, which in UNIX is
defined by $HOME, and in OpenVMS is defined by SYS$LOGIN.

CAUTION Do not attempt to edit the .wg_colors file — doing so could lead
to unpredictable results.

Contents of the Window

The CeditTool window has three main parts — the color palette area, the control
area, and the message area. The options provided by the menu bar are discussed in
a later section.

CeditTool Color Palette Area

An array of cells, one for each color index from the colormap. A message near the
bottom of the window informs you how many colors were available to PV-WAVE,
and thus how many color cells could be displayed.

CeditTool Control Area

The window’s control area contains sliders, a menu, and text fields that are used to
manipulate colors:

• Color Model (menu) — Choose a color system from the menu. By default, the
CeditTool uses the RGB color system. For more information about color sys-
tems, refer to in Chapter 11 of the PV-WAVE User’s Guide.

• Color Cell Text Fields and Sliders — These controls allow you to modify the
three basic components of any color in the color table. The labels on the text
fields and sliders change to coincide with the current color system. First, select
a color to modify by clicking on one of the color cells in the display area, or by
entering its index number in the Selected Color text field. To modify the
selected color, either enter a new color value in one of the text fields, or use the
slider to change the value. If you enter a new color value into a text field, press
<Return> to apply the new value to the slider and the color cell that corre-

WgCeditTool Procedure 1087

sponds to the selected color. If you use the sliders, the change is applied
immediately as the slider moves.

• Selected Color — The index number of the currently selected color in the
color table. Once a color is selected, other sliders and text fields in the tool con-
trol area can be used to modify its composition. Select a color by clicking the
left mouse button on a color cell in the palette of cells, or by entering the color’s
index number in this text field and pressing <Return>.

• Ramp Start and End — Two text fields where you can enter color table indi-
ces between which the CeditTool will perform a linear color interpolation; this
is an easy way to edit the current color table. Either enter the beginning and
ending color indices in the Ramp Start and Ramp End text fields or use the
mouse to select the ramp’s starting and ending colors. (To use the mouse, click
the left mouse button on the starting color cell and the middle mouse button on
the ending color cell.) Select Edit=>Ramp on the CeditTool window. The
affected cells in the displayed color table are updated immediately, although no
permanent change is made until you save the color table as a custom color
table.

CeditTool Menu Bar

The CeditTool menu bar consists of four menu buttons located near the top of the
window:

Controls Menu

• Save Custom — Save the current set of color indices using the same custom
color table name as before.

• Save As Custom — Save the current set of color indices as a new custom color
table with a unique name.

• Rename Custom — Rename a custom color table. You must select the custom
color table from the Custom Color Table option menu (select ColorTa-
bles=>Custom) before you can rename it.

• Delete Custom — Delete one of the custom color tables from the list. For
details about where this list of color tables is stored, refer to Custom Color
Table File on page 1086.

• Exit — Destroy the CeditTool window and all its children.

1088 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Edit Menu

• Ramp — Create a color ramp between the start ramp color and the end ramp
color. See the description of Ramp Start and Ramp End on the previous page for
more information about choosing start and end ramp colors.

• Restore — Restore the original color map for the selected color table.

ColorTables Menu

• System — Display a list of system color tables. System color tables are pro-
vided with PV-WAVE and cannot be modified.

• Custom — Display a list of custom color tables. These are color tables that
you have created using Controls=>Save Custom or Controls=>Save As Cus-
tom (from the Controls menu).

Options Menu

• Color Wheel — Select the HLS or HSV components for a particular color by
interacting with a dial and a slider; the color wheel is shown in .

The characteristics you can adjust in the dial are: 1) hue (azimuth of mouse
from the center), and 2) saturation (distance from the center).

The characteristics you can adjust in the vertical slider are value (in the HSV
color system) or lightness (in the HLS color system).

TIP The farther you click from the center of the wheel (with the left mouse button),
the more saturated the color (for that particular hue).

• Intensity Graphs — The value of each of the three color system parameters
(HLS or HSV) is plotted versus pixel value in a separate line graph. This results
in three line graphs showing the current values of the three parameters for the
current color table, as shown in .

• Color Bar — Display a vertical color bar; this color bar displays every one of
the colors in the current color table; a full-range color bar is shown in .

The color bar feature lets you display the colors of the current color table and
“rotate” them. To rotate the color table using the color bar, press and drag the
left mouse button up or down in the color bar.

If you have any other CeditTool options displayed on your screen, like the
color wheel, you will see immediate effects as the color table shifts in relation
to the mouse’s movement.

WgCeditTool Procedure 1089

NOTE As you “slide” colors into different color table indices, the colors that
“scroll off” the end of the table are added to the opposite end.

• Color Bar Range — Display a vertical color bar displaying only the range of
selected colors; a partial-range color bar is shown in . The range of selected
colors is the same as the range chosen for the linear interpolation in the text
fields Ramp Start and Ramp End.

Event Handling

You can use the CeditTool widget in one of the following two ways:

• From the WAVE> prompt — Enter the procedure name at the WAVE> prompt
to display the CeditTool widget. The CeditTool widget handles its own event
loop by calling WwLoop.

• Stand-alone widget in its own window created by another application —
The CeditTool widget has its own Main window, but the application (not the
CeditTool widget) handles the event loop by calling WwLoop.

The output parameter shell can be returned only if you also supply the input param-
eter parent.

1090 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Figure 2-80 Utility widgets accessible via WgCeditTool’s Options menu. The four utility wid-
gets are (starting from the upper left, proceeding clockwise): 1) intensity graphs, 2) a color
bar showing the entire range of the color table, 3) a color bar showing only a selected range
of the color table (range modifiable by user), and 4) a color wheel and slider that can be used
to interactively modify the current color. For more information about any of these utility wid-
gets, refer to the Options Menu section.

WgCeditTool Procedure 1091

Example

Enter the commands shown in this example into a file, and compile the procedure
with the .RUN command. If the variable parent is defined, WgCeditTool is cre-
ated as a child of parent; otherwise, WgCeditTool runs on its own (i.e., in its
own event loop).

When you are finished interacting with the WgCeditTool window, close it by
selecting Controls=>Exit.

PRO Sample_wgcedittool, parent, tool_shell

IF N_ELEMENTS(parent) NE 0 THEN BEGIN

WgCeditTool, parent, tool_shell

; Create WgCeditTool as a child of the widget known as “parent”.
; The window of the newly created widget is returned via the optional
; output parameter “tool_shell”.

ENDIF ELSE BEGIN

WgCeditTool

; Create WgCeditTool and display it as its own Main window. In other
; words, the WgCeditTool window runs on its own (i.e., in its own
; event loop).

ENDELSE

END

See Also

COLOR_EDIT, COLOR_PALETTE, WgCtTool

For more information about color table indices, refer to in Chapter 11 of the
PV-WAVE User’s Guide.

For more information about color systems, refer to in Chapter 11 of the PV-WAVE
User’s Guide.

For more information about how to write an application program based on WAVE
Widgets, refer to .

For more information about how to write an application program based on the
PV-WAVE Widget Toolbox, refer to .

1092 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

WgCtTool Procedure
Creates a simple widget that can be used interactively to modify a PV-WAVE color
table.

Usage

WgCtTool [, parent [, shell]]

Input Parameters

parent — (optional) The widget or shell ID of the parent widget (long). If parent
is not specified, WgCtTool runs on its own (i.e., in its own event loop).

Output Parameters

shell — (optional) The ID of the newly created widget. If the procedure fails, zero
(0) is returned.

Keywords

Cmap — The index of the color table to load when the widget is created; a positive
integer in the range (0…15).

Position — A two-element vector specifying the x- and y-coordinates of the upper-
left corner of the CtTool window (long integer). The elements of the vector are
[x, y], where x (horizontal) and y (vertical) are specified in pixels. These coordi-
nates are measured from the upper-left corner of the screen.

Title — A string containing the title that appears in the header of the window.
Default value is “Color Table Tool”.

Color/Font Keywords

For additional information on the color and font keywords, see .

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

WgCtTool Procedure 1093

Discussion

The WgCtTool window () allows you to interactively modify system color tables
by stretching, rotating, and reversing them.

In some ways, the WgCtTool window is similar to the WgCeditTool window, in
that it provides easy ways to interactively modify color tables. For example, with a
single click, you can reverse the color table using the WgCtTool window. But if you
need to edit individual colors in the color table, or save your changes for future use,
then use the WgCeditTool window, instead.

Figure 2-81 The WgCtTool window lets you interactively modify system color tables by
stretching, rotating, and reversing them.

The Colors Common Block

This procedure modifies the PV-WAVE internal color table, as well as the color
table variables in the COLORS common block.

Most color table procedures maintain the current color table in a common block
called Colors, defined as follows:

COMMON Colors, r_orig, g_orig, b_orig, $
r_curr, g_curr, b_curr

The variables are integer vectors of length equal to the number of color indices.
Your program can access these variables by declaring the common block. The
modifications you make to the color table by interacting with the CtTool widget are
stored in r_curr, g_curr, and b_curr.

1094 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Contents of the Window

The CtTool window has three main parts — the color bar area, the control area, and
the system color table list.

CtTool Color Bar Area

The built-in color bar lets you display the colors of the current color table and
“rotate” them. To rotate the color table using the color bar, press and drag the left
mouse button to the left or to the right in the color bar. As you “slide” colors into
different color table indices, the colors that “scroll off” the end of the color table
are added to the opposite end.

CtTool Control Area

Use the following controls to operate the CtTool window:

• Stretch Bottom — Select the lower limit for the stretched color table.

• Stretch Top — Select the upper limit for the stretched color table.

• Undo — Discard color table modifications you have made using the CtTool
window, and return to the color table that CtTool was using when it was first
created.

• Reverse — Swap the color table (as currently defined), end for end.

• Dismiss — Destroy the CtTool window and erase it from the screen.

The CtTool window uses the STRETCH procedure to linearly expand a range of
color table indices. The Stretch Bottom number is used for the first parameter to the
STRETCH command, and the Stretch Top number is subtracted from the number
of colors available in the color table to determine the second parameter to the
STRETCH command. For more information about the STRETCH command, refer
the description for STRETCH.

System Color Table List

This area lists the 16 system color tables that are provided as part of PV-WAVE.
Use the left mouse button to select one. The color table you select from the list will
immediately be displayed in the color bar area.

Because system color tables are “read-only”, no system color table will be perma-
nently altered by any changes you make with the CtTool window. For this reason,
the changes you make with CtTool are temporary and can be overwritten by any
other PV-WAVE routine writing to the Colors common block.

WgCtTool Procedure 1095

NOTE To save color table changes for later use, you can use another utility widget,
WgCeditTool.

Event Handling

You can use the CtTool widget in one of the following two ways:

• From the WAVE> prompt — Enter the procedure name at the WAVE> prompt
to display the CtTool widget. The CtTool widget handles its own event loop by
calling WwLoop.

• Stand-alone widget in its own window created by another application —
The CtTool widget has its own Main window, but the application (not the
CtTool widget) handles the event loop by calling WwLoop.

The output parameter shell can be returned only if you also supply the input param-
eter parent.

Example

Enter the commands shown below into a file, and compile the procedure with the
.RUN command. If the variable parent is defined, WgCtTool is created as a child
of parent; otherwise, WgCtTool runs on its own (i.e., in its own event loop).

When you are finished interacting with the WgCtTool window, close it by clicking
the Dismiss button.

PRO Sample_wgcttool, parent, tool_shell

IF N_ELEMENTS(parent) NE 0 THEN BEGIN

WgCtTool, parent, tool_shell

; Create WgCtTool as a child of the widget known as “parent”.
; The window of the newly created widget is returned via the optional
; output parameter “tool_shell”.

ENDIF ELSE BEGIN

WgCtTool

; Create WgCtTool and display it as its own Main window. In other
; words, the WgCtTool window runs on its own (i.e., in its own event
; loop).

ENDELSE

END

See Also

COLOR_EDIT, COLOR_PALETTE, WgCeditTool

1096 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

For more information about color table indices, refer to in Chapter 11 of the
PV-WAVE User’s Guide.

For more information about color systems, refer to in Chapter 11 of the PV-WAVE
User’s Guide.

For more information about how to write an application program based on WAVE
Widgets, refer to . For more information about how to write an application program
based on the PV-WAVE Widget Toolbox, refer to .

WgIsoSurfTool Procedure
Creates a window with a built-in set of controls; these controls allow you to easily
view and modify an iso-surface taken from a three-dimensional block of data.

Usage

WgIsoSurfTool, surface_data [, parent [, shell]]

Input Parameters

surface_data — A 3D variable containing volumetric surface data. The dimen-
sions of surface_data define the size of the cube that you see when the
WgIsoSurfTool window is first opened.

parent — (optional) The widget or shell ID of the parent widget (long). If parent
is not specified, WgIsoSurfTool runs on its own (i.e., in its own event loop).

Output Parameters

shell — (optional) The ID of the newly created widget. If the procedure fails, zero
(0) is returned.

Keywords

Cmap — The index of the color table to load when the widget is created; a positive
integer in the range (0…15).

Cube_color — The color in which the rotatable cube is drawn; a positive integer
in the range (0…255). The number that is provided for cube_color is used as an
index into the current color table.

Position — A two-element vector specifying the x- and y-coordinates of the upper-
left corner of the IsoSurfTool window (long integer). The elements of the vector

WgIsoSurfTool Procedure 1097

are [x, y], where x (horizontal) and y (vertical) are specified in pixels. These coor-
dinates are measured from the upper-left corner of the screen.

Thresh_range — The range of values to display in the threshold slider. The default
is to use the entire range of values defined by surface_data, or in other words, the
range:

(min_surface_data…max_surface_data)

Thresh_value — The initial position of the threshold slider. By default, the mov-
able portion of the slider is positioned in the middle of the threshold range.

Title — A string containing the title that appears in the header of the IsoSurfTool
window. Default value is “Isosurface Tool”.

View_persp — The initial perspective distance. If View_persp is zero, then the ini-
tial setting on the Perspective Distance slider is 0.5, but the Perspective pushbutton
is initially deselected. If View_persp is nonzero, then the initial setting on the Per-
spective Distance slider is the value specified by View_persp and the Perspective
pushbutton is selected.

NOTE Using no perspective to draw the cube is equivalent to having the eyepoint
an infinite distance away from the cube, and will produce a cube with sides that all
appear to be parallel to one another.

View_rot — A three-element vector specifying the initial view rotation, in degrees.
If not supplied, the initial rotation of the cube and the iso-surface is [30, 30, 0] —
in other words, 30 degrees rotation around the x-axis, 30 degrees rotation around
the y-axis, and 0 degrees rotation around the z-axis.

View_zoom — The initial zoom factor. (Default: 0.5)

Color/Font Keywords

For additional information on the color and font keywords, see .

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

1098 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Discussion

WgIsoSurfTool is an interactive window that lets you use the mouse to view and
modify iso-surfaces; you can view any iso-surface contained within the three-
dimensional input dataset, surface_data.

If the zoom factor is large, or the perspective parameter is small, then the cube dis-
play in the View Orientation window may be erroneous. To cure the problem,
reduce the zoom or increase the perspective (or disable the perspective entirely).

TIP Some iso-surfaces can be time-consuming to render, especially those that
compose many polygons. PV-WAVE will display its “wait cursor” while it is per-
forming the calculations necessary to display the iso-surface.

Figure 2-82 WgIsoSurfTool creates an interactive window that lets you use the mouse to
easily view and modify an iso-surface taken from a three-dimensional block of data. An iso-
surface is a pseudo-surface of constant density within a volumetric data set.

Event Handling

You can use the IsoSurfTool widget in one of the following two ways:

WgIsoSurfTool Procedure 1099

• From the WAVE> prompt — Enter the procedure name at the WAVE> prompt
to display the IsoSurfTool widget. The IsoSurfTool widget handles its own
event loop by calling WwLoop.

• Stand-alone widget in its own window created by another application —
The IsoSurfTool widget has its own Main window, but the application (not the
IsoSurfTool widget) handles the event loop by calling WwLoop.

The output parameter shell can be returned only if you also supply the input param-
eter parent.

Contents of the Window

The IsoSurfTool window has two main parts — the display area and the control
area.

IsoSurfTool Display Area

The display area is towards the right of the window; it is divided into an upper and
lower region:

• View orientation area — The cube establishes a frame of reference for view-
ing the iso-surface.

• Iso-surface area — This region contains an image displaying an iso-surface;
the iso-surface shows similarities in whatever property the data is measuring.

NOTE The orientation of the iso-surface is copied from the orientation of the
cube.

IsoSurfTool Control Area

Use the following controls to operate the IsoSurfTool window:

• X, Y, and Z Rotation — These controls allow you to rotate the cube (counter-
clockwise around the desired axis) a specified number of degrees. The current
rotation is shown in the text field to the right of the slider. To modify the rota-
tion, either enter a new value in one of the text fields, or use the left mouse
button to drag one of the sliders. If you enter a new value into a text field, press
<Return> to apply the new value to the slider and the surface. If you use the
sliders, the change is applied immediately as the slider moves.

• Perspective — If enabled, the cube is drawn with perspective; if disabled, the
cube is drawn without perspective.

1100 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

• Perspective Distance — Controls the amount of perspective used when draw-
ing the cube; in other words, how close the eyepoint is to the cube. The closer
the eyepoint gets to the cube, the greater the amount of perspective exaggera-
tion that is used to draw the cube.

• Zoom Factor — Controls the amount of magnification used to draw the cube.

• High side/low side — If High Side is enabled, only data values above the
threshold value are highlighted on the surface; if Low Side is enabled, only data
values below the threshold value are highlighted.

For more information about High Side/Low Side, refer to the description of the
Low keyword for the SHADE_VOLUME procedure.

• Threshold Value — Only data values above or below this value are high-
lighted on the surface, depending on whether High Side or Low Side is enabled.

• Apply — Redraw the iso-surface with the specified viewing parameters.

• Reset — Return to the default viewing parameters and the initial threshold
value.

• Histogram — Draw a histogram of surface_data in the iso-surface display
area. Viewing this histogram can be useful in determining where to place the
threshold value.

• Dismiss — Destroy the IsoSurfTool window and erase it from the screen.

NOTE When you click Apply, the graphics you see being redrawn in the iso-sur-
face portion of the display area are being sent to this window via the Z-buffer
virtual graphics device. This reduces the time required to redraw the iso-surface by
about fourfold. For more information on the Z-buffer graphics device, refer to
Appendix B, Output Devices and Window Systems.

Example

Enter the commands shown below into a file, and compile the procedure with the
.RUN command. If the variable parent is defined, WgIsoSurfTool is created as
a child of parent; otherwise, WgIsoSurfTool runs on its own (i.e., in its own
event loop).

When you are finished interacting with the WgIsoSurfTool window, close it by
clicking the Dismiss button.

PRO Sample_wgisosurftool, parent, tool_shell

head = BYTARR(115, 75, 105)

; Define a variable to hold the data.

WgIsoSurfTool Procedure 1101

IF !Version.platform EQ ’VMS’ THEN $
OPENR, u, GETENV(’WAVE_DIR’)+$
’[data]man_head.dat’, /Get_lun $

ELSE $

OPENR, u, ’$WAVE_DIR/data/man_head.dat’,/Get_lun

READU, u, head

; Read the man_head.dat file that contains three-dimensional volumetric data.

CLOSE, u

FREE_LUN, u

; Close the file and free the LUN.

reduced_head = REBIN(head, 23, 15, 21)

; Sample the data so fewer data points are passed in to
; WgIsoSurfTool. Doing this improves performance significantly,
; because WgIsoSurfTool has fewer polygons to process.

IF N_ELEMENTS(parent) NE 0 THEN BEGIN

WgIsoSurfTool, reduced_head, parent, tool_shell

; Create WgIsoSurfTool as a child of the widget known as
; “parent”. The window of the newly created widget is returned
; via the optional output parameter “tool_shell”.

ENDIF ELSE BEGIN

WgIsoSurfTool, reduced_head

; Create WgIsoSurfTool and display it as its own Main window.
; In other words, the WgIsoSurfTool window runs on its own (i.e., in
; its own event loop).

ENDELSE

END

See Also

RENDER, SHADE_VOLUME

For information about drawing iso-surfaces using voxel data, see , in the PV-WAVE
User’s Guide. This chapter includes a number of examples showing iso-surfaces
that have been drawn using the RENDER function.

For more information about how to write an application program based on WAVE
Widgets, refer to . For more information about how to write an application program
based on the PV-WAVE Widget Toolbox, refer to .

1102 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

WgMovieTool Procedure
Creates a window that cycles through a sequence of images.

Usage

WgMovieTool, image_data [, parent [, shell [, windowid [, rate]]]]

Input Parameters

image_data — A 3D array of images (byte). The dimensions of the array are (m,
n, n_frames), where (m,n) is the size of an individual image, and n_frames is the
total number of frames in the sequence.

parent — (optional) The widget or shell ID of the parent widget (long). If parent
is not specified, WgMovieTool runs on its own (i.e., in its own event loop).

rate — (optional) Minimum cycling speed, specified in frames per second; the
exact cycling speed varies depending on system load. (This number corresponds to
the numeral “1” underneath the speed slider.) By default, under “optimum” condi-
tions, the rate is 30 frames per second (if Pixmap is present and nonzero) or 3
frames per second (if Pixmap is not supplied or is equal to zero).

Output Parameters

shell — (optional) The ID of the newly created widget. If the procedure fails, zero
(0) is returned.

windowid — (optional) The window ID of the PV-WAVE graphics window. (For
information on window IDs, see the description for the WINDOW procedure.)

Keywords

Cmap — The index of the color table to load when the widget is created; a positive
integer in the range (0…15).

Dims — A three-element vector specifying the size of the images to be read from
the file, and the number of images to read. The elements of the vector are [m, n,
n_frames], where (m,n) is the size of an individual image, and n_frames is the total
number of frames in the sequence.

Do_tvscl — Indicates that TVSCL should be used to scale the image values to the
current color table.

1 Specifies TVSCL is used to scale the image.

WgMovieTool Procedure 1103

0 Specifies TV is used instead (no scaling).

File — A string containing the name of the file from which the image data is read.
When using the File keyword, the Dims keyword must also be supplied. If present,
the input variable image_data is ignored.

Maximum — The maximum cycling speed, specified in frames per second; the
exact cycling speed varies depending on system load. (This number corresponds to
the label to the right of the speed slider.) If Maximum is not specified, the maximum
rate is 100 frames per second (if Do_tvscl is not supplied or is equal to zero) or 10
frames per second (if Do_tvscl is present and nonzero).

Order — The order in which the image is drawn. If present and nonzero, the image
is inverted. In other words, the image is drawn from bottom to top instead of from
top to bottom.

Pixmap — Indicates that pixmaps should be used for the animation.

1 Specifies pixmaps are used.

0 Specifies the data is stored in a variable.

Using pixmaps dramatically improves the speed of the animation, but requires
more memory from the X Window System’s X server than when data stored in vari-
ables is used.

Popup — If present and nonzero, the MovieTool widget is displayed in its own
Main window.

Position — A two-element vector specifying the x- and y-coordinates of the upper-
left corner of the MovieTool window (long integer). The elements of the vector are
[x, y], where x (horizontal) and y (vertical) are specified in pixels. These coordi-
nates are either: 1) if parent is present and the Popup keyword is not specified or
has a value of zero, measured from the upper-left corner of a layout (container)
widget or 2) if the Popup keyword is present and nonzero (regardless of whether
parent is present and/or nonzero), measured from the upper-left corner of the
screen.

Size — A two-element vector specifying the width and height of the display area
(long integer). If not specified, the default size of the display area is m-by-n pixels,
where m and n are defined by image_data.

Title — A string containing the title that appears in the header of the MovieTool
window. Default value is “Movie Tool”.

1104 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

View — A two-element vector specifying the width and height of the viewport onto
the display area (long integer). If not specified, the default size of the viewport is
m-by-n pixels, where m and n are defined by image_data.

Color/Font Keywords

For additional information on the color and font keywords, see .

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Attachment Keywords

For additional information on attachment keywords, see Form Layout: Attachments
in the PV-WAVE Application Developer’s Guide.

Bottom — If a widget ID is specified (for example, Bottom=wid), then the bot-
tom of the color bar widget is attached to the top of the specified widget. If no
widget ID is specified (for example, /Bottom), then the bottom of the movie wid-
get is attached to the bottom of the parent widget.

Left — If a widget ID is specified (for example, Left=wid), then the left side of
the movie widget is attached to the right side of the specified widget. If no widget
ID is specified (for example, /Left), then the left side of the movie widget is
attached to the left side of the parent widget.

Right — If a widget ID is specified (for example, Right=wid), then the right side
of the movie widget is attached to the left side of the specified widget. If no widget
ID is specified (for example, /Right), then the right side of the movie widget is
attached to the right side of the parent widget.

Top — If a widget ID is specified (for example, Top=wid), then the top of the
movie widget is attached to the bottom of the specified widget. If no widget ID is
specified (for example, /Top), then the top of the movie widget is attached to the
top of the parent widget.

Discussion

WgMovieTool () is an interactive window that lets you use the mouse to control the
pace and direction of an animated series of images.

WgMovieTool Procedure 1105

Using the WgMovieTool window is similar in many ways to using the WgAni-
mateTool window, but WgMovieTool is designed so that it can be included inside
larger layout widgets, while WgAnimateTool is intended to be used as a stand-
alone utility widget. Be sure to familiarize yourself with the attachment keywords
if you plan to place WgMovieTool inside a larger layout widget.

Figure 2-83 WgMovieTool creates an interactive window that lets you use the mouse to con-
trol the pace and direction of an animated series of images.

MovieTool provides a graphical user interface (GUI) to a Standard Library proce-
dure, movie.pro. Unlike the blocking behavior that you encounter with
movie.pro, you can interact with other windows while MovieTool is open and
running.

Event Handling

You can use the MovieTool widget in one of the following three ways:

• From the WAVE> prompt — Enter the procedure name at the WAVE> prompt
to display the MovieTool widget. The MovieTool widget handles its own event
loop by calling WwLoop.

• Stand-alone widget in its own window created by another application —
If the Popup keyword is present and nonzero, the MovieTool widget has its
own Main window. The application (not the MovieTool widget) handles the
event loop by calling WwLoop.

1106 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

• Combined with other widgets in a layout widget — Another application
combines the MovieTool widget with other widgets inside a layout widget. The
application (not the MovieTool widget) handles the event loop by calling
WwLoop.

When the input parameter parent is present and nonzero, the widget operates in
either the second or third mode listed, depending on the value of the Popup key-
word. The output parameter shell can be returned only if you also supply the input
parameter parent.

You can use the output parameter windowid to keep track of the PV-WAVE win-
dow ID that is assigned to the MovieTool. You can create multiple instances of the
MovieTool; each one will be assigned a different PV-WAVE window ID.

Contents of the Window

The MovieTool window has two main parts — the display area and the control
area.

MovieTool Display Area

The display area is the largest area of the window; it is where the animation
sequence takes place.

MovieTool Control Area

Use the following controls to operate the MovieTool window:

• Frames/sec slider — Decrease or increase the rate of display. The number
shown to the left of the slider is the minimum cycling speed for the animation
sequence; this number is controlled with the Rate keyword. The number shown
to the right of the slider is the maximum cycling speed for the animation
sequence; this number is controlled with the Maximum keyword.

• Left-pointing arrow — Cycle through the images from last to first.

• Stop button — Freeze display at the current image.

• Right-pointing arrow — Cycle through the images from first to last.

NOTE Use the window manager menu of the window frame to dismiss the Movi-
eTool window from the screen.

WgMovieTool Procedure 1107

Example

Enter the commands shown below into a file, and compile the procedure with the
.RUN command. If the variable parent is defined, WgMovieTool is created as a
child of parent; otherwise, WgMovieTool runs on its own (i.e., in its own event
loop).

When you are finished interacting with the WgMovieTool window, close it using
the window manager menu.

PRO Sample_wgmovietool, parent, tool_shell

heart = BYTARR(256, 256, 15)

; Define a variable to hold the data.
IF !Version.platform EQ ’VMS’ THEN $

OPENR, u, GETENV(’WAVE_DIR’)+$
’[data]heartbeat.dat’, /Get_lun $

ENDIF ELSE BEGIN

OPENR, u, !Dir+’/data/heartbeat.dat’, /Get_lun

ENDELSE

READU, u, heart

; Read the heartbeat.dat file that contains images showing a
; beating human heart.

CLOSE, u

FREE_LUN, u

; Close the file and free the LUN.

IF N_ELEMENTS(parent) NE 0 THEN BEGIN

WgMovieTool, heart, parent, tool_shell, $
/Do_tvscl, /Pixmap, /Popup

; Create WgMovieTool as a child of the widget known as “parent”.
; The window of the newly created widget is returned via the optional
; output parameter “tool_shell”.

ENDIF ELSE BEGIN

WgMovieTool, heart, /Do_tvscl, /Pixmap

; Create WgMovieTool and display it as its own Main window. In other
; words, the WgMovieTool window runs on its own (i.e., in its own
; event loop).

ENDELSE

END

See Also

MOVIE, WgAnimateTool

1108 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

For more information about how to transfer image data to variables, refer to in
Chapter 8 of the PV-WAVE Programmer’s Guide.

For more information about pixmaps, refer to Appendix B, Output Devices and
Window Systems.

For more information about color table indices, refer to in Chapter 11 of the
PV-WAVE User’s Guide.

For more information about how to write an application program based on WAVE
Widgets, refer to . For more information about how to write an application program
based on the PV-WAVE Widget Toolbox, refer to .

WgOrbit Procedure
Creates an interactive window for viewing objects.

Usage

WgOrbit, vertices, polygons, parent, shell

Input Parameters

vertices — A (3,n) array of points on the surfaces of the objects.

polygons — A vector defining polygons which describe the surfaces: it is a
concatenation of vectors of the form [m, i1, ..., im] where m is the number of vertices
defining a polygon and where vertices (*, i1),..., vertices(*, im) are those vertices
arranged in counter-clockwise order when viewed from outside the object.

parent — (optional) The widget ID of the parent widget.

Output Parameters

shell — (optional) The ID of the newly created widget.

Keywords

position — A two-element vector positioning the widget’s upper-left corner
(measured in pixels from the upper-left corner of the screen).

shades — A vector specifying the color for each vertex.

size — Two-element vector specifying window size. The default is [500,500].

title — A string specifying the title for the widget.

WgSimageTool Procedure 1109

wid — (output) The window ID of the graphics window.

Examples
POLY_SPHERE, 1, 10, 10, v, p

v(1:2,*) = [2*v(1,*), 3*v(2,*)]

WgOrbit, v, p

WgSimageTool Procedure
Creates two windows: 1) a scrolling image window and 2) an optional smaller win-
dow that shows a reduced view of the entire image.

Usage

WgSimageTool, image_data [, parent [, shell]]

Input Parameters

image_data — A 2D byte variable containing image data for a single image.

parent — (optional) The widget or shell ID of the parent widget (long). If parent
is not specified, WgSimageTool runs on its own (i.e., in its own event loop).

Output Parameters

shell — (optional) The ID of the newly created widget. If the procedure fails, zero
(0) is returned.

Keywords

Do_tvscl — Indicates that TVSCL should be used to scale the image data before it
is displayed.

1 Specifies TVSCL is used to scale the image.

0 Specifies TV is used to display the data (not scaled).

Dsize — A two-element vector specifying the width and height of the image to be
displayed in the scrolling area (long integer). Default is for Dsize to be the same as
image_data in both directions. If Dsize is larger than Wsize, you will be able to use
scroll bars to move the image around in the display window. An error occurs if
Dsize is smaller than the size of image_data in either direction.

1110 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

NOTE When Dsize is greater than Wsize, and scroll bars are placed on the right
and at the bottom of the scrolled image window, then 12 pixels are subtracted in
each direction (from the displayed image area) to allow room for the scroll bars.

Noreduce — If present and nonzero, the reduced size window that is used to dis-
play the entire image is not displayed. Only the larger of the two windows is
displayed.

Order — The order in which the image is drawn. If present and nonzero, the image
is inverted. In other words, the image is drawn from bottom to top instead of from
top to bottom.

Position — A two-element vector specifying the x- and y-coordinates of the upper-
left corner of the SimageTool window (long integer). The elements of the vector
are [x, y], where x (horizontal) and y (vertical) are specified in pixels. These coor-
dinates are measured from the upper-left corner of the screen.

Reduced_size — A two-element vector specifying the width and height of the
image display area of the reduced size window that displays the entire image (long
integer). The reduced size image is computed using CONGRID; if Reduced_size is
not specified, the default size of the reduced image is 256-by-256. This keyword is
ignored if Noreduce is present and nonzero.

Rtitle — A string containing the title that appears in the header of the small window
that is used to display the entire image. Default value is “Reduced Image”.

Title — A string containing the title that appears in the header of the window that
is used to display the scrolled image. Default value is “Full Size Image”.

Wsize — A two-element vector specifying the width and height of the image dis-
play area of the scrolled image window (long integer). Default display area size is
either: 1) 512-by-512, or 2) the size of image_data, whichever is less.

Color/Font Keywords

For additional information on the color and font keywords, see .

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

WgSimageTool Procedure 1111

Discussion

WgSimageTool () provides a convenient way to view images, either full-size or
reduced-size. Scroll bars are provided for viewing large images when they are
viewed at full size.

Event Handling

You can use the SimageTool widget in one of the following two ways:

• From the WAVE> prompt — Enter the procedure name at the WAVE> prompt
to display the SimageTool widget. The SimageTool widget handles its own
event loop by calling WwLoop.

• Stand-alone widget in its own window created by another application —
The SimageTool widget has its own Main window, but the application (not the
SimageTool widget) handles the event loop by calling WwLoop.

The output parameter shell can be returned only if you also supply the input param-
eter parent.

Contents of the Window

The larger of the two SimageTool windows has two main parts — the display area
and the control area.

SimageTool Display Area

The display area is the largest area of the window; it is where the full-size image is
displayed.

SimageTool Control Area

Use the following controls to operate the SimageTool window:

• Value — If the pointer is within the boundaries of the image, its location is ech-
oed in this area, along with the value of the image data directly underneath the
pointer.

• Dismiss — Destroy the SimageTool window(s) and erase it (them) from the
screen.

1112 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Figure 2-84 By default, WgSimageTool displays two windows. One window displays the
image at full-size, and adds scroll bars to the right and bottom for viewing other portions of
the image. The other window displays the image at a reduced size (256-by-256 by default)
and does not offer the option of scroll bars. Use the Noreduce keyword to suppress the
reduced-size window and display only the larger window.

Example

Enter the commands shown below into a file, and compile the procedure with the
.RUN command. If the variable parent is defined, WgSimageTool is created as
a child of parent; otherwise, WgSimageTool runs on its own (i.e., in its own
event loop).

When you are finished interacting with the WgSimageTool window, close it by
clicking on the Dismiss button.

PRO Sample_wgsimagetool, parent, tool_shell

x = DIST(7000)

; Create a “dummy” variable to use as data for WgSimageTool.

IF N_ELEMENTS(parent) NE 0 THEN BEGIN

WgSimageTool, x, parent, tool_shell, /Do_tvscl

; Create WgSimageTool as a child of the widget known as “parent”.

WgSliceTool Procedure 1113

; The window of the newly created widget is returned via the optional
; output parameter “tool_shell”.

ENDIF ELSE BEGIN

WgSimageTool, x, /Do_tvscl

; Create WgSimageTool and display it as its own Main window. In
; other words, the WgSimageTool window runs on its own (i.e., in its
; own event loop).

ENDELSE

END

See Also

TV, TVSCL

For more information about how to write an application program based on WAVE
Widgets, refer to . For more information about how to write an application program
based on the PV-WAVE Widget Toolbox, refer to .

WgSliceTool Procedure
Creates a window with a built-in set of controls; these controls allow you to easily
select and view “slices” from a three-dimensional block of data.

Usage

WgSliceTool, block_data [, parent [, last_slice [, shell]]]

Input Parameters

block_data — A 3D variable containing volumetric data. The dimensions of
block_data define the size of the cube that you see when the SliceTool window is
first opened.

parent — (optional) The widget or shell ID of the parent widget (long). If parent
is not specified, WgSliceTool runs on its own (i.e., in its own event loop).

Output Parameters

last_slice — (optional) The two-dimensional set of values describing the most
recent slice that was displayed. The data type of last_slice is the same as the data
type for block_data.

1114 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

shell — (optional) The ID of the newly created widget. If the procedure fails, zero
(0) is returned.

Keywords

Cmap — The index of the color table to load when the widget is created; a positive
integer in the range (0…15).

Cube_color — The color in which the rotatable cube is drawn; a positive integer
in the range (0…255). The number that is provided for cube_color is used as an
index into the current color table.

Position — A two-element vector specifying the x- and y-coordinates of the upper-
left corner of the SliceTool window (long integer). The elements of the vector are
[x, y], where x (horizontal) and y (vertical) are specified in pixels. These coordi-
nates are measured from the upper-left corner of the screen.

Slice_color — The color in which the slice is drawn; a positive integer in the range
(0…255). The number that is provided for slice_color is used as an index into the
current color table.

Slice_rot — A three-element vector specifying the XYZ slicing plane rotation, in
degrees. If not supplied, the initial rotation is [0, 0, 0] — in other words, no
rotation.

Slice_trans — A three-element vector specifying the initial slicing plane transla-
tion, in degrees. If not supplied, the initial translation is [0, 0, 0] — in other words,
no translation.

Title — A string containing the title that appears in the header of the SliceTool win-
dow. Default value is “Slicer Tool”.

View_persp — The initial perspective distance. If View_persp is zero, then the ini-
tial setting on the Perspective Distance slider is 0.5, but the Perspective pushbutton
is initially deselected. If View_persp is nonzero, then the initial setting on the Per-
spective Distance slider is the value specified by View_persp and the Perspective
pushbutton is selected.

NOTE Using no perspective to draw the cube is equivalent to having the eyepoint
an infinite distance away from the cube, and will produce a cube with sides that all
appear to be parallel to one another.

View_rot — A three-element vector specifying the initial view rotation, in degrees.
If not supplied, the initial rotation of the cube is [30, 30, 0] — in other words, 30

WgSliceTool Procedure 1115

degrees rotation around the x-axis, 30 degrees rotation around the y-axis, and 0
degrees rotation around the z-axis.

View_zoom — The initial zoom factor. (Default: 0.5)

Color/Font Keywords

For additional information on the color and font keywords, see .

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Discussion

WgSliceTool () is an interactive window that lets you use the mouse to view and
modify the location of a slice that bisects a volume of data; you can position the
slice anywhere within the three-dimensional input dataset, surface_data.

If the zoom factor is large, or the perspective parameter is small, then the cube dis-
play in the View orientation area may be erroneous. To cure the problem, reduce
the zoom or increase the perspective (or disable the perspective entirely).

To select a slice, adjust the sliders that control perspective, zoom, and orientation
of the slice in relationship to the cube. When you are satisfied with your selections,
click the Apply button.

Slices of data are displayed “head-on”. In other words, the data slice is not pro-
jected into 3D space — the data displayed is the actual 2D slice that you selected.

Event Handling

You can use the SliceTool widget in one of the following two ways:

• From the WAVE> prompt — Enter the procedure name at the WAVE> prompt
to display the SliceTool widget. The SliceTool widget handles its own event
loop by calling WwLoop.

• Stand-alone widget in its own window created by another application —
The SliceTool widget has its own Main window, but the application (not the
SliceTool widget) handles the event loop by calling WwLoop.

The output parameter shell can be returned only if you also supply the input param-
eter parent.

1116 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Figure 2-85 WgSliceTool is an interactive window that lets you use the mouse to view and
modify the location of a slice that bisects a volume of data; your selections in the lower left
part of the window affect the position of the slice.

SliceTool Display Area

The display area is towards the right of the window; it is divided into an upper and
lower region:

• View orientation area — The cube establishes a frame of reference for posi-
tioning the slice of data.

• Data slice area — This region contains an image displaying the actual slice of
data that you have selected for viewing.

The orientation of the cube provides a frame of reference for selecting and under-
standing the slice of data that you have chosen to view.

WgSliceTool Procedure 1117

SliceTool Control Area

Use the following controls to operate the SliceTool window:

• X, Y, and Z Rotation — These controls allow you to rotate the cube (counter-
clockwise around the desired axis) a specified number of degrees. The current
rotation is shown in the text field to the right of the slider. To modify the rota-
tion, either enter a new value in one of the text fields, or use the left mouse
button to drag one of the sliders. If you enter a new value into a text field, press
<Return> to apply the new value to the slider and the surface. If you use the
sliders, the change is applied immediately as the slider moves.

• Perspective — If enabled, the cube is drawn with perspective; if disabled, the
cube is drawn without perspective.

• Perspective Distance — Controls the amount of perspective used when draw-
ing the cube; in other words, how close the eyepoint is to the cube. The closer
the eyepoint gets to the cube, the greater the amount of perspective exaggera-
tion that is used to draw the cube.

• Zoom Factor — Controls the amount of magnification used to draw the cube.

• Slice — Redraw the cube and the data slice with the specified viewing
parameters.

• Reset — Return to the default viewing parameters and the initial orientation
and positioning of the slice.

• Dismiss — Destroy the SliceTool window and erase it from the screen.

Example

Enter the commands shown below into a file, and compile the procedure with the
.RUN command. If the variable parent is defined, WgSliceTool is created as a
child of parent; otherwise, WgSliceTool runs on its own (i.e., in its own event
loop).

When you are finished interacting with the WgSliceTool window, close it by click-
ing on the Dismiss button.

PRO Sample_wgslicetool, parent, tool_shell

head = BYTARR(115, 75, 105)

; Define a variable to hold the data.
IF !Version.platform EQ ’VMS’ THEN $

OPENR, u, GETENV(’WAVE_DIR’)+$
’[data]man_head.dat’, /Get_lun $

ELSE $

OPENR, u, ’$WAVE_DIR/data/man_head.dat’, $

1118 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

/Get_lun

READU, u, head

; Read the man_head.dat file that contains three-dimensional
; volumetric data.

CLOSE, u

FREE_LUN, u

; Close the file and free the LUN.

IF N_ELEMENTS(parent) NE 0 THEN BEGIN

WgSliceTool, head, slice, parent, tool_shell

; Create WgSliceTool as a child of the widget known as “parent”.
; The window of the newly created widget is returned via the optional
; output parameter “tool_shell”.

ENDIF ELSE BEGIN

WgSliceTool, head, slice

; Create WgSliceTool and display it as its own Main window. In other
; words, the WgSliceTool window runs on its own (i.e., in its own event loop).

ENDELSE

END

See Also

SLICE_VOL, VIEWER

For information about other approaches to slicing volumes, see , in the PV-WAVE
User’s Guide.This chapter includes an example showing how to render selected
slices from a large amount of volume data.

For more information about how to write an application program based on WAVE
Widgets, refer to . For more information about how to write an application program
based on the PV-WAVE Widget Toolbox, refer to .

WgStripTool Procedure 1119

WgStripTool Procedure
Creates a window that displays data in a style that simulates a real-time, moving
strip chart.

Usage

WgStripTool [, x, y1, y2, ..., y10, parent [, shell]]

WgStripTool [, x [, y1 [, y2

[, y3 [, y4 [, y5 [, y6 [, y7 [, y8 [, y9 [, y10]]]]]]]]]]]

Input Parameters

x — (optional) A vector specifying the x values (horizontal) of each strip chart. If
not specified, or set equal to zero, monotonically increasing values, starting with 0
(zero) are automatically provided along the x-axis. Must have the same number of
elements as the y vectors.

yn — (optional) Up to ten vectors containing data in the y direction (vertical); each
vector is displayed in a separate strip chart. The number of y variables specified
determines the number of strip charts that are displayed. All y vectors should con-
tain the same number of elements.

parent — (optional) The widget or shell ID of the parent widget (long). If parent
is not specified, WgStripTool runs on its own (i.e., in its own event loop).

Output Parameters

shell — (optional) The ID of the newly created widget. If the procedure fails, zero
(0) is returned.

Keywords

Delay — The minimum interval for updating the strip chart, specified in millisec-
onds (floating point). The default is to have 0 milliseconds of delay.

Position — A two-element vector specifying the x- and y-coordinates of the upper-
left corner of the WgStripTool window (long integer). The elements of the vector
are [x, y], where x (horizontal) and y (vertical) are specified in pixels. These coor-
dinates are measured from the upper-left corner of the screen.

DSize — A two-element vector specifying the width and height of the display area
(long integer); the display area is divided equally between the strip charts for all

1120 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

specified y variables. If not specified, the default size of the display area is 512-by-
512 pixels.

Title — A string containing the title that appears in the header of the window.
Default value is “Stripchart Tool”.

Color/Font Keywords

For additional information on the color and font keywords, see .

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Discussion

The WgStripTool window () allows you to view data in moving strip charts; you
can adjust the display width in the strip charts to create the effect of zooming in and
out. You can also adjust the rate and the manner with which the strip charts progress
through the data.

WgStripTool Procedure 1121

Figure 2-86 The WgStripTool window lets you interactively view data in moving strip charts;
up to ten strip charts can be simultaneously displayed by the WgStripTool window. You can
adjust the display width in the strip charts to create the effect of zooming in and out. You can
also adjust the rate and the manner with which the strip charts progress through the data.

Event Handling

You can use the WgStripTool widget in one of the following two ways:

• From the WAVE> prompt — Enter the procedure name at the WAVE> prompt
to display the WgStripTool widget. The WgStripTool widget handles its own
event loop by calling WwLoop.

• Stand-alone widget in its own window created by another application —
The WgStripTool widget has its own Main window, but the application (not the
WgStripTool widget) handles the event loop by calling WwLoop.

The output parameter shell can be returned only if you also supply the input param-
eter parent.

1122 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Contents of the Window

The StripTool window has two main parts — the display area and the control area.

StripTool Display Area

The display area is the largest area of the window; it is where the data strip charts
are displayed. The number of strip charts you see in this area is determined by the
number of y variables that were included in the call that invoked the WgStripTool
window.

StripTool Control Area

Use the following controls to operate the WgStripTool window:

• Reverse button — Cycle through the data in a reverse direction.

• Stop button — Freeze strip chart display at current location.

• Forward button — Cycle through the data in a forward direction.

• Mode — Select Auto Stop to have WgStripTool stop whenever it reaches the
beginning or the end of the data in the y variable(s). Select Continuous to have
WgStripTool move through the data in a non-stop manner, pausing only when
you click the Stop button. Select Step to have the strip chart proceed only when
you click on one of the arrow buttons.

• Timer Delay — Decrease or increase the rate of display. The number shown
to the right of the slider is the number of milliseconds delay between contigu-
ous frames of the strip chart.

• X Step Size — The amount by which the strip charts are moved forward or
back when the strip charts are updated.

• X Display Width — The range of data displayed in the horizontal direction.
A small value for display width has the effect of “zooming in” to view a narrow
range of data; a large value for display width has the effect of “zooming out”
to view a broader range of data.

• X Range — A more precise way to specify X Display Width. Click this button
to display another dialog box containing text fields where you can type precise
values for the minimum and maximum values you wish to have displayed
along the x-axis.

This other dialog box is shown in .

• Dismiss — Destroy the WgStripTool window and erase it from the screen.

WgStripTool Procedure 1123

The selections you make in the control area affect all displayed strip charts. This
way, you can be assured that the data in one strip chart is in “sync” with the data in
any other strip chart.

Figure 2-87 Use this dialog box to precisely control the range of the x-axis in the WgStrip-
Tool window. This dialog box is displayed if you click the X Range button in the WgStripTool
control area.

Example

Enter the commands shown below into a file, and compile the procedure with the
.RUN command. If the variable parent is defined, WgStripTool is created as a
child of parent; otherwise, WgStripTool runs on its own (i.e., in its own event
loop).

When you are finished interacting with the WgStripTool window, close it by click-
ing on the Dismiss button.

PRO Sample_wgstriptool, parent, tool_shell

x = indgen(500)

y1 = sin(x)

y2 = cos(x)

y3 = tan(x)

; Create an independent variable and three dependent variables
; describing sinusoidal curves to use as data for WgStripTool.

IF N_ELEMENTS(parent) NE 0 THEN BEGIN

WgStripTool, x, y1, y2, y3, $
0, 0, 0, 0, 0, 0, 0, parent, tool_shell

; Create WgStripTool as a child of the widget known as “parent”.
; The window of the newly created widget is returned via the
; optional output parameter “tool_shell”.

ENDIF ELSE BEGIN

WgStripTool, x, y1, y2, y3

; Create WgStripTool and display it as its own Main window. In other

1124 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

; words, the WgStripTool window runs on its own (i.e., in its own event
; loop). Notice how the zeroes are not needed as placeholders, since
; the optional parameters “parent” and “tool_shell” are not being used
; in this procedure call.

ENDELSE

END

See Also

For more information about how to write an application program based on WAVE
Widgets, refer to . For more information about how to write an application program
based on the PV-WAVE Widget Toolbox, refer to .

WgSurfaceTool Procedure
Creates a surface window with a built-in set of controls: these controls allow you
to interactively modify surface parameters and view the result of those
modifications.

Usage

WgSurfaceTool, surface_data [, parent [, shell]]

Input Parameters

surface_data — A 2D variable containing surface data.

parent — (optional) The widget or shell ID of the parent widget (long). If parent
is not specified, WgSurfaceTool runs on its own (i.e., in its own event loop).

Output Parameters

shell — (optional) The ID of the newly created widget. If the procedure fails, zero
(0) is returned.

Keywords

Auto_congrid — If present and nonzero, the z variable is resized to 50-by-50 (with
CONGRID) prior to drawing the surface. This enables PV-WAVE to draw the sur-
face much faster, although there is a chance that some surface detail is lost.

Auto_redraw — If present and nonzero, the surface is automatically redrawn any
time one of the surface parameters is adjusted.

WgSurfaceTool Procedure 1125

Cmap — The index of the color table to load when the widget is created; a positive
integer in the range (0…15).

Elevation — If present and nonzero, the surface is drawn using simple elevation
shading. Elevation and Gouraud are mutually exclusive.

Gouraud — If present and nonzero, the surface is drawn using Gouraud shading.
Gouraud and Elevation are mutually exclusive.

Lines — If present and nonzero, lines are drawn instead of a grid.

Lower — If present and nonzero, only the lower portion of the grid is drawn. Lower
and Upper are mutually exclusive keywords.

Nogrid — If present and nonzero, no grid is drawn on the surface.

Position — A two-element vector specifying the x- and y-coordinates of the upper-
left corner of the SurfaceTool window (long integer). The elements of the vector
are [x, y], where x (horizontal) and y (vertical) are specified in pixels. These coor-
dinates are measured from the upper-left corner of the screen.

Skirt — If present and nonzero, a skirt is drawn connecting the surface to the x- and
y-axes. Refer to for an example of a surface with and without a skirt.

Title — A string containing the title that appears in the header of the SurfaceTool
window. Default value is “Surface Tool”.

Upper — If present and nonzero, only the upper portion of the grid is drawn. Upper
and Lower are mutually exclusive keywords.

Xrot — The initial counter-clockwise rotation of the surface around the x-axis,
measured in degrees.

Zrot — The initial counter-clockwise rotation of the surface around the z-axis,
measured in degrees.

Color/Font Keywords

For additional information on the color and font keywords, see .

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

1126 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Discussion

WgSurfaceTool () is an interactive window that lets you use the mouse to control
the orientation and appearance of a displayed surface.

Figure 2-88 WgSurfaceTool creates an interactive window that lets you use the mouse to
control the orientation and appearance of a displayed surface.

Event Handling

You can use the SurfaceTool widget in one of the following two ways:

• From the WAVE> prompt — Enter the procedure name at the WAVE> prompt
to display the SurfaceTool widget. The SurfaceTool widget handles its own
event loop by calling WwLoop.

• Stand-alone widget in its own window created by another application —
The SurfaceTool widget has its own Main window, but the application (not the
SurfaceTool widget) handles the event loop by calling WwLoop.

The output parameter shell can be returned only if you also supply the input param-
eter parent.

WgSurfaceTool Procedure 1127

Contents of the Window

The SurfaceTool window has three main parts — the display area, the control area,
and the message area.

SurfaceTool Display Area

The display area is the largest area of the window; it is where the surface is
displayed.

SurfaceTool Control Area

Use the following controls to operate the SurfaceTool window:

• Surface (menu) — From the menu, choose the method by which the surface
is drawn. The choices are: Fishnet (mesh), Lines (lines in one direction only),
and None (no lines appear superimposed on a shaded surface).

• Sides (menu) — From the menu, choose the representation of the top and bot-
tom sides of the surface. The choices are: Both (lines on both top and bottom),
Upper (lines on upper surface only), and Lower (lines on lower surface only).

• Skirt — Controls whether a skirt is added to the surface. A skirt helps establish
a frame of reference between the surface and the
x-, y-, and z-axes. Refer to for an example of a surface with and without a skirt.

• Shade (menu) — From the menu, select the algorithm by which the surface is
shaded. The choices are: None (no shading), Gouraud, and Elevation.

• X and Z Rotation — These controls allow you to rotate the surface (counter-
clockwise around the x- or z-axis) a specified number of degrees. The current
rotation is shown in the text field to the right of the slider. To modify the rota-
tion, either enter a new value in one of the text fields, or use either slider. If you
enter a new value into a text field, press <Return> to apply the new value to the
slider and the surface. If you use the sliders, the change is applied immediately
as the slider moves.

• Auto Redraw — Controls whether the contents of the display area are redrawn
every time a modification is made to one of the controls in the SurfaceTool con-
trol area.

• Auto Congrid — The surface is resized to 50-by-50 (with CONGRID) prior
to drawing the surface, for faster display of large datasets. The default is for
Auto Congrid to be enabled. Auto Congrid does not affect the actual data; it only
affects the display of the data.

• Redraw — Causes the contents of the SurfaceTool display area to be redrawn.

1128 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

• Dismiss — Destroy the SurfaceTool window and erase it from the screen.

SurfaceTool Message Area

The message area displays the PV-WAVE command that is being used to display
the surface.

Figure 2-89 A surface with and without a skirt.

Example

Enter the commands shown below into a file, and compile the procedure with the
.RUN command. If the variable parent is defined, WgSurfaceTool is created as
a child of parent; otherwise, WgSurfaceTool runs on its own (i.e., in its own
event loop).

When you are finished interacting with the WgSurfaceTool window, close it by
clicking on the Dismiss button.

PRO Sample_wgsurfacetool, parent, tool_shell

x = DIST(75)

; Create a “dummy” variable to view as view as a surface using WgSurfaceTool.

IF N_ELEMENTS(parent) NE 0 THEN BEGIN

WgSurfaceTool, x, parent, tool_shell

; Create WgSurfaceTool as a child of the widget known as “parent”.
; The window of the newly created widget is returned via the optional

PV-WAVE surface with skirt PV-WAVE surface without skirt

WgSurfaceTool Procedure 1129

; output parameter “tool_shell”.

ENDIF ELSE BEGIN

WgSurfaceTool, x

; Create WgSurfaceTool and display it as its own Main window.
; In other words, the WgSurfaceTool window runs on its own (i.e., in
; its own event loop).

ENDELSE

END

See Also

SHADE_SURF, SURFACE

For more information about how to write an application program based on WAVE
Widgets, refer to . For more information about how to write an application program
based on the PV-WAVE Widget Toolbox, refer to .

1130 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

WgTextTool Procedure
Creates a scrolling window for viewing text from a file or character string.

Usage

WgTextTool [, parent [, shell]]

Input Parameters

parent — (optional) The widget or shell ID of the parent widget (long). If parent
is not specified, WgTextTool runs on its own (i.e., in its own event loop).

NOTE Either the File or the Text keyword must be supplied to identify the text that
WgTextTool will display.

Output Parameters

shell — (optional) The ID of the newly created widget. If the procedure fails, zero
(0) is returned.

Keywords

Cols — The number of text columns to display when the window is first created.

File — The name of the file to display. The File and Text keywords are mutually
exclusive, and one of them must be used.

Position — A two-element vector specifying the x- and y-coordinates of the upper-
left corner of the TextTool window (long integer). The elements of the vector are
[x, y], where x (horizontal) and y (vertical) are specified in pixels. These coordi-
nates are measured from the upper-left corner of the screen.

Rows — The number of text rows to display when the window is first created.

Text — A string containing the text that will be displayed. The Text and File key-
words are mutually exclusive, and one of them must be used.

Title — A string containing the title that appears in the header of the TextTool win-
dow. If not specified, either the name of the file is used for the title, or when
TextTool is displaying a string, the value of the title defaults to “Scrolling
Window”.

WgTextTool Procedure 1131

Color/Font Keywords

For additional information on the color and font keywords, see .

Background — Specifies the background color name.

Basecolor — Specifies the base color.

Font — Specifies the name of the font used for text.

Foreground — Specifies the foreground color name.

Discussion

WgTextTool is a window () that lets you view text from a string or from a file.

Figure 2-90 WgTextTool displays either: 1) text from a file, or 2) text from an input string. In
this illustration, WgTextTool is displaying text from the copyright file that is distributed with
every copy of PV-WAVE.

NOTE The text displayed in the window is read only; it cannot be edited.

Interacting with the Window

The standard text editing functions are available. In Motif, this means the left
mouse button and the middle mouse button can be used to copy text. However, in
the text edit popup menu, only the Copy function will be sensitized, because the
text is read-only.

1132 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Use the Dismiss button (or the TextTool window’s window manager menu) to
destroy the window when you are finished viewing the text.

Event Handling

You can use the TextTool widget in one of the following two ways:

• From the WAVE> prompt — Enter the procedure name at the WAVE> prompt
to display the TextTool widget. The TextTool widget handles its own event
loop by calling WwLoop.

• Stand-alone widget in its own window created by another application —
The TextTool widget has its own Main window, but the application (not the
TextTool widget) handles the event loop by calling WwLoop.

The output parameter shell can be returned only if you also supply the input param-
eter parent.

Example

Enter the commands shown below into a file, and compile the procedure with the
.RUN command. If the variable parent is defined, WgTextTool is created as a
child of parent; otherwise, WgTextTool runs on its own (i.e., in its own event
loop).

When you are finished interacting with the WgTextTool window, close it by click-
ing the Dismiss button.

PRO Sample_wgtexttool, parent, tool_shell

IF !Version.platform EQ ’VMS’ THEN BEGIN

filename = GETENV(’WAVE_DIR’)+’copyright’

; Specify the pathname and filename using OpenVMS notation.
ENDIF ELSE BEGIN

filename = ’$WAVE_DIR/copyright’

; Specify the pathname and filename using UNIX notation.
ENDELSE

IF N_ELEMENTS(parent) NE 0 THEN BEGIN

WgTextTool, File=filename, parent, tool_shell

; Create WgTextTool as a child of the widget known as “parent”.
; The window of the newly created widget is returned via the optional
; output parameter “tool_shell”.

ENDIF ELSE BEGIN

WgTextTool, File=filename

; Create WgTextTool and display it as its own Main window. In other

WHERE Function 1133

; words, the WgTextTool window runs on its own (i.e., in its own event
; loop).

ENDELSE

END

See Also

WwText in the PV-WAVE Application Developer’s Guide.

For more information about how to write an application program based on WAVE
Widgets, refer to . For more information about how to write an application program
based on the PV-WAVE Widget Toolbox, refer to .

WHERE Function
Returns a longword vector containing the one-dimensional subscripts of the non-
zero elements of the input array.

Usage

result = WHERE(array_expr [, count])

Input Parameters

array_expr — The array to be searched. May be of any data type. Both the real and
imaginary parts of complex numbers must be zero for the number to be considered
zero.

Output Parameters

count — (optional) If present, count is converted into a longword integer contain-
ing the number of nonzero elements found in array_expr. Must be a named
variable.

Returned Value

result — A longword vector containing the one-dimensional subscripts of the non-
zero elements of array_expr. The length is equal to the number of nonzero
elements in array_expr.

1134 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Keywords

None.

Discussion

Frequently the result of WHERE is used as a vector subscript to select elements of
an array using given criteria.

As a side effect, the system variable !Err is set to the number of nonzero elements.
This is for compatibility with previous versions of PV-WAVE. Therefore, it is rec-
ommended that the Count keyword be used in all new programs, rather than !Err.

Example 1

The WHERE function can be used to select a range of values in an array. For
example:

index = WHERE ((array GT 50) AND (array LT 100))

; Get the subscripts of those elements greater than 50 and less
; than 100.

result = array(index)

; Put the selected values into result.

Example 2

If all the elements of array_expr are zero, WHERE returns a scalar integer with a
value of –1. If you attempt to use this result as an index into another array, you will
get an error message about the subscripts being out of bounds. In some situations,
code similar to the following can be used to avoid errors:

index = WHERE(array, count)

; Use count to get the number of nonzero elements.

IF (count GT 0) THEN result = array(index)

; Only subscript the array if it's safe to do so.

Example 3

You can use WHERE to determine where an array of strings matches a specific pat-
tern, or where the array of strings is non-NULL.

s = [’this’, ’is’, ’an’, ’array’, ’of’, ’strings’]

PRINT, WHERE(s eq ’an’)

2

s = [’this’, ’’, ’’, ’array’, ’’, ’strings’]

WHEREIN Function 1135

PRINT, WHERE(s)

0 3 5

See Also

QUERY_TABLE, SORT, WHEREIN

System Variables: !Err

For more information, see .

WHEREIN Function
Find the indices into an array where the values occur in a second array; keywords
yield intersection, union, and complement

Usage

i = WHEREIN(a, b [,c])

Input Parameters

a — An array.

b — An array.

Output Parameters

c — (Optional) The number of indices.

Returned Value

i — The array of indices into a where the values occur in b; if there are no such
indices, then a scalar –1 is returned.

Output Keywords

j — The array of indices into b where the values occur in a; if there are no such
indices then –1 is returned.

Intersection — The vector of elements common to both a and b; if there are no
such elements then nothing is returned.

Union — the vector of elements in either a or b.

1136 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

A_Complement — The array of indices into a where the values do not occur in b;
if there are no such indices then –1 is returned.

B_Complement — The array of indices into b where the values do not occur in a;
if there are no such indices then –1 is returned.

Example
PM, WHEREIN([0,1,2,3,2], [0,0,4,2,5,5,6,0])

 0

 2

 4

See Also

INDEX_AND, WHERE

WIN32_PICK_FONT Function
Displays a Windows common font dialog.

Usage

font_name = WIN32_PICK_FONT()

Input Parameters

None.

Returned Value

fontname — The name of the font selected in the form “Face, Point Size [, bold,
italic, underline]” If the Cancel button is pressed a NULL string is returned.

Keywords

Default — A font specification that is used to initialize the font dialog.

Device — If present and non-zero indicates the selected font should be set as the
current hardware font for subsequent WIN32 driver text. Equivalent to
using the command “DEVICE, Font=f”.

Fixed — If present and non-zero indicates that only fixed width fonts should be dis-
played in the font dialog.

WIN32_PICK_PRINTER Function 1137

Scalable — If present and non-zero indicates that only scalable fonts should be dis-
played in the font dialog.

TrueType — If present and non-zero indicates that only TrueType fonts should be
displayed in the font dialog.

Example
font_name = WIN32_PICK_FONT(/TrueType, /Device)

Displays all TrueType fonts and sets the default font to the selected font.

font_name = WIN32_PICK_FONT(Default=’Arial, 12, bold’)

Opens a font dialog displaying Arial, 12 pt. Bold as the default selected font.

See Also

WIN32_PICK_PRINTER

WIN32_PICK_PRINTER Function
Displays a Windows printer dialog.

Usage

printer_name = WIN32_PICK_PRINTER()

Input Parameters

None.

Returned Value

printername — The name of the printer.

Keywords

None.

See Also

WIN32_PICK_FONT

1138 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

WINDOW Procedure
Creates a window for the display of graphics or text.

Usage

WINDOW [, window_index]

Input Parameters

window_index — (optional) An integer specifying the index of the newly created
window.

If window_index is omitted, 0 is used as the index of the new window.

If the value of window_index specifies an existing window, the existing
window is deleted and a new window is created.

NOTE If a widow with index zero (0) is already open and you call
WINDOW with no parameters, the original window zero (0) will be deleted. To
avoid this, specify a window_index for the new window or use the Free keyword.

Keywords

Bitmap — (Windows Only) Creates a bitmap stored in the display memory rather
than a visible window. This invisible window is created with backing store (see the
Retain keyword). See also Appendix B, Output Devices and Window Systems.
(Interchangeable with the Pixmap keyword.)

Colors — The maximum number of color table indices to be used. This keyword
has effect only if it is supplied when the first window is created. Otherwise,
PV-WAVE uses all of the available color indices.

To use monochrome windows on a color display, use Colors=2 when creating
the first window.

UNIX and OpenVMS USERS If the X Window System is being used, a nega-
tive value for Colors specifies that all but the given number of colors from the
shared color table should be allocated.

Free — If nonzero, creates a window using the largest unused window index. This
keyword can be used instead of specifying the window_index parameter.

WINDOW Procedure 1139

UNIX and OpenVMS USERS The default position of the new window is oppo-
site the current window.

Get_Win_ID — Returns the window ID for the window just created. For example:

WINDOW, Get_Win_ID=New_Win_ID

Get_Xpix_ID — (X Window System only) Returns the X pixmap ID for the pix-
map just created. You must use the Pixmap keyword to set this ID. For example:

WINDOW, Get_Xpix_ID=New_Xpix_ID, /Pixmap

Get_Xwin_ID — (X Window System only) Returns the X Window ID for the win-
dow just created. For example:

WINDOW, Get_Xwin_ID=New_Xwin_ID

NoMeta — (Windows only) Turns metafiles off for the window. Use this keyword
when running animations or displaying images.

A metafile is an internal, vector-based record of all the graphics commands sent to
a window. By default, a metafile is kept for each window to speed the redrawing of
the window when it is resized. The metafile is also used when printing to avoid res-
olution problems that occur when printing a bitmap image.

Noretain — (UNIX/OpenVMS Only) An obsolete keyword (see the Retain
keyword).

Noshow — (Windows only) If present and nonzero, the graphics window is not
displayed on the screen.

Pixmap — This keyword specifies that the window being created is actually an
invisible portion of the display memory called a pixmap. (Interchangeable with the
Bitmap keyword.)

Retain — Specifies how backing store for the window should be handled. Possible
values for this keyword are listed below:

Set_Win_ID — (Windows Only) The window associated with the window ID
assigned to this keyword for the PV-WAVE window. For example:

0 No backing store (same as Noretain keyword).

1 The server or window system is requested to make the window
retained.

2 PV-WAVE should provide a backing pixmap and handle the backing
store directly (X Window System only).

1140 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

WINDOW, Set_Win_ID=1234567L

Set_Xpix_ID — (X Window System only) Uses the X pixmap associated with the
X Pixmap ID assigned to this keyword for the PV-WAVE pixmap. This keyword
forces the Pixmap keyword to be set. For example:

WINDOW, Set_Xpix_ID=1234567L

Set_Xwin_ID — (X Window System only) Uses the X Window associated with the
X Window ID assigned to this keyword for the PV-WAVE window. For example:

WINDOW, Set_Xwin_ID=1234567L

Title — A scalar string specifying the window’s label. If not specified, the window
is given a label of the form “WAVE n”, where n is the index number of the window.
For example, to create a window with a label of PV-WAVE Graphics:

WINDOW, Title=’PV-WAVE Graphics’

XPos, YPos — The x and y positions of the lower-left corner of the new window,
specified in device coordinates.

If no position is specified, the position of the window is determined from the value
of window_index, using the following rules:

• Window 0 is placed in the upper right-hand corner.

• Even-numbered windows are placed on the top half of the screen and odd-
numbered windows are placed on the bottom half.

• Windows with window_index = 4 * i (e.g., 0, 4, 8, etc.), and windows with
window_index = 4 * i + 1 (where i is any whole number) are placed on the right
side of the screen. Windows with window_index = 4 * i + 2 (e.g., 2, 6, 10, etc.),
and windows with window_index = 4 * i + 3 (where i is any whole number) are
placed on the left side of the screen.

XSize — The width of the window, in pixels. (Default: 640)

YSize — The height of the window, in pixels. (Default: 512)

Discussion

You can create any number of windows; however, valid window indices are gov-
erned by the following rules. First, windows are allocated in sets of 32. You always
have available to you:

• the windows in the currently available window set that are not already “used
up” (beginning with the first set (0..31)) and

• the next available set of 32 windows.

WINDOW Procedure 1141

For example, the following two commands are both valid because the first window
is created from the first available set of windows (0..31) and the second window is
created from the next available set (32..63).

WINDOW, 1

; Creates window 1 from window set (0..31).

WINDOW, 63

; Creates window 63 from window set (32..63), the next available set.

On the other hand, the following commands break the rule and produce an error
because the second window created is not in the next available set after (0..31); it
is in the set (64..95).

WINDOW, 1

WINDOW, 64
% WINDOW: Window number out of range or no more
% windows Execution halted at $MAIN$ (WINDOW)

You can use the command:

DEVICE, Window_State = winarr

to determine the number of windows (and sets of windows) that are currently
allocated.

You only need to use WINDOW if you want to display more than one PV-WAVE
window simultaneously or to set specific characteristics of windows.

The behavior of WINDOW varies slightly depending on the window system in
effect. You can use the DEVICE procedure to change many of the WINDOW pro-
cedure’s defaults.

The newly created window becomes the current PV-WAVE window, and the sys-
tem variable !D.Window is set to the window index associated with it. (See the
WSET procedure for a discussion of the current PV-WAVE window.)

Example 1

This example creates a single window. The window’s ID is zero (0). The output of
any graphics commands appear in this window.

WINDOW, 0

Example 2 (Windows only)

In this example, graphics are output at a size that exceeds the width and height,
respectively, of the actual display device. The Xsize and Ysize keywords set the
width and height and the Noshow keyword causes the graphics to be created with-

1142 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

out displaying them on the screen. The WPRINT command is used to print the
graphics. (This example only works under Windows.)

WINDOW, 1, XSize=3000, YSize=3000, /Noshow

PLOT, x, y

WPRINT, 1

Windows USERS If you want to see the current contents of window 1 in this
example at any time, create a visible window with a smaller size and pass the con-
tents of window 1 to the smaller window using the WCOPY and WPASTE
functions. These commands transfer graphics using the Clipboard. For example:

status = WCOPY(1)

; Copy current window (window 1) to the Clipboard.

WINDOW, 2

; Create a visible window that will fit on the screen.

status = WPASTE(2)

; Paste the Clipboard contents into the visible window.

WSET, 1

; Set the current graphics window back to window 1 and continue.

See Also
ERASE, WDELETE, WSET, WSHOW

System Variables: !D.Window

For additional information on PV-WAVE graphics devices, see Appendix B, Out-
put Devices and Window Systems.

Windows USERS For information on the graphics window Control menu, see ,
in the PV-WAVE User’s Guide.

WMENU Function (UNIX/OpenVMS) 1143

WMENU Function (UNIX/OpenVMS)
Displays a menu inside the current window whose choices are given by the ele-
ments of a string array and which returns the index of the user’s response.

Usage

result = WMENU(strings)

Input Parameters

strings — A string array, with each element containing the text of one menu choice.
Both the maximum number of elements and the maximum element length are con-
strained by how large a display area will be used.

Returned Value

result — A value ranging from 0 to the number of elements in strings minus one.
The value –1 is returned, if no menu item was selected.

Keywords

Initial_Selection — The index of the initial selection.

• If this keyword is specified and within the range of strings indices, the initial
menu display is made with the designated item selected.

• If this keyword is not specified, the menu is initially displayed with the mouse
cursor at the immediate left of the first (top) selection.

Title — The index of the strings element that is the title, normally 0. The title ele-
ment is not selectable and is displayed reversed and centered. If this keyword is
omitted, all items are selectable.

XPos — (X Window System only) The position on the x-axis of the display device
where the menu is to be placed.

YPos — (X Window System only) The position on the y-axis of the display device
where the menu is to be placed.

Discussion

WMENU can be used only with X Window System displays.

To use, select a menu item with the mouse and click the left mouse button.

1144 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Example

The following statement displays a menu containing the selectionsYes andNo and
entitled Do you wish to continue?:

i = WMENU([’Do you wish to continue?’, ’Yes’,$
’No’], Title=0, Init=1)

The menu is displayed with Yes initially selected. The result is as follows:

1
if the user clicks on Yes.

2
if the user clicks on No.

–
1

if the user clicks the left mouse button outside the menu.

WPASTE Function (Windows) 1145

WPASTE Function (Windows)
Pastes the contents of the Clipboard into a graphics window.

Usage

status = WPASTE([window_index])

Input Parameters
window_index — (optional) The index of the window to which the contents of the
Clipboard are to be pasted. If not specified, the current window is assumed.

Returned Value

status — A value indicating success or failure of the paste operation; expected val-
ues are:

Keywords

None.

Discussion
You can paste graphics from the Clipboard in two ways:

• The WPASTE function

• The Paste from Clipboard option on the graphics window Control menu.

Example
See the WCOPY function for an example that demonstrates an application of
WPASTE.

See Also

WCOPY

Windows USERS The graphics window Control menu includes a command that
pastes graphics from the Clipboard. For information on the Control menu, see , in
the PV-WAVE User’s Guide.

< 0 Indicates an error. For example, an error value is returned if no
graphics are on the clipboard.

 0 Indicates a successful paste.

1146 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

WPRINT Procedure (Windows)
Prints the contents of a specified window.

Usage

WPRINT [, window_index]

Input Parameters

window_index — (optional) The index number of the window to be printed. If not
specified, then the value of !D.Window is used.

Keywords

Collate — If present and nonzero, enables collating for printers that support this
feature.

Color — If present and nonzero, enables color output for printers that support this
feature.

Copies — Specifies the number of copies to print; the default value is set to the
default value of the current printer.

Duplex — If present and nonzero, enables duplex printing. A positive value spec-
ifies horizontal (long side) duplexing; a negative value specifies vertical (short side)
duplexing.

Inches — By default, the Xsize and Ysize keywords are specified in centimeters.
However, if Inches is present and nonzero, Xsize and Ysize are taken to be inches
instead.

Landscape — If present and nonzero, then landscape orientation is used. The
default is portrait orientation.

Paper_Size — A string value that determines the size of the paper. Valid string val-
ues are:

Letter (default) Legal Tabloid Ledger

Statement Executive A3 A4

A5 B4 B5 Folio

Quarto 10x14 11x17 Note

CSheet DSheet ESheet

WPRINT Procedure (Windows) 1147

NOTE The page dimensions set with this keyword can be overridden with the
XSize and YSize keywords.

Portrait — If present and nonzero then portrait orientation is used. This is the
default.

Printer_Name — Specifies the name of the print queue to which the graphics
should be printed. If no printer name is specified, then the default printer is used.

NOTE If this keyword is not specified, a Print dialog box appears from which you
can interactively select a print queue and other options.

Quality — A string value that specifies the printer resolution; the default value is
set to the default value of the current printer. Possible string values are: High, Low,
Medium, and Draft.

Scale_Factor — Specifies a scale factor that affects the entire graphics area. The
default value is 1.0, which allows output to appear at its normal size.

Source — A string value that specifies the paper bin from which the paper is fed
by default; the default value is set to the default value of the current printer. Possi-
ble string values include:

XSize, YSize — Specifies the width and height of the output page. By default, these
values are specified in centimeters unless the Inches keyword is used.

Discussion

This command allows you to print the contents of a specified window.

Not all output devices support all of the features that can be configured using the
WPRINT keywords. If you use a keyword to set a feature that is not supported by
the output device, WPRINT simply ignores that keyword, and no error message is
displayed. See your printer’s documentation for a complete list of its features.

Example
WPRINT, Printer_Name = ’lz1’, /Landscape,$

Copies=3

Upper Middle Lower Manual

Auto Tractor Cassette

1148 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

See Also

PRINT, PRINTF, WINDOW

Windows USERS The graphics window Control menu includes a command that
prints the contents of a graphics window. For information on the Control menu, see
, in the PV-WAVE User’s Guide.

WREAD_DIB Function (Windows)
Loads a Device Independent Bitmap (DIB) from a file into a graphics window.

Usage

status = WREAD_DIB([window_index])

Input Parameters

window_index — (optional) The index of the window to receive the image. If not
specified, the current window is assumed. If no window is currently open, an error
results.

Returned Value

status — A value indicating success or failure; expected values are:

Keywords

Filename — A string containing the name of the DIB (Device Independent Bit-
map) file. If not specified, a file named wave.bmp is assumed to be in the current
directory.

Interactive — If present and nonzero, open the Import Graphics dialog box. This
dialog box lets you interactively select a file to import.

< 0 Indicates an error.

0 Indicates a successful read.

WREAD_META Function (Windows) 1149

Discussion

Device Independent Bitmap (DIB) is a bitmap format that is useful for transporting
graphics and color table information between different devices and applications.
DIB files can be produced by graphics applications such as Microsoft Image Edi-
tor, Microsoft Paintbrush, and PV-WAVE.

NOTE This function loads a DIB from a file into a graphics window. To load a
DIB directly into a variable, use the function DC_READ_DIB.

Example

Assume that the file map.bmp is a DIB file that was exported from a graphics
application. The following command reads the contents of that file directly into the
graphics window with index number 2.

status = WREAD_DIB(2, Filename=’map.bmp’)

See Also

DC_READ_DIB, DC_WRITE_DIB, WWRITE_DIB

Windows USERS The graphics window Control menu includes a command that
imports DIB data from a file. For information on the Control menu, see , in the
PV-WAVE User’s Guide.

WREAD_META Function (Windows)
Loads an enhanced-format metafile (EMF) into a graphics window.

Usage

status = WREAD_META([window_index])

Input Parameters

window_index — (optional) The index of the window to receive the graphics. If
not specified, the current window is assumed. If no window is currently open, an
error results.

1150 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Returned Value

status — A value indicating success or failure of the read; expected values are:

Keywords

Filename — A string containing the name of the enhanced-format metafile. If not
specified, a file named wave.emf is assumed to be in the current directory.

Interactive — If present and nonzero, open the Import Graphics dialog box. This
dialog box lets you interactively select a file to import.

Discussion

This function loads an enhanced-format metafile (EMF) into a graphics window.
For more information on metafiles, see the description of the WINDOW procedure.

Example

Assume that the file map.emf is an enhanced-format metafile that was exported
from a graphics application. The following command reads the contents of that file
directly into a graphics window.

status = WREAD_META(2, Filename=’map.emf’)

See Also

WWRITE_META

Windows USERS The graphics window Control menu includes a command that
imports EMF data from a file. For information on the Control menu, see , in the
PV-WAVE User’s Guide.

< 0 Indicates an error.

0 Indicates a successful read.

WRITEU Procedure 1151

WRITEU Procedure
Writes binary (unformatted) data from an expression into a file.

Usage

WRITEU, unit, expr1, ... , exprn

Input Parameters

unit — The file unit to which the output will be sent.

expri — Expressions to be output. For nonstring variables, the number of bytes
contained in expr is output. For string variables, the number of bytes contained in
the existing string is output.

Keywords

None.

Discussion

WRITEU performs a direct transfer, with no processing of any kind being done to
the data.

Example

In this example, WRITEU is used to write some data to a file. The READU proce-
dure could then be used to read the data from the file.

d = BYTSCL(REFORM(FIX(100 * RANDOM(40000)), 200, 200))

; Create some data. Argument d contains a 200-by-200 byte array.

OPENW, unit, ’wuex.dat’, /Get_Lun

; Open the file wuex.dat for writing.

WRITEU, unit, d

; Write the data in d to the wuex.dat file.

FREE_LUN, unit

; Close the file and free the file unit number.

See Also

OPEN (UNIX/OpenVMS), OPEN (Windows), READ

For more information and examples, see .

1152 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

WRITE_XBM Procedure
Writes an image to an X-bitmap (XBM) file.

Usage

WRITE_XBM, file, image

Input Parameters

file — A scalar string giving the filename of the XBM image.

image — The variable containing the input image.

Keywords

None.

Discussion

Since XBM is a monochrome (2-color) format, the input image is forced into 2 col-
ors, if it is not already. Any extra colors are re-mapped using the median point
between the minimum and maximum color values; anything less than the median
value is converted to 0 (background), while the median and higher values are con-
verted to 1 (black).

Example
image = BYTE(DIST(100))

WRITE_XBM, ’your.xbm’, image

; Write a 2D byte array to an XBM file.

See Also

IMAGE_CREATE, IMAGE_READ, IMAGE_WRITE, READ_XBM

WSET Procedure 1153

WSET Procedure
Used to select the current, or “active” window to be used by the graphics and imag-
ing routines.

Usage

WSET, window_index

Input Parameters

window_index — The window index of the new current window.

Keywords

Resize — If present and nonzero, notifies PV-WAVE that a window being used to
display PV-WAVE graphics (e.g., with the WINDOW command’s Set_Xwin_Id or
Set_Win_Id keyword) has been resized. PV-WAVE updates the window size in the
!D system variable so that subsequent PV-WAVE graphics commands use the new
window size.

Discussion

WSET can be used only on displays with window systems.

The window-index number of the current window is given by the read-only system
variable !D.Window.

Window Resizing in Noninteractive Applications

On UNIX, if you are writing a PV-WAVE noninteractive application, you must use
the Resize keyword in order for PV-WAVE to recognize when a user resizes a
graphic window.

Example 1 — UNIX/OpenVMS

This example shows how the keyword Resize is used in a PV-WAVE Widgets
application written in the C programming language. The cwavec function is used
to call the PV-WAVE functions from the C program.

static void resizeCB_drawingArea(widget, data, cbs)

 Widget widget;

 XtPointer data;

 XmDrawingAreaCallbackStruct *cbs;

1154 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

{

 int action, numcmds, istat, cwavec();

 char *cmds[2];

 if (!XtIsRealized(widget)) return;

 if (cbs->reason == XmCR_RESIZE) {

 action = 2;

 cmds[0] = ’erase’;

 istat = cwavec (action, 1, cmds);

 /*

 * Update display, to solve Motif geometry changes

 * and give PV-WAVE the proper window size.

 */

 XmUpdateDisplay(widget);

 cmds[0] = ’WSET,0,/Resize’;

 cmds[1] = ’SHADE_SURF, HANNING(20,20)’;

istat = cwavec (action, 2, cmds);

 }

}

Example 2 — UNIX/OpenVMS

This example shows how the keyword Resize is used in a PV-WAVE Widgets
application written in the C programming language. The wavecmds function is
used to call the PV-WAVE functions from the C program.

static void resizeCB_drawingArea(widget, data, cbs)

 Widget widget;

 XtPointer data;

 XmDrawingAreaCallbackStruct *cbs;

{

 if (!XtIsRealized(widget)) return;

 if (cbs->reason == XmCR_RESIZE) {

 wavecmd(’ERASE’);

 /*

 * Update display, to solve Motif geometry changes

 * and give PV-WAVE the proper window size.

WSHOW Procedure 1155

 */

 XmUpdateDisplay(widget);

 wavecmd(’WSET,0,/Resize’);

 wavecmd(’SHADE_SURF, HANNING(20,20)’);

 }

}

See Also

WDELETE, WINDOW, WSHOW

System Variables: !D.Window

WSHOW Procedure
Exposes or hides the designated window.

Usage

WSHOW [, window_index [, show]]

Input Parameters

window_index — (optional) The window index of the window to be hidden or
exposed. If not specified, the current window is used.

show — (optional) A flag indicating whether a window is hidden or exposed:

Keywords

Iconic — (UNIX/OpenVMS Only) If present and nonzero, turns the window into
an icon.

Discussion

WSHOW does not automatically make the specified window the active window —
the window into which new graphics are drawn. You can use WSET to specify the
active window.

0 Hides the window.

1 Exposes the window.

1156 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

UNIX and OpenVMS USERS The definition of “hidden” is machine-depen-
dent. On Sun Workstations, for example, the window disappears, although it can
still be written to if it is the active window. On machines supporting the X Window
System server, the window is simply pushed to the back of the window display list
so that it appears to be located behind other windows on the display.

See Also

WDELETE, WINDOW, WSET

System Variables: !D.Window

WWRITE_DIB Function (Windows)
Saves the contents of a graphics window to a file as a Device Independent Bitmap
(DIB).

Usage

status = WWRITE_DIB([window_index])

Input Parameters

window_index — (optional) The index of the window from which the image is to
be saved. If not specified, the current window is assumed.

Returned Value

status — A value indicating success or failure of the write; expected values are:

Keywords

Filename — A string containing the name of the output DIB file. If not specified,
a file named wave.bmp is created in the current directory.

Interactive — If present and nonzero, open the Import Graphics dialog box. This
dialog box lets you interactively create or select an export file.

< 0 Indicates an error.

0 Indicates a successful write.

WWRITE_META Function (Windows) 1157

Discussion

This function saves the contents of a graphics window to a DIB format file. To
export the contents of a variable to a DIB file, use the DC_WRITE_DIB function.

Example

The following commands demonstrate how to export the contents of graphics win-
dow 2 to a DIB file:

WINDOW, 2

SHADE_SURF, DIST(40)

; Create a window and display graphics in it.

status = WWRITE_DIB(2, Filename=’image.bmp’)

; Save the contents of the window directly in a DIB format file.

See Also

DC_READ_DIB, DC_WRITE_DIB, WREAD_DIB

Windows USERS The graphics window Control menu includes a command that
exports DIB graphics to a file. For information on the Control menu, see , in the
PV-WAVE User’s Guide.

WWRITE_META Function (Windows)
Saves the contents of a graphics window to a file as an enhanced-format metafile
(EMF).

Usage

status = WWRITE_META([window_index])

Input Parameters

window_index — (optional) The index of the window from which the graphics are
to be saved. If not specified, the current window is assumed.

Returned Value

status — A value indicating success or failure of the write; expected values are:

1158 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Keywords

Filename — A string containing the name of the output EMF file. If not specified,
a file named wave.emf is created in the current directory.

Interactive — If present and nonzero, open the Import Graphics dialog box. This
dialog box lets you interactively create or select an export file.

Discussion

This function saves the contents of a graphics window in an EMF file.

Example

In this example, the contents of window 2 are written to an EMF format file called
image.emf.

WINDOW, 2,

SHADE_SURF, DIST(40)

status = WWRITE_META(2, Filename=’image.emf’)

See Also

WREAD_META

Windows USERS The graphics window Control menu includes a command that
exports EMF graphics to a file. For information on the Control menu, see , in the
PV-WAVE User’s Guide.

< 0 Indicates an error.

0 Indicates a successful write.

WzAnimate Procedure 1159

WzAnimate Procedure
Starts a VDA Tool used for animating a sequence of images.

Usage

WzAnimate, var

Input Parameters

var — The name of a 3D byte variable to plot or an equivalent expression.

Keywords

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Position — Specifies the x and y (horizontal and vertical) coordinates in pixels for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure that has been saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Template — A string containing the name of a VDA Tool template file.

XSize — Specifies the width of the drawing area, in pixels.

YSize — Specifies the height of the drawing area, in pixels.

Discussion

The Parent keyword is used to connect WzAnimate to another application, such as
the Navigator.

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzAnimate in:

(UNIX) <wavedir>/lib/vdatools/wzanimate.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZANIMATE.PRO

(Windows) <wavedir>\lib\vdatools\wzanimate.pro

1160 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Where <wavedir> is the main PV-WAVE directory.

A template is a VDA Tool without any data associated with it. The template con-
tains all of the modifications to the VDA Tool — colors, axes, graphical elements
— that were set when the template file was saved. Template files are saved with the
File=>Save Template As ... function on the VDA Tool.

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example

WzAnimate, head
; The variable head exists on the $MAIN$ level of PV-WAVE, and the
; animation is created in the following manner.

OPENR, 3, ’wave/data/headspin.dat’

head = BYTARR(256, 256, 32)

READU, 3, head

CLOSE, 3

See Also

TV

WzBar Procedure
Starts a VDA Tool used for plotting a bar chart. This VDA Tool creates simple,
stacked, and grouped bar charts.

Usage

WzBar, var

Input Parameters

var — The name of a 1D, 2D, or 3D variable, with a maximum of 400 elements.
See the Discussion section for information on the effects of these different dimen-
sioned variables.

WzBar Procedure 1161

Keywords

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Template — A string containing the name of a VDA Tool template file.

XSize — Specifies, in pixels, the width of the drawing area.

YSize — Specifies, in pixels, the height of the drawing area.

Discussion

If var is a 1D array, a simple bar chart is plotted.

If var is a 2D array, the bar chart can either consist of grouped bars or stacked bars.
For grouped bars (the default) the first dimension is construed as a group and the
second dimension as a bar value. If the Stack option is selected in the VDA Tool,
then the first dimension is construed as a stack and the second dimension as a bar
value.

If var is a 3D array, the bar chart consists of grouped, stacked bars. The first dimen-
sion is construed as a group, the second as the stack, and the third as a bar in a stack
in a group.

The Parent keyword is used to connect WzBar to another application, such as the
Navigator.

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzHistogram
in:

(UNIX) <wavedir>/lib/vdatools/wzbar.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZBAR.PRO

(Windows) <wavedir>\lib\vdatools\wzbar.pro

1162 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Where <wavedir> is the main PV-WAVE directory.

A template is a VDA Tool without any data associated with it. The template con-
tains all of the modifications to the VDA Tool — colors, axes, graphical elements
— that were set when the template file was saved. Template files are saved with the
File=>Save Template As ... function on the VDA Tool.

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example
var = INDGEN(5)

WzBar, var, XSize=400, YSize=400

See Also

BAR, , BAR2D, WzBar3D, WzPie

WzBar3D Procedure
Starts a VDA Tool used for plotting a 3D bar chart.

Usage

WzBar3D, var

Input Parameters

var — The name of a 2D variable, with a maximum size of 200 by 200.

Keywords

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

WzBar3D Procedure 1163

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Template — A string containing the name of a VDA Tool template file.

XSize — Specifies, in pixels, the width of the drawing area.

YSize — Specifies, in pixels, the height of the drawing area.

Discussion

The var parameter is a 2D array of elevation values. The 3D effect is established
by modifying the colortable to create darker color values for use on the top and left
sides of the bars. By default, the bars are displayed vertically (upward).

The Parent keyword is used to connect WzBar3D to another application, such as
the Navigator.

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzHistogram
in:

(UNIX) <wavedir>/lib/vdatools/wzbar3d.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZBAR3D.PRO

(Windows) <wavedir>\lib\vdatools\wzbar3d.pro

Where <wavedir> is the main PV-WAVE directory.

A template is a VDA Tool without any data associated with it. The template con-
tains all of the modifications to the VDA Tool — colors, axes, graphical elements
— that were set when the template file was saved. Template files are saved with the
File=>Save Template As ... function on the VDA Tool.

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example
var = DIST(5)

WzBar3d, var, XSize=400, YSize=400

1164 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

See Also

BAR3D, , BAR, WzBar, WzPie

WzColorEdit Procedure
Starts a VDA Tool used for editing the image and plot color tables used in other
VDA Tools.

Usage

WzColorEdit [, var1[, var2, var3]]

Input Parameters

var1 — (optional) If only one variable is specified, it must be a 2D array (or equiv-
alent expression) containing 3-by-n or n-by-3 elements, where n is the number of
color values to use when initializing the color table.

NOTE If three variables are specified, all three must be 1D arrays of equal length
or equivalent expressions. The input variables are used as a triplet to specify the
three components of the color table: (red, green, blue) for the RGB model; (hue,
saturation, value) for the HSV model; or (hue, lightness, saturation) for the HLS
model. See the Discussion for the ranges of these variables.

var2 — (optional) A 1D array or equivalent expression used with both var1 and
var3 that is of the same length as var1 and var3. The array contains the number of
color values to use for the second component of the color model when initializing
the color table.

var3 — (optional) A 1D array or equivalent expression used with both var1 and
var2 that is of the same length as var1 and var2. The array contains the number of
color values to use for the third component of the color model when initializing the
color table.

Keywords

Cmap — The index of a predefined color map to load when the color table is ini-
tialized. This color map is loaded before the input variables, if any, are written into
the color map.

Hls — If set, the HLS color system (hue, lightness, saturation) is used, instead of
the default (RGB) color system.

WzColorEdit Procedure 1165

Hsv — If set, the HSV color system (hue, saturation, value) is used, instead of the
default (RGB) color system.

Image — If set, the image color table is displayed.

NOTE If neither Image nor Plot is specified, both color tables are displayed.

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — If used, specifies the relationship of the WzColorEdit Tool to the widget
ID of the parent shell. Otherwise, a new top level shell is created for the tool.

Plot — If set, the plot color table is displayed.

Position — Specifies the x and y (horizontal and vertical) coordinates in pixels for
the starting location of the upper-left corner of the VDA Tool window.

Range — A 1D array specifying the range of colors to display. This array contains
four elements:

[image_start_color, image_end_color, plot_start_color,
plot_end_color].

If the range is not specified, the IMAGE_RANGE and PLOT_RANGE global vari-
ables are used.

Restore — A data structure that has been saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Template — If specified, the contents of the named template are restored.

Discussion

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzColorEdit
in:

(UNIX) <wavedir>/lib/vdatools/wzcoloredit.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZCOLOREDIT.PRO

(Windows) <wavedir>\lib\vdatools\wzcoloredit.pro

Where <wavedir> is the main PV-WAVE directory.

1166 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

The ranges of the input variables depend on the type of color system that is speci-
fied. The components of each color system can have specific ranges of values,
shown in the following table.

The WzColorEdit Tool can be called from either a Navigator Tool, or directly from
the command line. This VDA Tool allows you to select and modify the color table
to be used by all other VDA Tools for both the image and the plot colors.

Using a menu bar selection, you can pick from a number of predefined system color
tables, or create and save your own custom color tables. As you make selections
and/or changes to those selections, all other VDA Tools that are running are
updated, so you can see the results of the color edits right after making them.

The editing capabilities included in this VDA Tool let you change a single cell or
a range of cells at the same time. Changes to a single cell can be made using control
area sliders, or a color wheel dialog box. Changes to a range of color table cells are
made by applying a ramp function between two specified color table indices. The
ramp method can be linear, logarithmic, or exponential.

NOTE If the beginning index you specify for the ramp function is larger than the
ending index, the VDA Tool ignores the index order when applying the ramp.

Example

In this example, the WzColorEdit Tool with the HSV color model is called from
the WAVE> prompt.

hue = [0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330]

saturation = FLTARR(12)

saturation(*) = 1.0

value = saturation

; The three 1D variables are defined with equal lengths of n = 12.

WzColorEdit, hue, saturation, value, /Hsv

; The VDA Tool appears with the first 6 color indices in the image colors set to
; the values specified and the color model controls set for hue, saturation, and
; value.

Color System Component Input Variable Range

r, g, b 0 – 255

hue 0 – 360

saturation, lightness, value 0 – 1.0

WzContour Procedure 1167

See Also

COLOR_EDIT, LOADCT

WzContour Procedure
Starts a VDA Tool used for plotting contours.

Usage

WzContour, var

Input Parameters

var — The name of a 2D variable to plot or an equivalent expression.

Keywords

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Template — A string containing the name of a VDA Tool template file.

XSize — Specifies, in pixels, the width of the drawing area.

YSize — Specifies, in pixels, the height of the drawing area.

Discussion

The Parent keyword is used to connect WzContour to another application, such as
the Navigator.

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzContour in:

1168 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

(UNIX) <wavedir>/lib/vdatools/wzcontour.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZCONTOUR.PRO

(Windows) <wavedir>\lib\vdatools\wzcontour.pro

Where <wavedir> is the main PV-WAVE directory.

A template is a VDA Tool without any data associated with it. The template con-
tains all of the modifications to the VDA Tool — colors, axes, graphical elements
— that were set when the template file was saved. Template files are saved with the
File=>Save Template As ... function on the VDA Tool.

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example
var = DIST(40)

WzContour, var, XSize=400, YSize=400

See Also

CONTOUR

WzExport Procedure
Starts a VDA Tool used for exporting a PV-WAVE variable to an external file in a
specified format.

Usage

WzExport, var

Input Parameters

var — The name of the variable to export.

Keywords

Directory — A string containing the name of the destination directory.

Filename — A string containing the name of the destination file.

WzExport Procedure 1169

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Pattern — A string containing the filter pattern for locating existing filenames
within a specified directory.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use. It is not to be
used at the command line.

Template — A string containing the name of a VDA Tool template file.

Type — A string containing the type of file to be written.

Discussion

The Parent keyword is used to connect WzExport to another application, such as
the Navigator.

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzExport in:

(UNIX) <wavedir>/lib/vdatools/wzexport.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZEXPORT.PRO

(Windows) <wavedir>\lib\vdatools\wzexport.pro

Where <wavedir> is the main PV-WAVE directory.

A template is a VDA Tool with no data associated with it. The template contains
all of the modifications to the VDA Tool that were set when the template file was
saved. Template files are saved with the File=>Save Template As ... function on
the VDA Tool.

The Type keyword specifies the format for the output file. Valid file types include
the following:

ASCII-CSV (comma-separated values)

Binary

FORTRAN Binary

1170 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

8 Bit Image

XOR Binary

24 Bit Image

Image

Windows DIB (Windows Only)

The names are not case sensitive. The smallest number of unique characters will be
recognized. For example: Type=’8 BIT’

The Filename keyword specifies the name of the output file.

The Directory keyword specifies the path to the directory in which the output file
will be saved.

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example
var = DIST(40)

WzExport, var

See Also

WzVariable

WzHistogram Procedure
Starts a VDA Tool used for plotting a histogram.

Usage

WzHistogram, var

Input Parameters

var — The name of a 1D, 2D, or 3D variable to plot or an equivalent expression.

WzHistogram Procedure 1171

Keywords

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Template — A string containing the name of a VDA Tool template file.

XSize — Specifies, in pixels, the width of the drawing area.

YSize — Specifies, in pixels, the height of the drawing area.

Discussion

The Parent keyword is used to connect WzHistogram to another application, such
as the Navigator.

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzHistogram
in:

(UNIX) <wavedir>/lib/vdatools/wzhistogram.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZHISTOGRAM.PRO

(Windows) <wavedir>\lib\vdatools\wzhistogram.pro

Where <wavedir> is the main PV-WAVE directory.

A template is a VDA Tool without any data associated with it. The template con-
tains all of the modifications to the VDA Tool — colors, axes, graphical elements
— that were set when the template file was saved. Template files are saved with the
File=>Save Template As ... function on the VDA Tool.

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

1172 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Example
var = DIST(40)

WzHistogram, var, XSize=400, YSize=400

See Also

HISTOGRAM, PLOT_HISTOGRAM

WzImage Procedure
Starts a VDA Tool used for displaying image data.

Usage

WzImage, var

Input Parameters

var — The name of the 2D image variable to plot or an equivalent expression. A
3D variable or equivalent expression is required if the True keyword is specified.

Keywords

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Template — A string containing the name of a VDA Tool template file.

True — If present and nonzero, indicates that a true-color (24-bit) image is to be
displayed and specifies the index of the dimension over which color is interleaved:

1 Displays pixel-interleaved images of dimensions (3, m, n).

WzImage Procedure 1173

NOTE To use True, the var parameter must have three dimensions, one of which
is equal to 3.

XSize — Specifies, in pixels, the width of the drawing area.

YSize — Specifies, in pixels, the height of the drawing area.

Discussion

The Parent keyword is used to connect WzImage to another application, such as
the Navigator.

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzImage in:

(UNIX) <wavedir>/lib/vdatools/wzimage.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZIMAGE.PRO

(Windows) <wavedir>\lib\vdatools\wzimage.pro

Where <wavedir> is the main PV-WAVE directory.

A template is a VDA Tool without any data associated with it. The template con-
tains all of the modifications to the VDA Tool — colors, axes, graphical elements
— that were set when the template file was saved. Template files are saved with the
File=>Save Template As ... function on the VDA Tool.

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example
var = DIST(30)

WzImage, var, XSize=400, YSize=400

See Also

TV

2 Displays row-interleaved images of dimensions (m, 3, n).

3 Displays image-interleaved images of dimensions (m, n, 3).
(Image interleaving is also known as band interleaving.)

1174 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

WzImport Procedure
Starts a VDA Tool used for importing data into PV-WAVE.

Usage

WzImport [, var1, var2, ... , varn]

Input Parameters

vari — (optional) The names of variables into which data is read, up to 100.

Keywords

Directory — A string containing the name of the directory to read data from.

Filename — A string containing the name of the file to read.

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Pattern — A string containing the filter pattern for files. For example, ’*.dat’
will cause files with a .dat extension to be listed in the import tool.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Template — A string containing the name of a VDA Tool template file.

Type — A string containing the type of file to be read. Valid file types include the
following. The names are not case sensitive. The smallest number of unique char-
acters will be recognized. For example: Type=’8 BIT’.

ASCII-CSV (comma-separated values)

Binary

FORTRAN Binary

WzImport Procedure 1175

8 Bit Image

XDR Binary

24 Bit Image

Image

Windows DIB (Windows only)

Discussion

The Parent keyword is used to connect WzImport to another application, such as
the Navigator.

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzImport in:

(UNIX) <wavedir>/lib/vdatools/wzimport.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZIMPORT.PRO

(Windows) <wavedir>\lib\vdatools\wzimport.pro

Where <wavedir> is the main PV-WAVE directory.

A template is a VDA Tool without any data associated with it. The template con-
tains all of the modifications to VDA Tool default settings that were set when the
template file was saved. Template files are saved with the File=>Save Template As
function on the VDA Tool.

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example
var1=INTARR(100)

var2=BYTARR(512, 512)

var3=FLTARR(100, 100)

WzImport, var1, var2, var3

See Also

WzPreview, WzVariable

1176 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

WzMultiView Procedure
Starts a VDA Tool used to display multiple plots.

Usage

WzMultiView

Keywords

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Template — A string containing the name of a VDA Tool template file.

XSize — Specifies, in pixels, the width of the drawing area.

YSize — Specifies, in pixels, the height of the drawing area.

Discussion

The Parent keyword is used to connect WzMultiView to another application, such
as the Navigator.

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzMultiView
in:

(UNIX) <wavedir>/lib/vdatools/wzmultiview.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZMULTIVIEW.PRO

(Windows) <wavedir>\lib\vdatools\wzmultiview.pro

Where <wavedir> is the main PV-WAVE directory.

WzPie Procedure 1177

NOTE For information on how to use this VDA Tool, use Online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example
WzMultiView, XSize = 400, YSize = 400

See Also

WzContour, WzHistogram, WzImage, WzPlot, WzSurface

WzPie Procedure
Starts a VDA Tool used for plotting pie charts.

Usage

WzPie, var

Input Parameters

var — The name of a 1D variable, with a maximum size of 400 elements.

Keywords

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Template — A string containing the name of a VDA Tool template file.

XSize — Specifies, in pixels, the width of the drawing area.

1178 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

YSize — Specifies, in pixels, the height of the drawing area.

Discussion

The var parameter is a 1D array specifying the size of each “slice” of the pie.

The Parent keyword is used to connect WzPie to another application, such as the
Navigator.

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzPie in:

(UNIX) <wavedir>/lib/vdatools/wzpie.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZPIE.PRO

(Windows) <wavedir>\lib\vdatools\wzpie.pro

Where <wavedir> is the main PV-WAVE directory.

A template is a VDA Tool without any data associated with it. The template con-
tains all of the modifications to the VDA Tool — colors, axes, graphical elements
— that were set when the template file was saved. Template files are saved with the
File=>Save Template As ... function on the VDA Tool.

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example
var = INDGEN(5)

WzPie, var, XSize=400, YSize=400

See Also

PIE, PIE_CHART, WzBar, WzBar3D

WzPlot Procedure 1179

WzPlot Procedure
Starts a VDA Tool used for 2D plotting.

Usage

WzPlot, var1 [, var2, ..., varn]

Input Parameters

vari — The name of the 2D variable to plot or an equivalent expression.

Keywords

Independent — Specifies the name of the variable to be taken as the independent
variable.

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Template — A string containing the name of a VDA Tool template file.

XSize — Specifies, in pixels, the width of the drawing area.

YSize — Specifies, in pixels, the height of the drawing area.

Discussion

NOTE The maximum number of variables you can plot simultaneously in a
WzPlot tool is 10.

The Parent keyword is used to connect WzPlot to another application, such as the
Navigator.

1180 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzPlot in:

(UNIX) <wavedir>/lib/vdatools/wzplot.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZPLOT.PRO

(Windows) <wavedir>\lib\vdatools\wzplot.pro

Where <wavedir> is the main PV-WAVE directory.

A template is a VDA Tool without any data associated with it. The template con-
tains all of the modifications to the VDA Tool — colors, axes, graphical elements
— that were set when the template file was saved. Template files are saved with the
File=>Save Template As ... function on the VDA Tool.

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example
var = HANNING(40)

WzPlot, var, XSize=400, YSize=400

See Also

PLOT

WzPreview Procedure
Starts a VDA Tool used to view an ASCII file’s contents and select which parts of
the file are to be read in as PV-WAVE variables.

Usage

WzPreview [, filename]

Parameters

filename — (optional) A string containing the name of the ASCII file to preview.
If not specified, WzPreview will start without displaying a file.

WzPreview Procedure 1181

Keywords

AutoDefine — If set along with filename, then import definitions will be automat-
ically defined when the file is previewed. If no file is specified, this keyword has no
effect.

Columns — An integer specifying the number of visible columns in the WzPre-
view window.

Fixed — Set this keyword if the file contains fixed-width values that are column-
oriented.

Free — Set this keyword if the file contains non-fixed width values (either column-
oriented) that are separated by delimiters.

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Rows — An integer specifying the number of visible rows in the WzPreview
window.

Template — A string containing the name of a VDA Tool template file.

Discussion

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzPreview in:

(UNIX) <wavedir>/lib/vdatools/wzpreview.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZPREVIEW.PRO

(Windows) <wavedir>\lib\vdatools\wzpreview.pro

Where <wavedir> is the main PV-WAVE directory.

1182 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Example
WzPreview, !Data_Dir + ’epa.dat’, /Fixed

See Also

WtPreview, WwPreview (in the PV-WAVE Application Developer’s Guide),
WzImport

WzSurface Procedure
Starts a VDA Tool used for surface plots.

Usage

WzSurface, z [, x, y]

Input Parameters

z — A 2D array containing the values that make up the surface or an equivalent
expression. If x and y are supplied, the surface is plotted as a function of the X,Y
locations specified by their contents. Otherwise, the surface is generated as a func-
tion of the array index of each element of z.

x — (optional) A vector or 2D array (or equivalent expression) specifying the x-
coordinates for the surface.

If x is a vector, each element of x specifies the x-coordinate for a column
of z. For example, x(0) specifies the x-coordinate for z(0, *).

If x is a 2D array, each element of x specifies the x-coordinate of the corre-
sponding point in z (xij specifies the x-coordinate for zij).

y — (optional) A vector or 2D array (or equivalent expression) specifying the y-
coordinates for the surface.

If y is a vector, each element of y specifies the y-coordinate for a row of z.
For example, y(0) specifies the y-coordinate for
z (*, 0).

If y is a 2D array, each element of y specifies the y-coordinate of the corre-
sponding point in z (yij specifies the y-coordinate for zij).

WzSurface Procedure 1183

Keywords

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE GUI Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved by the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Shade — Used to specify how to shade the surface. This keyword can be set to a
variable (2D byte array) used to shade the surface, or to one of the following values:

(Default: not shaded)

Template — A string containing the name of a VDA Tool template file.

XSize — Specifies, in pixels, the width of the drawing area.

YSize — Specifies, in pixels, the height of the drawing area.

Discussion

The Parent keyword is used to connect WzSurface to another application, such as
the Navigator.

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzPlot in:

(UNIX) <wavedir>/lib/vdatools/wzsurface.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZSURFACE.PRO

(Windows) <wavedir>\lib\vdatools\wzsurface.pro

Where <wavedir> is the main PV-WAVE directory.

A template is a VDA Tool without any data associated with it. The template con-
tains all of the modifications to the VDA Tool — colors, axes, graphical elements

1 Gouraud shading

2 Elevation shading

1184 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

— that were set when the template file was saved. Template files are saved with the
File=>Save Template As ... function on the VDA Tool.

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example
var = DIST(40)

WzSurface, var, XSize=400, YSize=400

See Also

SURFACE

WzTable Procedure
Starts a VDA Tool used for creating an editable 2D array of cells containing string
data.

Usage

WzTable, var

Input Parameters

var — A vector, 2D array, or scalar variable (or equivalent expression).

Keywords

Alignments — A 1D array [0, ..., cols–1] of column alignments. Valid values are:

ColLabels — A 1D string array [0, ..., cols–1] of column labels.

CWidth — A 1D array [0, ..., cols–1] of column widths. If CWidth is not specified,
the default column width is 10 characters.

0 Align cell contents to cell’s left edge (left justify).

1 Center the cell contents (center justify).

2 Align cell contents to the cell’s right edge (right justify).

WzTable Procedure 1185

Format — A FORTRAN-style format specification for the output. For more infor-
mation, see the STRING function.

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE GUI Application
Developer’s Guide for more information.)

NumCols — The number of columns in the table. If NumCols is not specified, the
number of columns is calculated from the dimensions of var.

NumRows — The number of rows in the table. If NumRows is not specified, and
the var parameter is specified, the number of rows is calculated from the dimen-
sions of var. If neither NumRows nor var is specified, the size of the table is set to
one row.

Parent — The widget ID of the parent widget.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

RowLabels — A 1D string array [0, ..., cols–1] of row labels.

Template — A string containing the name of a VDA Tool template file.

Vertical — If this keyword is present and nonzero, the contents of var are displayed
as transposed (var rows are vertical and columns are horizontal).

VisibleCols — The number of columns displayed in the view window. If
VisibleCols is not specified, four columns are displayed.

NOTE If the table size is bigger than the number of visible columns and rows,
scrollbars are placed at the right and bottom edges of the view window.

VisibleRows — The number of rows displayed in the view window. If VisibleRows
is not specified, four rows are displayed.

Discussion

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzTable in:

1186 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

(UNIX) <wavedir>/lib/vdatools/wztable.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZTABLE.PRO

(Windows) <wavedir>\lib\vdatools\wztable.pro

Where <wavedir> is the main PV-WAVE directory.

The type of variable used determines the numbers of columns and rows in the table:

scalar — 1 cell

vector — 1 row with n columns

2D array — a matrix of n rows by n columns

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example

a = FINDGEN(10,20)

WzTable, a, Format = ’f10.2’

See Also

WtTable, WwTable (in the PV-WAVE GUI Application Developer’s Guide)

WzVariable Procedure
Starts a VDA Tool used for viewing and exporting variables.

Usage

WzVariable

Input Parameters

None.

WzVariable Procedure 1187

Keywords

Associated_With — A string containing the name of a VDA Tool. The WzVariable
window will only show variables from this specified VDA Tool. Note that the string
you specify is case-sensitive.

NoBlock — If specified, the event loop (WwLoop) that is started by the VDA Tool
will use the given value. By default a value of 1 (non-blocking loop) will be used.
However, it may be necessary in certain circumstances to force a non-blocking loop
by specifying NoBlock =2. (See WwLoop in the PV-WAVE GUI Application
Developer’s Guide for more information.)

Parent — The widget ID of the parent widget.

Position — Specifies, in pixels, the x and y (horizontal and vertical) coordinates for
the starting location of the upper-left corner of the VDA Tool window.

Restore — A data structure previously saved in the Tools Manager with the
TmSaveTools function. This keyword is reserved for internal use; it is not to be
used at the command line (see Discussion).

Type — An integer, or array of integers, that specify the data types to display. These
integers and their corresponding data types are:

Discussion

The Parent keyword is used to connect WzVariable to another application, such as
the Navigator.

Data Type Code Data Type

0 Undefined

1 Byte

2 Integer

3 Longword Integer

4 Floating Point

5 Double-Precision Floating

6 Complex single-precision floating

7 String

12 Complex double-precision floating

1188 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

The Restore keyword is used specifically by the TM_RESTORE method. For infor-
mation on the TM_RESTORE method, refer to the source code for WzVariable in:

(UNIX) <wavedir>/lib/vdatools/wzvariable.pro

(OpenVMS) <wavedir>:[LIB.VDATOOLS]WZVARIABLE.PRO

(Windows) <wavedir>\lib\vdatools\wzvariable.pro

Where <wavedir> is the main PV-WAVE directory.

NOTE For information on how to use this VDA Tool, use online Help. Select the
On Window command from the VDA Tool Help menu to bring up Help on this
VDA Tool.

Example
WzVariable, Associated_With=’WzPlot_1’

See Also

WzImport

XYOUTS Procedure 1189

2
Procedure and Function Reference

XYOUTS Procedure
Draws text on the currently selected graphics device starting at the designated data
coordinate.

Usage

XYOUTS, x, y, string

Input Parameters

x, y — Specifies the column, x and the row, y at which the output string should start.
Both x and y are normally taken to be in data coordinates; however, the Device and
Normal keywords can be used to change this unit.

Output Parameters

string — The scalar string containing the text that is to be output to the display sur-
face. If not of string type, it is converted prior to use.

Keywords

Background — Fills the area behind the text with a specified color. The default,
–1, indicates no fill.

Additional XYOUTS keywords are listed below. For a description of each key-
word, see Chapter 3, Graphics and Plotting Keywords.

Alignment Color Normal Text_Axes

Channel Data Orientation Width

Charsize Device PClip Z

Charthick Font Size

Clip Noclip T3d

1190 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

Discussion

XYOUTS is machine-dependent when you are using hardware fonts. This means
that on two different machines, the same commands may produce text that does not
appear the same. To guarantee similar appearance, use software fonts.

UNIX and OpenVMS USERS You may notice that under X Windows the size
of the software fonts varies from device to device. When you start PV-WAVE, the
PV-WAVE hardware font is set to the current hardware font of the X server. Not all
X servers will have the same default font size because users can reconfigure the
default font and the default font can differ between X servers. Therefore, you may
discover that the hardware font size, and therefore the software font size, may vary
across different workstations. You can avoid this by explicitly setting the X font
using the DEVICE procedure. For example:

DEVICE, font=’-adobe-courier-medium-r-normal--14-*’

Example

In this example, XYOUTS is used to label a plot of random data. Procedure
XYOUTS also is used to place a title on the plot. Text placement is relative to the
x and y coordinates of the plot, which is the default for XYOUTS. Note that the
CURSOR procedure was used to determine the proper coordinates at which to
place labels. This example uses PV-WAVE:IMSL Statistics Toolkit procedure
RANDOMOPT.

RANDOMOPT, Set = 1234567

x = RANDOM(5)

; Create a 5-element vector of random data.

PLOT, x, XRange = [-0.5, 4.5]

; Plot the data.

XYOUTS, 0.1, 0.65, "point 1"

; Label the first data point.

XYOUTS, 1.1, 0.20, "point 2"

; Label the second data point.

XYOUTS, 2.0, 0.425, "point 3"

; Label the third data point.

XYOUTS, 3.1, 0.30, "point 4"

; Label the fourth data point.

XYOUTS Procedure 1191

XYOUTS, 4.1, 0.825, "point 5"

; Label the fifth data point.

XYOUTS, 1.25, 0.9, "Random Data", Charsize = 2

; Place a title on the plot. Make the title twice the default character size using the
; Charsize keyword.

Figure 2-91 Example of plot labeling using XYOUTS.

See Also

LEGEND, PLOT

For more information on using XYOUTS to annotate plots, see .

1192 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

ZOOM Procedure
Expands and displays part of an image or graphic plot.

Usage

ZOOM

Input Parameters

None.

Keywords

Fact — The zoom expansion factor, an integer. (Default: 4)

Interp — Specifies the interpolation method to be used. If nonzero, uses the
bilinear interpolation method. Otherwise, uses the nearest neighbor method (the
default).

XSize — The width of the new window, in pixels. (Default: 512 unless NoNew is
set, where the window size doesn't change)

YSize — The height of the new window, in pixels. (Default: 512 unless NoNew is
set, where the window size doesn't change)

Continuous — If set, causes the zoom window to track the mouse cursor. This
obviates the need to press the left mouse button to mark the center of the zoom. No
effect if NoNew is set.

NoClose — If set, the newly created window will not be closed. No effect if
NoNew is set.

NoNew — If set, the original window is used to show the zoomed image. If this
keyword is set, Continuous, NoClose, XSize, and YSize are ignored.

Restore — If set and NoNew is set, the original image is restored when ZOOM
exits. It has no effect unless NoNew is set.

Rubberband — If set, allows the user to select the zoom region by dragging a
rubberband box around that region.

ZOOM Procedure 1193

Discussion

ZOOM works only on windowing systems. It provides a quick way to get a close
look at your image.

ZOOM lets you click with your mouse button on the center point of a region in a
previously displayed window to bring up an enlarged view of this region in a new
window. Then use your mouse buttons as follows:

• Use the left mouse button to choose the center point of the region to be zoomed
in on from the original image.

• Use the middle mouse button to display a window for choosing the zoom
factor.

Windows USERS If you have a two-button mouse, <Shift> in combination with
the left mouse button works the same as a middle button.

• Use the right button to exit the ZOOM procedure.

Example
OPENR, 1, !Data_dir + 'mandril.img'

mandril = BYTARR(512, 512)

READU, 1, mandril

; Read in the image file.

TVSCL, mandril

; Display the image file.

ZOOM

; Use ZOOM with the default values; the mouse button functions will
; be described in the original window.

ZOOM, Fact=2

; Use ZOOM with the zoom factor set to 2.

ZOOM, Interp=0

; Use ZOOM with the zoomed region displayed using nearest neighbor sampling.

ZOOM, Interp=1

; Use ZOOM with the zoomed region displayed using bilinear interpolation.

ZOOM, XSize=200, YSize=200

; Display the new image in a window that is 200-by-200 pixels.

ZOOM, /Continuous

; Run ZOOM where it continually samples the cursor; there is no need to click.

ZOOM, Fact=2, /NoNew, /Restore

1194 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

; Run ZOOM without creating a new window, which allows subsequent zooming.
; The original image is restored when ZOOM ends.

See Also

ROT, ROT_INT, TVRD

For details on interpolation methods. see Chapter 6, Displaying Images, in the
PV-WAVE User’s Guide.

ZROOTS Procedure
Finds the roots of the m-degree complex polynomial, using Laguerre’s method.

Usage

ZROOTS, a, roots [, polish]

Input Parameters

a — A vector containing the m + 1 coefficients of the polynomial. This 1D array
may be either real or complex. If the input is of single-precision data type, the result
is single-precision; if the input is double-precision, the result is double-precision.

polish — (optional) Specifies whether polishing is to be done. Set to 0 if you want
to prevent polishing of the roots. If set to 1 or omitted, roots are polished.

Output Parameters

roots — The result of ZROOTS, which is set to an m-element complex vector on
exit.

Keywords

None.

Discussion

ZROOTS returns the roots of the m-degree complex polynomial:

aix
i

i 0=

m

∑

ZROOTS Procedure 1195

See Also

POLY

ZROOTS is based on a routine of the same name in Numerical Recipes in C: The
Art of Scientific Computing, by Flannery, Press, Teukolsky, and Vetterling, Cam-
bridge University Press, Cambridge, MA, 1988. It is used by permission.

1196 Chapter 2: Procedure and Function Reference PV-WAVE Reference Volume 3

1197

CHAPTER

3

Graphics and Plotting Keywords
This chapter describes the keywords that can be used with the graphics and plotting
system routines. For information on the corresponding system variables that are
listed for some keywords, see Chapter 4, System Variables.

Alignment Keyword

Used With Routines: XYOUTS

Corresponding System Variable: None.

Specifies the horizontal alignment of the text in relation to the point x, y, which is
specified as input to the XYOUTS procedure.

An alignment of 0.0 (the default) places the left edge of the text on the given (x, y)
coordinate (left-justifies). An alignment of 1.0 right-justifies the text, while 0.5
centers the text over point (x, y).

Ax Keyword

Used With Routines: BAR3D, SHADE_SURF, SHADE_SURF_IRR, SUR-
FACE, vtkSCATTER, vtkSLICEVOL, vtkSURFACE, vtkPOLYSHADE

Corresponding System Variable: None.

Specifies the angle of rotation about the x-axis, in degrees, towards the viewer.

The Ax keyword parameter defaults to +30 degrees if omitted and !P.T3d is 0.

1198 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

NOTE This keyword is effective only if !P.T3d is not set. If !P.T3d is set, the three-
dimensional to two-dimensional transformation used by SURFACE is contained in
the 4-by-4 array !P.T.

The surface represented by the two-dimensional array is first rotated, Az (see the
next section) degrees about the z-axis, then by Ax degrees about the x-axis, tilting
the surface towards the viewer (Ax > 0), or away from the viewer.

The 3D to 2D transformation represented by Ax and Az can be saved in !P.T by
including the Save plotting keyword.

Az Keyword

Used With Routines: BAR3D, SHADE_SURF, SHADE_SURF_IRR, SUR-
FACE, vtkSCATTER, vtkSLICEVOL, vtkSURFACE, vtkPOLYSHADE

Corresponding System Variable: None.

Specifies the counterclockwise angle in degrees of rotation about the z-axis (when
looking down the z-axis toward the origin).

This keyword is effective only if !P.T3d is not set. The order of rotation is Az first,
then Ax.

Background Keyword

Used With Routines: BAR3D, CONTOUR, CONTOUR2, OPLOT, PLOT,
SHADE_SURF, SHADE_SURF_IRR, SURFACE

Corresponding System Variable: !P.Background.

The background color index to which the screen is set when the ERASE procedure
is called.

NOTE Not all devices support erasing the background to a color index.

Example

To produce a black plot with a white background on a color display:

PLOT, y, Background = 255, Color = 0

 1199

Bottom Keyword

Used With Routines: SURFACE

Corresponding System Variable: None.

The color index used to draw the lower part of the surface. If not specified, the bot-
tom is drawn with the same color as the top.

NOTE If the X rotation is between 90 and 270 degrees, the top of the surface will
be colored with the color set by the Bottom keyword.

Box Keyword

Used With Routines: PLOT

Corresponding System Variable: !PDT.Box

Places a box around the labels in a Date/Time axis. If you set the keyword to a value
of 1, boxes are drawn around all the labels of the Date/Time axis. (Default: no
boxes are drawn)

C_Annotation Keyword

Used With Routines: CONTOUR, CONTOUR2, MAP_CONTOUR

Corresponding System Variable: None.

Sets the label that will be drawn on each contour.

Usually, contours are labeled with their value. This parameter, a vector of strings,
allows any text to be specified. The first label is used for the first contour drawn,
and so forth. If the Levels keyword is specified, the elements of C_Annotation cor-
respond directly to the levels specified, otherwise, they correspond to the default
levels chosen by the contour procedure. If there are more contour levels than ele-
ments in C_Annotation, the remaining levels are labeled with their values.

NOTE If the CONTOUR2 Fill keyword is used, labeling is disabled. Refer to the
description of CONTOUR2 in the PV-WAVE Reference for an example of how to
create a filled contour plot with labels.

Example

To produce a contour plot with three levels labeled “low”, “medium”, and “high”:

1200 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

CONTOUR, Z, Levels = [0.0, 0.5, 1.0], $
C_Annotation = ["low", "medium", "high"]

Use of this keyword implies use of the Follow keyword.

C_Charsize Keyword

Used With Routines: CONTOUR, CONTOUR2, MAP_CONTOUR

Corresponding System Variable: None.

Sets the size of the characters used to annotate contour labels.

Normally, contour labels are drawn at three-fourths the size used for the axis labels
(specified by the Charsize keyword or !P.Charsize system variable). This keyword
allows the contour label size to be specified independently. Use of this keyword
implies use of the Follow keyword.

NOTE If the CONTOUR2 Fill keyword is used, labeling is disabled. Refer to the
description of CONTOUR2 in the PV-WAVE Reference for an example of how to
create a filled contour plot with labels.

C_Charthick Keyword

Used With Routines: CONTOUR, CONTOUR2

Corresponding System Variable: !P.Charthick

Sets the thickness of contour label characters drawn with the software fonts. Nor-
mal thickness is 1.0, double thickness is 2.0, etc. If this keyword is omitted, the
value of the system variable !P.Charthick is used.

NOTE If the CONTOUR2 Fill keyword is used, labeling is disabled. Refer to the
description of CONTOUR2 in the PV-WAVE Reference for an example of how to
create a filled contour plot with labels.

C_Colors Keyword

Used With Routines: CONTOUR, CONTOUR2, MAP_CONTOUR

Corresponding System Variable: None.

A vector of color indices used to set the color index used to draw each contour.

 1201

This parameter is a vector, converted to integer type if necessary. If there are more
contour levels than elements in C_Colors, the elements of the color vector are
cyclically repeated.

Example

If C_Colors contains three elements, and there are seven contour levels to be
drawn, the colors c0, c1, c2, c0, c1, c2, c0 will be used for the seven levels. To call
CONTOUR and set the colors to [100, 150, 200]:

CONTOUR, Z, C_Colors = [100, 150, 200]

C_Labels Keyword

Used With Routines: CONTOUR, CONTOUR2, MAP_CONTOUR

Corresponding System Variable: None.

Specifies which contour levels should be labeled. By default, every other contour
level is labeled.

C_Labels allows you to override this default and explicitly specify the levels to
label. This parameter is a vector, converted to integer type if necessary. If the Levels
keyword is specified, the elements of C_Labels correspond directly to the levels
specified, otherwise, they correspond to the default levels chosen by CONTOUR.
Setting an element of the vector to zero causes that contour label to not be labeled.
A nonzero value forces labeling.

NOTE If the CONTOUR2 Fill keyword is used, labeling is disabled. Refer to the
description of CONTOUR2 in the PV-WAVE Reference for an example of how to
create a filled contour plot with labels.

Example

To produce a contour plot with four levels where all but the third level is labeled:

CONTOUR, Z, Levels = [0.0, 0.25, 0.75, 1.0], $
C_Labels = [1, 1, 0, 1]

Use of this keyword implies use of the Follow keyword.

C_Linestyle Keyword

Used With Routines: CONTOUR, CONTOUR2

Corresponding System Variable: None.

1202 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

Specifies the linestyle used to draw each contour.

As with C_Colors, C_Linestyle is a vector of linestyle indices. If there are more
contour levels than linestyles, the linestyles are cyclically repeated. The following
table lists the available linestyles and their keyword indices:

NOTE The current contouring algorithm draws all the contours in each cell, rather
than following contours. Hence, some of the more complicated linestyles will not
be suitable for some applications.

Example

To produce a contour plot, with the contour levels directly specified in a vector V,
with all negative contours drawn with dotted (UNIX/OpenVMS) or dashed (Win-
dows) lines, and with positive levels in solid lines:

CONTOUR, Z, Levels = V, C_Linestyle = V LT 0.0

C_Thick Keyword

Used With Routines: CONTOUR, CONTOUR2

Corresponding System Variable: None.

Specifies the line thickness of lines used to draw each contour level. As with
C_Colors, C_Thick is a vector of line thickness values, although the values are
floating-point. If there are more contours than thickness elements, elements are
repeated. If omitted, the overall line thickness specified by the Thick keyword
parameter or !P.Thick is used for all contours.

Index X Windows Style Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

 1203

Channel Keyword

Used With Routines: AXIS, CONTOUR, OPLOT, PLOT, PLOTS,
POLYFILL, SHADE_SURF, SURFACE, XYOUTS

Corresponding System Variable: None.

Specifies the destination channel index or mask for the operation. This parameter
is used only with devices that have multiple display channels. (Default: zero)

Charsize Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PIE, PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE, XYOUTS,
vtkSCATTER, vtkSURFACE, vtkTEXT

Corresponding System Variable: !P.Charsize

Sets the overall character size for the annotation. A Charsize of 1.0 is normal. The
size of the annotation on the axes may be set, relative to Charsize, with XCharsize,
YCharsize, and ZCharsize. The main title is written with a character size of 1.25
times this parameter.

NOTE If you use !P.Multi to create a multiple plot of more than two rows or col-
umns, PV-WAVE decreases the character size by a factor of two.

Charthick Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, SHADE_SURF, SURFACE, XYOUTS

Corresponding System Variable: !P.Charthick

Sets the thickness of characters drawn with the software fonts. Normal thickness is
1.0, double thickness is 2.0, etc. If this keyword is omitted, the value of the system
variable !P.Charthick is used.

Clip Keyword

Used With Routines: CONTOUR, CONTOUR2, OPLOT, PLOT, PLOTS,
POLYFILL, SURFACE, XYOUTS

Corresponding System Variable: None.

1204 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

Specifies the coordinates of a rectangle used to clip the graphics output. Graphics
that fall inside the rectangle are displayed; graphics that fall outside the clipping
rectangle are not displayed.

The rectangle is specified as a vector of the form [X0, Y0, X1, Y1], giving coordi-
nates of the lower-left and upper-right corners, respectively. Coordinates are
specified in data coordinate units unless an overriding coordinate keyword is
present, such as Normal or Device.

Color Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PIE_CHART, PLOT, PLOTS, POLYFILL, SHADE_SURF,
SHADE_SURF_IRR, SURFACE, XYOUTS

Corresponding System Variable: !P.Color

Sets the color index of text, lines, solid polygon fill, data, axes, and annotation. If
this keyword is omitted, !P.Color specifies the color index.

When used with PLOT, OPLOT, and PLOTS, the Color keyword can specify an
array of color values. If an array is used, each color value in the array is applied, in
order, to color the line segments and/or plot symbols that make up the graph. The
colors are repeated, as needed, to complete the entire graph of the data set. In addi-
tion, when an array is specified, the !P.Color system variable is used to color the
axes (rather than using one of the data colors). Negative values in a Color array cre-
ate transparent data segments (in other words, no line segment is drawn for that
data interval).

When used with PIE_CHART, you can only specify an array value for this key-
word. The specified colors are applied, in order, to the slices of the pie chart.

NOTE You cannot specify an array of values for the !P.Color system variable. The
array of color values can only be used with the Color keyword.

Example 1

TEK_COLOR

!P.Color=10

PLOT, FINDGEN(10), Color=[2,3,5]

; Axes drawn in color 10.
; The 9 line segments are drawn in colors 2, 3, 5, 2, 3, 5, 2, 3, 5.

 1205

Example 2

Plot data containing “missing” values by using the fact that negative colors are
“transparent”.

data = HANNING(50)

; Create some data.

data([5, 6, 10, 20, 25, 30, 31]) = -1

; Flag some data as “missing” (= -1).

PLOT, data, PSym=-5, YRange=[0,1]

; Normal plot with lots of spikes.

col = REPLICATE(!P.Color, 50)

; Array of plot colors.

missing = WHERE(data eq -1)

; Indices of missing points.

col(missing) = -1

; Symbols on the missing points and line segments to the right of
; missing points are transparent.

PLOT, data, PSym=5, YRange=[0,1], Color=col

; Draw plot symbols.

col(missing-1) = -1

; Line segments to the left of missing points are also transparent.

OPLOT, data, Color=col

; Overlay lines with segments missing.

Compress Keyword

Used With Routines: PLOT, OPLOT

Corresponding System Variable: !PDT.Compress

Compresses out weekends and holidays from a Date/Time axis. Before you can use
this keyword, you must define holidays or weekends with the procedures
CREATE_HOLIDAYS and CREATE_WEEKENDS.

Data Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, PLOTS, POLYFILL, SHADE_SURF, SHADE_SURF_IRR, SUR-
FACE, XYOUTS

Corresponding System Variable: None.

1206 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

A keyword flag, which if present, indicates that the coordinates are specified in data
coordinates (the default). When used with AXIS, CONTOUR, CONTOUR2,
OPLOT, PLOT, SHADE_SURF, and SURFACE, this keyword specifies that the
Position and Clip coordinates are in data units.

Device Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, PLOTS, POLYFILL, SHADE_SURF, SHADE_SURF_IRR, SUR-
FACE, XYOUTS

Corresponding System Variable: None.

Express coordinates in device coordinates. When used with AXIS, CONTOUR,
CONTOUR2, OPLOT, PLOT, SHADE_SURF, and SURFACE, this keyword spec-
ifies that the Position and Clip coordinates are in device units.

Example

The following code displays an image contained in the variable A and then draws
a contour plot of pixels (100:499, 100:399) registered over the pixels:

TV, A

; Display the image.

CONTOUR, A(100:499, 100:399), Position = $

[100,100, 499,399], /Device, /Noerase, $

XStyle = 1, YStyle = 1

; Draw the contour plot, specify the coordinates of the plot, in
; device coordinates, do not erase, set the X and Y axis styles
; to EXACT.

Note that in the above example, the keyword specification /Device is equivalent
to Device = 1.

DT_Range Keyword

Used With Routines: PLOT

Corresponding System Variable: !PDT.DT_Range

Sets an exact range of values in a Date/Time axis. You must specify the desired start
and end values from a Date/Time Julian value. The range may be adjusted slightly
by the PLOT procedure, depending on the data. To obtain an exact range set the
XStyle plotting keyword to 1 (one). For more information, see XStyle.

 1207

Fill_Pattern Keyword

Used With Routines: PLOTS, POLYFILL

Corresponding System Variable: None.

The hardware-dependent fill pattern index for the POLYFILL and PLOTS proce-
dures. If omitted or set to 0, a solid fill results.

Follow Keyword

Used With Routines: CONTOUR

Corresponding System Variable: None.

If present and nonzero, forces the CONTOUR procedure to use the line-following
method instead of the cell-drawing method.

CONTOUR can draw contours using one of two different methods:

• The cell-drawing method, used by default, examines each array cell and draws
all contours emanating from that cell before proceeding to the next cell. This
method is efficient in terms of computer resources but does not allow contour
labeling.

• The line-following method searches for each contour line and then follows the
line until it reaches a boundary or closes. This method gives better looking
results with dashed linestyles, and allows contour labeling, but requires more
computer time. It is used if any of the following keywords is specified:
C_Annotation, C_Charsize, C_Charthick, C_Labels, Follow, or
Path_Filename.

Although these two methods both draw correct contour maps, differences in their
algorithms can cause small differences in the resulting plot.

Font Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2,
MAP_CONTOUR, MAP_XYOUTS, OPLOT, PIE, PLOT, SHADE_SURF,
SHADE_SURF_IRR, SURFACE, XYOUTS

Corresponding System Variable: !P.Font

An integer that specifies the graphics text font index.

Font index –1 selects the software fonts, which are drawn using vectors. Font
number 0 selects the hardware font of the output device. See for a complete
description of the software fonts. See Appendix B, Output Devices and Window

1208 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

Systems for more information on the hardware fonts available with each supported
output device.

NOTE Hardware font drivers that support 3D transformations include X Win-
dows, WIN32 (on Windows NT platforms only), PostScript, and WMF (on
Windows NT platforms only).

Gridstyle Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, SHADE_SURF, SURFACE

Corresponding System Variable: !P.Gridstyle

Lets you change the linestyle of tick intervals.

The default is a solid line. Other linestyle choices and their index values are listed
in the following table:

One possible use for this keyword is to create an evenly spaced grid consisting of
dashed lines across your plot region. To do this, first set the Ticklen keyword to 0.5.
This ensures that the dashed tick style will appear correctly on your plot. Then set
the Gridstyle keyword to the style you want to use. For example:

PLOT, mydata, Ticklen = 0.5, Gridstyle = 2

produces a plot with a dashed grid across the entire plot region.

See also .

Index X Windows Style Windows Style

0 Solid (default) Solid (default)

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

 1209

Horizontal Keyword

Used With Routines: BAR3D, SURFACE

Corresponding System Variable: None.

If set, causes SURFACE to only draw lines across the plot perpendicular to the line
of sight. The default is for SURFACE to draw both across the plot and from front
to back.

Levels Keyword

Used With Routines: CONTOUR, CONTOUR2

Corresponding System Variable: None.

Specifies a vector containing the contour levels (maximum of 150) drawn by the
CONTOUR and CONTOUR2 procedures.

A contour is drawn for each level specified in Levels. If omitted, the data range is
divided into approximately six equally-spaced levels.

Example

To draw a contour plot with levels at 1, 100, 1000, and 10000:

CONTOUR, Z, Levels = [1, 100, 1000, 10000]

To draw a contour plot with levels at 50, 60, ..., 90, 100:

CONTOUR, Z, Levels = FINDGEN(6) * 10 + 50

Line_Fill Keyword

Used With Routines: PLOTS, POLYFILL

Corresponding System Variable: None.

Indicates that polygons are to be filled with parallel lines, rather than using solid or
patterned filling methods.

When using the line-drawing method of filling, the thickness, linestyle, orientation,
and spacing of the lines may be specified with keywords.

Linestyle Keyword

Used With Routines: BAR3D, OPLOT, PLOT, PLOTS, POLYFILL,
SURFACE

1210 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

Corresponding System Variable: !P.Linestyle

Specifies the linestyle used to draw the lines or connect data points.

UNIX and OpenVMS USERS The line join style is “miter,” i.e., the outer edges
of two lines extend to meet at an angle.

Windows USERS The line join style is “round.”

The linestyle index is an integer, as shown in the following table:

Lower_Only Keyword

Used With Routines: SURFACE

Corresponding System Variable: None.

Indicates that only the lower surface of the object is to be drawn.

Max_Levels Keyword

Used With Routines: PLOT

Corresponding System Variable: !PDT.Max_Levels

Sets the maximum number of levels on a Date/Time axis. For example, assume that
the Date/Time data contains years, months, days, hours, minutes, and seconds. If
this keyword is set to three, then the Date/Time axis will show three levels: sec-
onds, minutes, and hours.

Index X Windows Style Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

 1211

Max_Value Keyword

Used With Routines: CONTOUR, CONTOUR2

Corresponding System Variable: None.

Data points with values equal to or above this value are ignored when contouring.
Cells containing one or more corners with values above Max_Value will have no
contours drawn through them.

Month_Abbr Keyword

Used With Routines: PLOT

Corresponding System Variable: !PDT.Month_Abbr

Abbreviates month or quarter names to either three characters or one character,
depending on the space available on the Date/Time axis. If a one-character abbre-
viation does not fit, no label is used. If the complete label can fit, it is not
abbreviated, even if the keyword is specified. Month names are specified in the sys-
tem variable !Month_Names. Quarter names are specified in the !Quarter_Names
system variable.

NLevels Keyword

Used With Routines: CONTOUR, CONTOUR2

Corresponding System Variable: None.

The number of equally-spaced contour levels that are produced by CONTOUR and
CONTOUR2. The maximum is 150. (Default: 6)

If the Levels parameter, which explicitly specifies the value of the contour levels,
is present this keyword has no effect. If neither parameter is present approximately
six levels are drawn.

If the minimum and maximum Z values are Zmin and Zmax, then the value of the ith
level is:

Zmin + (i + 1)(Zmax – Zmin)/(NLevels + 1)

where i ranges from 0 to NLevels – 1.

Noclip Keyword

Used With Routines: CONTOUR, CONTOUR2, OPLOT, PLOT, PLOTS,
POLYFILL, SURFACE, XYOUTS

1212 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

Corresponding System Variable: !P.Noclip

For PLOT, CONTOUR, CONTOUR2, and SURFACE, enforces the default clip-
ping behavior, which is to clip graphics at the boundary of the Plot Data Region
(area bounded by the coordinate axes). For OPLOT, PLOTS, POLYFILL, and
XYOUTS, disables clipping altogether, allowing text and graphics to be drawn
anywhere in the Device Area.

Nodata Keyword

Used With Routines: AXIS, CONTOUR, CONTOUR2, OPLOT, PLOT,
SHADE_SURF, SHADE_SURF_IRR, SURFACE

Corresponding System Variable: None.

If this keyword is set, only the axes, titles, and annotation are drawn. No data points
are plotted.

Example

To draw an empty set of axes between some given values:

PLOT, [XMIN, XMAX], [YMIN, YMAX], /Nodata

Noerase Keyword

Used With Routines: AXIS, BAR, CONTOUR, CONTOUR2, OPLOT, PIE,
PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE

Corresponding System Variable: None.

Specifies that the screen or page is not to be erased. By default the screen is erased,
or a new page is begun, before a plot is produced.

Normal Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, PLOTS, POLYFILL, SHADE_SURF, SHADE_SURF_IRR, SUR-
FACE, XYOUTS

Corresponding System Variable: None.

Indicates that the coordinates are in the normalized coordinate system and range
from 0.0 to 1.0.

 1213

When used with AXIS, CONTOUR, CONTOUR2, OPLOT, PLOT,
SHADE_SURF, and SURFACE, indicates that the Clip and/or Position coordinates
are in the normalized coordinate system and range from 0.0 to 1.0.

Nsum Keyword

Used With Routines: OPLOT, PLOT

Corresponding System Variable: !P.Nsum

Indicates the number of data points to average when plotting.

If Nsum is larger than 1, every group of Nsum points is averaged to produce one
plotted point. If there are m data points, then m / Nsum points are displayed. On log-
arithmic axes a geometric average is performed.

It is convenient to use Nsum when there is an extremely large number of data points
to plot because it plots fewer points, the graph is less cluttered, and it is quicker.

Orientation Keyword

Used With Routines: MAP_XYOUTS, PLOTS, POLYFILL, XYOUTS

Corresponding System Variable: None.

Specifies the angle in degrees, counterclockwise from horizontal, of the text base-
line and the lines used to fill polygons.

When used with the POLYFILL procedure, this keyword forces the Linestyle type
of fill, rather than solid or patterned fill.

Overplot Keyword

Used With Routines: CONTOUR, CONTOUR2

Corresponding System Variable: None.

Indicates the CONTOUR or CONTOUR2 procedure is to overplot.

No axes are drawn and the previously established scaling remains in effect. You
must explicitly specify the values of the contour levels with the Levels keyword
when using this option.

Path_Filename Keyword

Used With Routines: CONTOUR

Corresponding System Variable: None.

1214 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

Specifies the name of a file to contain the contour positions.

If Path_Filename is present, CONTOUR does not draw the contours, but rather,
opens the specified file and writes the positions, in normalized coordinates, into it.
The file consists of a series of logical records containing binary data. Each record
is preceded with a header structure defining the contour as follows:

{CONTOUR_HEADER, TYPE : 0B, HIGH : 0B, $
LEVEL : 0, NUM : 0L, VALUE : 0.0}

The fields are:

• TYPE — A byte which is zero if the contour is open, and one if it is closed.

• HIGH — A byte which is 1 if the contour is closed and above its surroundings,
and is 0 if the contour is below. This field is meaningless if the contour is not
closed.

• LEVEL — A short integer with value greater than or equal to zero. (It is an
index into the Levels array).

• NUM — The longword number of data points in the contour.

• VALUE — The contour value. This a single-precision floating-point value.

Following the header in each record are NUM pairs of single-precision floating
(x,y) values, expressed in normalized coordinates.

The CONTOURFILL procedure can be used along with this file to fill the contours
with specified colors or patterns. You can use CONTOUR with the Path_Filename
keyword to get the path information and then use CONTOURFILL to fill the closed
contours.

Use of this keyword implies use of the Follow keyword.

Pattern Keyword

Used With Routines: PLOTS, POLYFILL, CONTOURFILL

Corresponding System Variable: None.

A rectangular array of pixels (3D for CONTOURFILL) giving the fill pattern.

If this keyword parameter is omitted, POLYFILL fills the area with a solid color.
The pattern array may be of any size; if it is smaller than the filled area the pattern
array is cyclically repeated.

Windows USERS The Pattern keyword is not available for the PLOTS or
POLYFILL procedure.

 1215

Example

To fill the current plot window with a grid of dots:

Pattern = BYTARR(10, 10)

; Define pattern array as 10-by-10.

Pattern(5,5) = 255

; Set center pixel to bright.

POLYFILL, !X.Window([0, 1, 1, 0]), $
!Y.Window([0, 0, 1, 1]), /Normal, Pattern = Pattern

; Fill the rectangle defined by the four corners of the window with the pattern.

PClip Keyword

Used With Routines: PLOTS, POLYFILL, XYOUTS

Corresponding System Variable: None.

Forces PLOTS, POLYFILL, and XYOUTS to accept the value of !P.Clip as the
clipping rectangle. Usually, this is the area bounded by the coordinate axes. By
default, these routines ignore !P.Clip, allowing you to place text and graphics out-
side the Data Plot Region.

Polar Keyword

Used With Routines: OPLOT, PLOT

Corresponding System Variable: None.

Polar plots are produced when this keyword is present and nonzero.

The X and Y vector parameters, both of which must be present, are first converted
from polar to cartesian coordinates. The first parameter is the radius, and the sec-
ond is θ, expressed in radians.

To make a polar plot:

PLOT, /Polar, R, Theta

Position Keyword

Used With Routines: AXIS, BAR, BAR3D, CONTOUR, CONTOUR2,
OPLOT, PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE

Corresponding System Variable: !P.Position

Allows direct specification of the plot window.

1216 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

Position is a four-element vector giving, in order, the coordinates [(x0, y0), (x1, y1)]
of the lower-left and upper-right corners of the data window. Coordinates are
expressed in normalized units ranging from 0.0 to 1.0, unless the keyword Device
is present, in which case they are in actual device units.

When setting the position of the window, be sure to allow space for the annotation,
which resides outside the window. PV-WAVE outputs the message

%, Warning: Plot truncated.

if the plot region is larger than the screen or page size. The plot region is the rect-
angle enclosing the plot window and the annotation.

When plotting in three dimensions, the Position keyword is a six-element vector
with the first four elements describing, as above, the XY position, and with the last
two elements giving the minimum and maximum z-coordinates. The Z specifica-
tion is always in normalized coordinate units.

When making more than one plot per page it is more convenient to set !P.Multi than
to manipulate the position of the plot directly with the Position keyword.

Example

The following statement produces a contour plot with data plotted in only the
upper-left quarter of the screen:

CONTOUR, Z, Position = [0.0, 0.5, 0.5, 1.0]

Because no space on the left or top edges was allowed for the axes or their annota-
tion, the warning message described above results.

Psym Keyword

Used With Routines: OPLOT, PLOT, PLOTS, POLYFILL

Corresponding System Variable: !P.Psym

Specifies by reference number a symbol used to mark each data point. The avail-
able symbols and their corresponding reference numbers are shown in the
following figure.

 1217

Figure 3-1 The plot symbols and their corresponding reference numbers.

Normally, Psym is 0, data points are connected by lines, and no symbols are drawn
to mark the points. Set !P.Psym to the symbol index as given in Figure 3-1 to mark
points with symbols. The keyword Symsize is used to set the size of the symbols.

Negative values of Psym cause the symbol designated by |Psym| to be plotted at
each point with solid lines connecting the symbols. For example, a Psym value of
–5 plots triangles at each data point and connects the points with lines.

The USERSYM procedure is used to create a user-defined symbol (number 8).

1218 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

For symbol number 10, Histogram, data points are plotted in the histogram mode.
Horizontal and vertical lines are connect the plotted points, as opposed to the nor-
mal method of connecting points with straight lines.

When used with PLOT, OPLOT, and PLOTS, the Psym keyword can specify an
array of plot symbols. If an array is used, each plot symbol value in the array is
applied, in order, to create the plot symbols that make up the graph. The symbols
are repeated, as needed, to complete the entire graph of the data set.

NOTE You cannot specify an array of values for the !P.Psym system variable. The
array of color values can only be used with the Psym keyword.

See also Solid_Psym.

Example

The following code plots an array using points, and then overplots the smoothed
array, connecting the points with lines:

PLOT, A, Psym = 3

; Plot using points.

OPLOT, SMOOTH(A, 7)

; Overplot smoothed data.

Save Keyword

Used With Routines: AXIS, SHADE_SURF, SHADE_SURF_IRR, SURFACE

Corresponding System Variable: None.

Saves the 3D to 2D transformation matrix established by SURFACE and
SHADE_SURF, and specified by the Ax and Az keywords, in the system variable
field !P.T.

Use this keyword when combining the output of SURFACE and SHADE_SURF
with the output of other routines in the same plot.

When used with AXIS, the Save keyword parameter saves the scaling parameters
established by the call back in the appropriate axis system variable, !X, !Y, or !Z.
This causes subsequent overplots to be scaled to the new axis.

 1219

Example

To display a two-dimensional array using SURFACE, and to then superimpose
contours over the surface: (This example assumes that !P.T3d is zero, its default
value.)

SURFACE, Z, /Save

; Make a surface plot and save the transformation.

CONTOUR, Z, /Noerase, /T3d

; Make contours, don’t erase, use the 3D to 2D transform placed in
; !P.T by SURFACE.

To display a surface and to then display a flat contour plot, registered above the
surface:

SURFACE, Z, /Save

; Make the surface, save transform.

CONTOUR, Z, /Noerase, /T3d, ZValue = 1.0

; Now display a flat contour plot, at the maximum Z value (normalized
; coordinates). You can display the contour plot below the surface
; with a ZValue of 0.0.

Size Keyword

Used With Routines: XYOUTS

Corresponding System Variable: None.

Specifies the character size as a factor of the normal character size. Normal size is
1.0.

Skirt Keyword

Used With Routines: SURFACE

Corresponding System Variable: None.

A skirt around the array at a given z value is drawn if this keyword parameter is
present. The z value is expressed in data units.

For example:

SURFACE, A, Skirt = 100

draws the surface of A with a skirt at the Z value 100.

1220 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

If the skirt is drawn, each point on the four edges of the surface is connected to a
point on the skirt which has the given z value, and the same x and y values as the
edge point. In addition, each point on the skirt is connected to its neighbor.

Solid_Psym Keyword

Used With Routines: PLOT, OPLOT, PLOTS

Corresponding System Variable: None.

When present and nonzero, symbols are drawn with solid lines no matter which
linestyle is used to connect the symbols. By default, symbols are drawn with the
currently specified linestyle.

Spacing Keyword

Used With Routines: PLOTS, POLYFILL

Corresponding System Variable: None.

Specifies the spacing, in centimeters, between the parallel lines used to fill
polygons.

Spline Keyword

Used With Routines: CONTOUR

Corresponding System Variable: None.

Specifies that contour paths are to be interpolated using cubic splines.

Use of this keyword implies the use of the Follow keyword. The appearance of con-
tour plots of arrays with low resolution may be improved by using spline
interpolation. In rare cases, contour lines that are close together may cross because
of interpolation.

Splines are especially useful with small data sets (less than 15 array dimensions).
With larger data sets the smoothing is not as noticeable and the expense of splines
increases rapidly with the number of data points.

You may specify the length of each interpolated line segment in normalized coor-
dinates by including a value with this keyword. The default value is 0.005 which is
obtained when the parameter Spline is present. Smaller values for this parameter
yield smoother lines, up to the resolution of the output device, at the expense of
more computations.

 1221

Start_Level Keyword

Used With Routines: PLOT

Corresponding System Variable: !PDT.Start_Level

Specifies the initial level of tick labels to be displayed on a Date/Time axis. The
subsequent levels depend on the data range and the first level selected.

Subtitle Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PIE, PLOT, SHADE_SURF, SURFACE

Corresponding System Variable: !P.Subtitle

Produces a subtitle under the x-axis containing the text in this string parameter.

Symsize Keyword

Used With Routines: OPLOT, PLOT, PLOTS, POLYFILL

Corresponding System Variable: None.

Specifies the size of the symbols drawn when Psym is set. The default size of 1.0
produces symbols approximately the same size as a character.

When used with PLOT, OPLOT, and PLOTS, the Symsize keyword can specify an
array of symbol sizes. If an array is used, each plot symbol size in the array is

Index Values for the Start_Level Keyword

Index Start Level

7 Year

6 Quarter

5 Month

4 Week

3 Day

2 Hour

1 Minute

0 Second

–1 Auto-level

1222 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

applied, in order, to size the plot symbols that make up the graph. The symbol sizes
are repeated, as needed, to complete the entire graph of the data set.

NOTE You cannot specify an array of values for the !P.Psym system variable. The
array of color values can only be used with the Psym keyword.

T3d Keyword

Used With Routines: AXIS, CONTOUR, CONTOUR2, OPLOT, PLOT,
PLOTS, POLYFILL, SHADE_SURF, SHADE_SURF_IRR, SURFACE,
XYOUTS

Corresponding System Variable: !P.T3d

NOTE When the T3d keyword is in effect, the CONTOUR2 Fill keyword is
disabled.

A keyword flag which, if present, indicates that the generalized transformation
matrix in !P.T is to be used.

!P.T must contain a valid transformation matrix before the T3d keyword can be
used. The matrix can be set by using the Save plotting keyword with the appropriate
plotting routine.

If T3d is not present the user-supplied coordinates are simply scaled to screen coor-
dinates. See the examples in the description of the Save plotting keyword.

A valid transformation matrix can be placed in !P.T in several ways:

❑ Use the Save keyword to save the transformation matrix from an earlier graph-
ics operation.

❑ Establish a transformation matrix using the T3D user library procedure.

❑ Set the value of !P.T directly.

Text_Axes Keyword

Used With Routines: XYOUTS

Corresponding System Variable: None.

Specifies the plane of vector-drawn text when three-dimensional plotting is
enabled. By default, text is drawn in the plane of the XY axes. The horizontal text
direction is in the X plane, and the vertical text direction is in the Y plane.

 1223

Values of this keyword may range from 0 to 5, with the following effect: 0 for XY,
1 for XZ, 2 for YZ, 3 for YX, 4 for ZX, and 5 for ZY. The notation ZY means that
the horizontal direction of the text lies in the Z plane, and the vertical direction of
the text is drawn in the Y plane.

Thick Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE

Corresponding System Variable: !P.Thick

Controls the thickness of the lines connecting points. A thickness of 1.0 is normal,
2.0 is double-wide, etc.

Tickformat Keyword

Used With Routines: AXIS, CONTOUR, CONTOUR2, OPLOT, PLOT,
SHADE_SURF, SURFACE

Corresponding System Variable: !P.Tickformat

Lets you use FORTRAN-style format specifiers to change the format of tick labels
on the x-, y-, and z-axes. For example:

PLOT, mydata, Tickformat = '(F5.2)'

The resulting plot’s tick labels are formatted with a total width of five characters
carried to two decimal places. As expected, the width field expands automatically
to accommodate larger values. For more information on format specifiers, see . See
also .

Note that only the I (integer), F (floating-point), and E (scientific notation) format
specifiers can be used with Tickformat. Also, you cannot place a quoted string
inside a tick format. For example, ("<", F5.2, ">") is an invalid Tickformat
specification.

See also [XYZ]Tickformat.

Ticklen Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE

Corresponding System Variable: !P.Ticklen

1224 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

Controls the length of the axis tick marks, expressed as a fraction of the window
size. The default value is 0.02. Ticklen of 0.5 produces a grid, while a negative
Ticklen makes tick marks that extend outside the plot region, rather than inwards.

Example

To produce outward-going tick marks of the normal length:

PLOT, X, Y, Ticklen = -0.02

To provide a new default tick length, set the system variable !P.Ticklen.

Title Keyword

Used With Routines: AXIS, BAR, BAR3D, CONTOUR, CONTOUR2,
OPLOT, PIE, PLOT, SHADE_SURF, SURFACE

Corresponding System Variable: !P.Title

Produces a main title centered above the plot window.

The text size of this main title is larger than the other text by a factor of 1.25.

For example:

PLOT, X, Y, Title = 'Final Results'

Upper_Only Keyword

Used With Routines: SURFACE

Corresponding System Variable: None.

Indicates that only the upper surface of the object is to be drawn. By default, both
surfaces are drawn.

Week_Boundary Keyword

Used With Routines: PLOT

Corresponding System Variable: !PDT.Week_Boundary

Sets the day of the week on which week tick marks are drawn for the week level
on a Date/Time axis.

For example, if you set the week boundary to ‘Sunday’, weekly tick marks are
drawn for each Sunday and each one is labeled with the date.

 1225

Width Keyword

Used With Routines: MAP_XYOUTS, XYOUTS

Corresponding System Variable: None.

Returns the width of the text string, in normalized coordinate units, to the desig-
nated variable.

For example, to put the width of a text string in the variable w_title, use:

XYOUTS, x, y, 'Title of Graph', Width = w_title

[XY]Axis Keyword

Used With Routines: AXIS

Corresponding System Variable: None.

The XAxis and YAxis keywords indicate which type of axis is to be drawn by the
AXIS procedure and its placement.

See also ZAxis.

[XYZ]Charsize Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE

Corresponding System Variable: ![XYZ].Charsize

The size of the characters used to annotate the axis and its title.

Week Boundary Indices

Index Day of Week

0 Sunday

1 (the default) Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

1226 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

This field is a scale factor applied to the global scale factor set by !P.Charsize or the
keyword Charsize.

See also Charsize.

[XYZ]Gridstyle Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, SHADE_SURF, SURFACE

Corresponding System Variable: ![XYZ].Gridstyle

Lets you change the linestyle of tick intervals on the x-, y-, and z-axes.

The default is a solid line.

See also Gridstyle.

[XYZ]Margin Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PIE, PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE

Corresponding System Variable: ![XYZ].Margin

A two-element array specifying the margin around the sides of the plot window, in
units of character size. Default margins are 10 (left margin) and 3 (right margin)
for the x-axis, 4 (bottom margin) and 2 (top margin) for the y-axis. For the z-axis
the default margins are both 0.

Index X Windows Style Windows Style

0 Solid (default) Solid (default)

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

 1227

[XYZ]Minor Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE

Corresponding System Variable: ![XYZ].Minor

The number of minor tick intervals on the particular axis. If set to 0, the default,
PV-WAVE automatically determines the number of minor ticks in each major tick
mark interval. Setting this parameter to –1 suppresses the minor ticks, and setting
it to a positive, nonzero number n produces n minor tick intervals, and n – 1 minor
tick marks.

[XYZ]Range Keyword

Used With Routines: AXIS, BAR, BAR3D, CONTOUR, CONTOUR2,
OPLOT, PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE,
vtkSCATTER, vtkSURFACE

Corresponding System Variable: ![XYZ].Range

The desired data range of the particular axis, a two-element vector. The first ele-
ment is the axis minimum, and the second is the maximum. PV-WAVE will
frequently round this range.

[XYZ]Style Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE

Corresponding System Variable: ![XYZ].Style

Allows specification of axis options such as rounding of tick values and selection
of a box axis. Each option is encoded in a bit. See the following table for details:
Axis Options

Bit Value Function

0 1 Exact. By default the end points of the axis are rounded in
order to obtain even tick increments. Setting this bit inhibits
rounding, making the axis fit the data range exactly.

1 2 Extend. If this bit is set, the axes are extended by 5% in
each direction, leaving a border around the data.

2 4 None. If this bit is set, the axis and its text is not drawn.

1228 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

NOTE The ZStyle keyword has no effect in Date/Time plots.

[XYZ]Tickformat Keyword

Used With Routines: AXIS, CONTOUR, CONTOUR2, OPLOT, PLOT,
SHADE_SURF, SURFACE

Corresponding System Variable: ![XYZ].Tickformat

Lets you use FORTRAN-style format specifiers to change the format of tick labels
for the particular axis. For example:

PLOT, mydata, XTickformat = '(F5.2)'

This keyword works basically the same way as the Tickformat keyword.

See also Tickformat.

[XYZ]Ticklen Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, SHADE_SURF, SURFACE

Corresponding System Variable: ![XYZ].Ticklen

Functions the same as the keyword Ticklen. [XYZ]Ticklen, however, can be applied
to the particular axis. [XYZ]Ticklen supersedes the value of the Ticklen setting.

[XYZ]Tickname Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE, vtkAXES

Corresponding System Variable: ![XYZ].Tickname

3 8 No box. Normally, PLOT, CONTOUR, and CONTOUR2
draw a box style axis with the data window surrounded by
axes. Setting this bit inhibits drawing the top or right axis.

4 16 Inhibits setting the y-axis minimum value to zero, when the
data are all positive and nonzero. The keyword YNozero sets
this bit temporarily.

Axis Options (Continued)

Bit Value Function

 1229

A string array, of up to 30 elements, containing the annotation of each major tick
mark.

If omitted, or if a given string element that contains the null string, PV-WAVE
labels the tick mark with its value. To suppress the tick label, supply a string array
of one-character-long blank strings. You can do this with the command:

REPLICATE(' ', N)

(Null strings cause PV-WAVE to number the tick mark with its value.) Note that if
there are n tick mark intervals, there are n + 1 tick marks and labels.

[XYZ]Ticks Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE, vtkAXES

Corresponding System Variable: ![XYZ].Ticks

The number of major tick intervals to draw for the axis. If omitted PV-WAVE will
select from three to six tick intervals. Setting this field to n, where n > 0, produces
exactly n tick intervals, and n + 1 tick marks.

[XYZ]Tickv Keyword

Used With Routines: AXIS, CONTOUR, CONTOUR2, OPLOT, PLOT,
SHADE_SURF, SHADE_SURF_IRR, SURFACE, vtkAXES

Corresponding System Variable: ![XYZ].Tickv

The data values for each tick mark, an array of up to 30 elements.

This keyword allows you to directly specify tick data values, producing graphs
with non-linear tick marks. PV-WAVE scales the axis from the first tick value to
the last, unless you directly specify a range. If you specify n tick intervals, you must
specify n + 1 tick values.

[XYZ]Title Keyword

Used With Routines: AXIS, BAR, BAR3D, CONTOUR, CONTOUR2,
OPLOT, PLOT, SHADE_SURF, SHADE_SURF_IRR, SURFACE, vtkAXES,
vtkSCATTER, vtkSURFACE

Corresponding System Variable: ![XYZ].Title

Places a title below the particular axis.

1230 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

See also Title.

[XYZ]Type Keyword

Used With Routines: AXIS, CONTOUR, CONTOUR2, OPLOT, PLOT

Corresponding System Variable: ![XYZ].Type.

Specifies a linear axis if zero; specifies a logarithmic axis if one; and if set to 2,
enables compressed Julian numbers to be used directly with the PLOT or OPLOT
procedures. Holds the value of the last plot’s [XYZ]Type used, but is not used for
plotting of subsequent plots (except by OPLOT).

NOTE YType has no effect in Date/Time plots.

YNozero Keyword

Used With Routines: AXIS, OPLOT, PLOT

Corresponding System Variable: None.

Inhibits setting the minimum y-axis value to zero when the y data are all positive
and nonzero, and no explicit minimum y value is specified (using Yrange, or
!Y.Range).

By default, the y-axis spans the range of 0 to the maximum value of y, in the case
of positive y data. Set bit 4 in !Y.Style to make this option the default.

YLabelCenter Keyword

Used With Routines: AXIS, BAR, BAR2D, BAR3D, CONTOUR,
CONTOUR2, OPLOT, PLOT, PLOT_FIELD, SURFACE

Corresponding System Variable: None.

Controls whether the top and bottom major tick labels on a Y axis will be
positioned within the boundaries of the axis box or centered across from the
corresponding major tick.

If this keyword is set, the top and bottom Y axis major tick labels will be centered
vertically with corresponding major ticks. If this keyword is not set, the default
behavior is to position the top and bottom Y axis major tick labels within the
boundaries of the axis box.

 1231

Example

To produce a plot with with top and bottom major tick labels on the Y axis centered
across from the corresponding major tick:

PLOT, DIST(20), YTICKS=10, /YLabelCenter

Z Keyword

Used With Routines: PLOTS, POLYFILL, XYOUTS

Corresponding System Variable: None.

Provides the z-coordinate if a z parameter is not present in the call. This is of use
only if the three-dimensional transformation is in effect.

ZAxis Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, SURFACE

Corresponding System Variable: None.

Specifies the existence of a z-axis for CONTOUR and CONTOUR2, and the place-
ment of the z-axis for SURFACE. For AXIS, the ZAxis keyword indicates that a z-
axis is to be drawn and where it should be placed.

CONTOUR and CONTOUR2 draw no z-axis by default. Include the ZAxis key-
word in the call to CONTOUR and CONTOUR2 to draw a z-axis. This is of use
only if a three-dimensional transformation is established.

By default, SURFACE draws the z-axis at the upper-left corner of the axis box. To
suppress the z-axis, use ZAxis = -1 in the call. The position of the z-axis is
determined from ZAxis as follows:
1 = lower-right, 2 = lower-left, 3 = upper-left, and 4 = upper-right.

ZValue Keyword

Used With Routines: AXIS, BAR3D, CONTOUR, CONTOUR2, OPLOT,
PLOT, SHADE_SURF, SURFACE

Corresponding System Variable: None.

Sets the z-coordinate, in normalized coordinates in the range of 0 to 1, of the axis
and data output from PLOT, OPLOT, CONTOUR, and CONTOUR2.

This has an effect only if !P.T3d is set and the three-dimensional to two-dimen-
sional transformation is stored in !P.T. If ZValue is not specified, CONTOUR and

1232 Chapter 3: Graphics and Plotting Keywords PV-WAVE Reference Volume 3

CONTOUR2 will output each contour at its z-coordinate, and the axes and title at
a z-coordinate of 0.0.

1233

CHAPTER

4

System Variables
This chapter discusses the PV-WAVE system variables. For more information on
system variables, see Chapter 2, Constants and Variables, in the PV-WAVE
Programmer’s Guide.

!C

The cursor system variable. Currently, its only function is to contain the subscript
of the largest or smallest element found by the MAX and MIN functions.

!Century_Divider

The !Century_Divider system variable is intended to help ensure that two-digit-
year format dates do not adversely affect existing PV-WAVE applications. This is
intended as a temporary solution to the year 2000 problem. We recommend that all
PV-WAVE code be updated with four-digit year dates.

If set to –1 (the default), PV-WAVE behaves as in versions before 6.21. That is, any
date in a two-digit year format is interpreted as being between January 1, 1901 and
December 31, 1999. Furthermore, when !Century_Divider is set to –1, a two-digit
year of 00 is interpreted as Julian date zero (September 9, 1752). For more
information on how dates are handled in PV-WAVE, refer to the chapter Chapter
8, Working with Date/Time Data, in the PV-WAVE User’s Guide.

If set in the range {0..99}, the !Century_Divider value represents the maximum of
the hundred year span encompassed by two-digit year dates. In other words, if
!Century_Divider is set to 35, then all two-digit year dates encountered in
PV-WAVE are interpreted to be in the range {1935..2034}. Therefore, the date

1234 Chapter 4: System Variables PV-WAVE Reference Volume 3

01-31-35 refers to January 31, 1935; 01-31-99 refers to January 31, 1999; and
01-31-34 refers to January 31, 2034.

If !Century_Divider is set to 0 or a value greater than 99, the two-digit year is added
to 2000.

!D

A structure containing information about the current graphics output device. Fields
are described in the following sections.

The fields of the !D structure are read-only.

!D.Display_Depth

Stores the current display depth.

!D.Fill_Dist

The line interval, in device coordinates, required to obtain a solid fill.

!D.Flags

A longword of flags. Each bit is a flag encoded as shown in the following table:
!D.Flags Bit Definitions

Bit Value Function

0 1 Device has scalable pixel size (e.g., PostScript).

1 2 Device can control line thickness with hardware.

2 4 Device can output text at an arbitrary angle using hardware.

3 8 Device can display images.

4 16 Device supports color.

5 32 Device can polygon fill with hardware.

6 64 Device hardware characters are monospace.

7 128 Device can read pixels (TVRD).

8 256 Device supports windows.

 1235

!D.N_Colors

The number of simultaneously available colors. In the case of devices with win-
dows, this field is set after the window is initialized. For monochrome systems,
!D.N_Colors is 2, and for color systems it is normally 256.

!D.Name

A string containing the name of the device.

!D.Table_Size

This field contains the number of color table indices available on the device.
Devices without color tables have this field set to 0.

!D.Unit

The logical number of the file open for output by the current graphics device. This
field only has meaning if the file is accessible to the user from PV-WAVE, and is 0
if no file is open. For example, the PostScript driver maintains this field with the
unit number of the file open for PostScript output. In the case of Tektronix output
to a file, !D.Unit may be set to either + or – the logical unit number.

!D.Window

The index of the currently open window. Set to –1 if no window is open. Used only
with devices that support windows.

!D.X_Ch_Size / !D.Y_Ch_Size

The normal width and height of a character in device units. These fields are set after
the window is initialized.

!D.X_Px_Cm / !D.Y_Px_Cm

The number of pixels per centimeter in the x and y directions.

!D.X_Size / !D.Y_Size

Reports the width and height of the current graphics window in pixels. The values
are updated when the window is resized.

1236 Chapter 4: System Variables PV-WAVE Reference Volume 3

!D.X_Vsize / !D.Y_Vsize

Reports the height and width of the current graphics window in pixels. The values
are updated when the window is resized.

!Date_Separator

A string containing, by default, a slash (/) character. This character is used to
separate the parts of a date on output (for example, 5/15/1992). To use a different
character, change the value of this variable. This variable is used by the
DT_PRINT, DT_TO_STR, and DC_WRITE_* routines.

!Day_Names

An array of strings containing the names of the days of the week. This system
variable is used by the DAYNAME function to return the names of the days for a
specified date/time variable.

!Dir

Contains the name of the main PV-WAVE directory (that is, the directory
containing the files PV-WAVE needs to run).

!Display_Size

Contains the pixel dimensions of the display screen.

!Dpi

Contains the double-precision value of pi. This is a read-only system variable.

!DT_Base

Contains the value of Julian Day 1 (September 14, 1752) as a !DT structure. Used
in various Date/Time calculations. This value can be overridden using the Base
keyword as a parameter to the SEC_TO_DT and DT_TO_SEC routines.

This variable can also be modified directly; however, if you do this, you must set
the last field (the recalc flag) of the !DT structure to 1. For more information, see
the section Recalc Flag in Chapter 8, Working with Date/Time Data, in the
PV-WAVE User’s Guide.

 1237

!Dtor

Contains the conversion factor to convert degrees to radians. The value is π / 180,
which is approximately 0.01745. This is a read-only system variable.

!Edit_Input

Enables or disables the keyboard line-editing feature.

!Err

Contains the code of the last I/O error message. The CURSOR function also uses
!Err to store the return value of the function. This enables the user to determine
which mouse button was pushed.

!Err_String

Contains the text of the last I/O error message. This is a read-only system variable.

!Holiday_List

This system variable is created by the CREATE_HOLIDAYS procedure. It is a
Date/Time variable containing holidays as defined by CREATE_HOLIDAYS. This
system variable does not have a default value. This variable can hold up to 50 hol-
iday definitions.

!Journal

Contains the logical unit number of journal output. If there is no journal output,
!Journal = 0. This is a read-only system variable.

!Lang

Identifies the language currently being used. The default is american.

!Month_Names

An array of strings containing the names of the months. This system variable is
used by the MONTH_NAME function to return the names of the months for a
specified date/time variable.

1238 Chapter 4: System Variables PV-WAVE Reference Volume 3

!Mouse

Used by the CURSOR function to store the x and y position of the mouse, the
mouse button status, and a date/time stamp. The fields for this variable are:

!Mouse.X
!Mouse.Y
!Mouse.Button
!Mouse.Time

For additional information on this variable and its fields, see the CURSOR
procedure.

!Msg_Prefix

Contains a prefix string for error messages issued by PV-WAVE. The default is a
percent sign. This system variable provides a way to distinguish error messages
from normal output.

!Order

Controls the direction of image transfers. If !Order is 0, images are transferred from
bottom to top (i.e., the row with a 0 subscript is written on the bottom). Setting
!Order to 1 transfers images from top to bottom.

!P

The main system variable structure for plotting.

All fields, except !P.Multi, have a directly corresponding keyword parameter in the
main plot procedures: AXIS, PLOT, OPLOT, CONTOUR, and SURFACE.

The !P structure fields are explained in the following sections.

!P.Background

Corresponding Plot Keyword: Background

The background color index. When erasing a window, all pixels are set to this color.
The default value is 0.

!P.Charsize
Corresponding Plot Keyword: Charsize

 1239

The overall character size of all annotation. The normal size is 1. The main plot title
size is 1.25 times this parameter.

NOTE If you use !P.Multi to create a multiple plot of more than two rows or
columns, PV-WAVE decreases the character size by a factor of two.

!P.Charthick
Corresponding Plot Keyword: Charthick

The thickness of characters drawn with the vector fonts. Normal thickness is 1.0,
double thickness is 2.0, and so on.

!P.Clip
Corresponding Plot Keyword: None.

Contains a six-element vector. The first four elements specify in device coordinates
a rectangle used to clip the graphics window. The rectangle is specified in the form
[(x0, y0), (x1 , y1)]. The coordinates specify the lower-left and upper-right corners of
the clipping rectangle, respectively. Normally the clipping rectangle is set to the
Data Plot Area (the area bounded by the coordinate axes). The last two elements of
this system variable are reserved for internal use by PV-WAVE.

!P.Color
Corresponding Plot Keyword: Color

Color index used to draw data, axes, and annotation.

!P.Font
Corresponding Plot Keyword: Font

The index of the graphics text font. !P.Font = –1 uses the software-drawn fonts (also
called Hershey or vector-drawn fonts). !P.Font = 0 uses the hardware-drawn fonts.
For information on hardware-drawn fonts available for a particular output device,
see Appendix B, Output Devices and Window Systems. See for a complete descrip-
tion of the vector-drawn fonts.

NOTE Hardware font drivers that support 3D transformations include X
Windows, WIN32 (on Windows NT platforms only), PostScript, and WMF (on
Windows NT platforms only).

!P.Gridstyle
Corresponding Plot Keyword: Gridstyle

1240 Chapter 4: System Variables PV-WAVE Reference Volume 3

Lets you change the default linestyle of x-, y-, and z-axis tick marks. The default is
a solid line. Other linestyle choices and their index values are listed in the following
table:

!P.Linestyle
Corresponding Plot Keyword: Linestyle

The style of the lines used to connect points.

UNIX and OpenVMS USERS The line join style is “miter,” i.e., the outer edges
of two lines extend to meet at an angle.

Windows USERS The line join style is “round.”

The linestyle index is an integer, as described in the following table:

!P.Multi

Allows making multiple plots on a page or a screen. It is a five-element integer
array defined as follows:

Index X Windows Style Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

Index X Windows Style Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

 1241

• !P.Multi(0) contains the number of plots remaining on the page. If !P.Multi(0)
is less than or equal to 0, the page is cleared, the next plot is placed the upper-
left-hand corner, and !P.Multi(0) is reset to the number of plots per page.

• !P.Multi(1) is the number of plot columns per page. If ≤ 0, one is assumed. If
more than two plots are positioned in either the x or y direction, the character
size is halved.

• !P.Multi(2) is the number of rows of plots per page. If ≤ 0, one is assumed.

• !P.Multi(3) is the number of plots stacked in the z dimension.

• !P.Multi(4) is 0 to make plots from left to right (column major), and top to bot-
tom, and is 1 to make plots from top to bottom, left to right (row major).

NOTE If more than two rows or columns of plots are produced, PV-WAVE
decreases the character size by a factor of 2.

Example

To position two plots across the page:

!P.Multi = [0, 2, 0, 0, 0]

PLOT, X0, Y0 ;Make left plot

PLOT, X1, Y1 ;Right plot

To position two plots vertically:

!P.Multi = [0, 0, 2, 0, 0]

PLOT, X0, Y0 ;Make top plot

PLOT, X1, Y1 ;Bottom plot

To make four plots per page, two across and two up and down:

!P.Multi = [0, 2, 2, 0, 0]

and then call plot four times.

To reset !P.Multi back to the normal one plot per page:

!P.Multi = 0

For more information on !P.Multi, see the PV-WAVE User’s Guide.

!P.NoClip
Corresponding Plot Keyword: NoClip

1242 Chapter 4: System Variables PV-WAVE Reference Volume 3

If set, this keyword disables the default clipping for the OPLOT procedure. By
default, OPLOT uses the value of !P.Clip for its clipping rectangle. If you set
!P.NoClip=1, then this default clipping is disabled for OPLOT. The Clip keyword
takes precedence over the setting of !P.NoClip.

!P.Nsum
Corresponding Plot Keyword: Nsum

The number of adjacent points to sum to obtain a plotted point. If !P.Nsum is larger
than 1, every group of !P.Nsum points is averaged to produce one plotted point. If
there are m data points, then m / !P.Nsum points are displayed. On logarithmic axes
a geometric average is performed.

It is convenient to use Nsum when there is an extremely large number of data points
to plot because it plots fewer points, the graph is less cluttered, and it is quicker.

!P.Position
Corresponding Plot Keyword: Position

Specifies the position of the plot within the graphics window. It is called by speci-
fying a four-element vector as follows:

!P.Position = [Xmin, Ymin, Xmax, Ymax]

The minimum and maximum position values are specified in normalized coordi-
nates. For example, to position a plot in the center of the screen, type:

!P.Position = [0.2, 0.2, 0.8, 0.8]

NOTE The !P.Position variable will only position the plot itself, and the annota-
tion on the axes may be cut off. If the plot and its associated annotation must be
positioned, use the Region field of the !P system variable.

!P.Psym

Corresponding Plot Keyword: Psym

Specifies by reference number a symbol used to mark each data point. Each point
drawn by PLOT and OPLOT is marked with a symbol if this field is non-zero. The
available symbols and their corresponding reference numbers are shown in the fol-
lowing figure.

 1243

Figure 4-1 The plot symbols and their corresponding reference numbers.

The USERSYM procedure is used to create a user-defined symbol (number 8).

For symbol number 10, Histogram, data points are plotted in the histogram mode.
Horizontal and vertical lines are connect the plotted points, as opposed to the nor-
mal method of connecting points with straight lines.

Negative values of !P.Psym cause the symbol designated by |!P.Psym| to be plotted
at each point with solid lines connecting the symbols. For example, a !P.Psym value
of –5 plots triangles at each data point and connects the points with lines.

1244 Chapter 4: System Variables PV-WAVE Reference Volume 3

!P.Region

Specifies the positioning of the plot and its associated annotation (i.e., anything that
can be specified with the PLOT command). The difference between !P.Region and
!P.Position is that !P.Region provides a margin around the plot to accommodate
plot annotation. It is called by specifying !P.Region’s maximum and minimum val-
ues in normalized coordinates:

!P.Region = [Xmin, Ymin, Xmax, Ymax]

For example, to position a plot with its associated annotation in the center of the
screen, type:

!P.Region = [0.2, 0.2, 0.8, 0.8]

!P.Subtitle

Corresponding Plot Keyword: Subtitle

 The plot subtitle, placed under the x-axis label.

!P.T

Contains the homogeneous 4-by-4 transformation matrix.

!P.T3D

Corresponding Plot Keyword: T3d

Enables the three-dimensional to two-dimensional transformation contained in the
homogeneous 4-by-4 matrix !P.T.

!P.Thick

Corresponding Plot Keyword: Thick

The thickness of the lines connecting points. A thickness of 1.0 is normal, 2 is dou-
ble-wide, and so on.

!P.Tickformat

Corresponding Plot Keyword: Tickformat

Changes the default format for x-, y-, and z-axis tick labels using FORTRAN-style
format specifiers.

See ![XYZ].Tickformat for more information.

 1245

!P.Ticklen

Corresponding Plot Keyword: Ticklen

The length of the tick marks, expressed as a fraction of the plot size. The default
value is 0.02. A !P.Ticklen of 0.5 produces a grid, while a negative value for
!P.Ticklen makes tick marks that extend outside the window, rather than inwards.

See also ![XYZ].Ticklen.

!P.Title

Corresponding Plot Keyword: Title

The main plot title. The text size of this main title is larger than the other text by a
factor of 1.25.

!Path

Contains the colon-separated directory path to search for procedures, functions,
and arguments of executive commands.

!PDT

The main system variable structure for Date/Time plotting attributes. The fields of
this structure are described below.

!PDT.Box

Corresponding Plot Keyword: Box

If zero, the background box for the Date/Time axis labels is off; if one, the back-
ground box is turned on. (Default: 0—no box)

!PDT.Compress

Corresponding Plot Keyword: Compress

If zero, compression is off; if one, compression is on. (Default: 0—no
compression)

!PDT.Exclude_Holiday

If compression is set with the Compress keyword or !PDT.Compress, and this sys-
tem variable is set to one, holidays are excluded from the results of Date/Time
routines such as DT_ADD, DT_SUBTRACT, and DT_DURATION. (Default: 1)

1246 Chapter 4: System Variables PV-WAVE Reference Volume 3

!PDT. Exclude_Weekend

If compression is set with the Compress keyword or !PDT.Compress, and this sys-
tem variable is set to one, weekends are excluded from the results of Date/Time
routines such as DT_ADD, DT_SUBTRACT, and DT_DURATION. (Default: 1)

!PDT.Max_Levels

Corresponding Plot Keyword: Max_Levels

Sets the maximum number of levels on a Date/Time axis. For more information,
see the Max_Levels keyword in Chapter 3, Graphics and Plotting Keywords.

!PDT.Month_Abbr

Corresponding Plot Keyword: Month_Abbr

If one, month names are abbreviated if there is not enough room to draw them on
a plot axis; if zero, month names will not be abbreviated, and only the months
which fit the space available on the axis will be displayed. (Default: 0—months are
not abbreviated)

!PDT.Start_Level

Corresponding Plot Keyword: Start_Level

Allows you to override the starting level of the Date/Time axis labels that
PV-WAVE derives. The default is –1, which causes starting levels to be selected
automatically.

!PDT.DT_Crange

Contains axis ranges generated by the PLOT procedure.

!PDT.DT_Range

Corresponding Plot Keyword: DT_Range

Can be used to specify an exact Date/Time axis range. You must pass in the desired
start and end values from a Date/Time Julian value. The specified range may be
adjusted slightly depending on the data. To force an exact axis range (exactly as
specified), set the XStyle keyword to two. See the description of XStyle in Chapter
3, Graphics and Plotting Keywords.

!PDT.DT_Offset

This is a read-only system variable, which is mainly for internal use.

 1247

!PDT.Week_Boundary

Corresponding Plot Keyword: Week_Boundary

Allows you to set a different day of the week as the boundary for numbering the
start of the week on the axis levels. (0 = Sunday, 1= Monday, etc.)

!Pi

The floating-point value of pi. This is a read-only system variable.

!Prompt

A string variable containing the prompt used by PV-WAVE.

!Quarter_Names

Array of strings containing the names for fiscal quarters. The default names of
these labels are Q1, Q2, Q3, and Q4.

!Quiet

This system variable is used to suppress error messages. It can have the following
values:

!Radeg

A floating-point value for converting radians to degrees. The value is 180 / π or
approximately 57.2958. This is a read-only system variable.

!Start

Contains the value of the time at which you started PV-WAVE as a date/time
structure.

Value Purpose

0 Print all messages.

1 Suppress compiler and informational messages only.

2 Suppress error messages only.

3 Suppress compiler, informational, and error messages.

1248 Chapter 4: System Variables PV-WAVE Reference Volume 3

!Time_Separator

A string containing, by default, a colon (:) character. This character is used to sep-
arate the parts of a time (for example, 07:54:58.000). To use a different character,
change the value of this variable. This variable is used by the DT_PRINT,
DT_TO_STR, and DC_WRITE_* routines.

!Version

A structure whose five string fields contain the:

• architecture

• current operating system

• current PV-WAVE release number

• current PV-WAVE revision level

• name (platform) of the machine running PV-WAVE.

This is a read-only system variable.

PRINT, !Version.release + !Version.revision

!Weekend_List

This system variable is created by the CREATE_WEEKENDS procedure. It con-
tains an array of long integers, where ones represent weekends and zeros represent
weekdays. The values are defined by the CREATE_WEEKENDS routine.

![XYZ]

The system variables !X, !Y, and !Z, are structures that affect the appearance and
scaling of the three axes. The fields for !X are described here. !Y and !Z have iden-
tical fields with identical meanings and usage.

In addition, almost all fields have corresponding keyword parameters, with identi-
cal function, but with temporary effect. For example, to suppress the minor tick
marks on the x-axis using the !X system variable:

!X.Minor = -1

while to suppress them in the call to PLOT:

PLOT, X, Y, XMinor = -1

The name of the keyword parameter is simply the name of the system variable field,
prefixed with the letter X, Y, or Z.

The fields for the !X system variable are explained in the following sections.

 1249

![XYZ].Charsize

Corresponding Plot Keyword: [XYZ]Charsize

The size of the characters used to annotate the axis and its title. This field is a scale
factor applied to the global scale factor. For example, setting !P.Charsize to 2.0 and
!X.Charsize to 0.5 results in a character size of 1.0 for the x-axis.

![XYZ].Crange

The output axis range. Setting this variable has no effect; set !X.Range to change
the range. !X.Crange(0) always contains the minimum axis value, and
!X.Crange(1) contains the maximum axis value of the last plot.

![XYZ].Gridstyle

Corresponding Plot Keyword: [XYZ]Gridstyle

Lets you change the default linestyle of tick marks along the x-, y-, and z-axes. The
default is a solid line. Other linestyle choices and their index values are listed in the
following table:

![XYZ].Margin

Corresponding Plot Keyword: [XYZ]Margin

A two-element array specifying the margin around the sides of the plot window, in
units of character size. Default margins are 10 (left margin) and 3 (right margin)
for the x-axis, 4 (bottom margin) and 2 (top margin) for the y-axis. For the z-axis
the default margins are both 0.

When calculating the size and position of the plot window, PV-WAVE first deter-
mines the plot region, the area enclosing the window plus the axis annotation and
titles. It then subtracts the appropriate margin from each side, obtaining the
window.

Index X Windows Style Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

1250 Chapter 4: System Variables PV-WAVE Reference Volume 3

![XYZ].Minor

Corresponding Plot Keyword: [XYZ]Minor

The number of minor tick intervals. If ![XYZ].Minor is 0, the default, the number
of minor ticks is automatically determined. You can force a given number of minor
tick intervals by setting this field to the desired number. To suppress minor tick
marks, set ![XYZ].Minor to –1.

![XYZ].Range

Corresponding Plot Keyword: [XYZ]Range

The input axis range, a two-element vector. The first element is the axis minimum,
and the second is the maximum. Set this field, or use the corresponding keyword
parameter, to specify the data range to plot. Because the endpoints of axes are
rounded, the final axis range may not be equal to this input range. The field
![XYZ].Range contains the axis range used for the plot.

Set both elements equal to 0 for automatic axis ranges:

!X.Range = 0

Example

To force the x-axis to run from 5.5 to 8.3:

!X.Range = [5.5, 8.3]

PLOT, X, Y

Alternatively, by using keywords:

PLOT, X, Y, XRange = [5.5, 8.3]

Note that even though the range was set to (5.5, 8.3), the resulting plot has a range
of (5.5, 8.5), because of the axis rounding. To inhibit rounding, set !X.Style to 1.

![XYZ].Region

Corresponding Plot Keyword: None.

Contains the normalized coordinates of the region. This field is similar to !X.Win-
dow in that it is set by the graphics procedures and is a two-element floating-point
array.

 1251

![XYZ].S

The scaling factors for converting between data coordinates and normalized coor-
dinates (a two-element array). The formula for conversion from data (Xd) to
normalized (Xn) coordinates is:

Xn = Si Xd + S0

If logarithmic scaling is in effect, substitute log10 Xd for Xd.

![XYZ].Style

Corresponding Plot Keyword: [XYZ]Style

The style of the axis encoded as bits in a longword. The axis style may be set to
exact, extended, none, or no box using this field. See the following table for details.

Example

To set the x-axis style to exact, use:

!X.Style = 1

or by using a keyword parameter:

PLOT, X, Y, XStyle = 1

![XYZ].Thick

The thickness of the axis line and tick marks. 1.0 is normal.

Settings for Axis Style

Bit Value Function

0 1 Exact. By default the end points of the axis are rounded in
order to obtain even tick increments. Setting this bit inhibits
rounding, making the axis fit the data range exactly.

1 2 Extend. If this bit is set, the axes are extended by 5% in each
direction, leaving a border around the data.

2 4 None. If this bit is set, the axis and its annotation is not
drawn.

3 8 No box. Normally, PLOT and CONTOUR draw a box style
axis with the data window surrounded by axes. Setting this
bit inhibits drawing the top or right axis.

4 16 Inhibits setting the y-axis minimum value to zero, when the
data are all positive and non-zero. The keyword YNozero
sets this bit temporarily.

1252 Chapter 4: System Variables PV-WAVE Reference Volume 3

![XYZ].Tickformat

Corresponding Plot Keyword: [XYZ]Tickformat

Changes the default format for axis tick labels using FORTRAN-style format spec-
ifiers. For example, the following statement changes the default tick label format
to floating-point numbers carried to two decimal places.

!X.Tickformat = '(F5.2)'

The specified width of the format is at least five characters; however, this width
expands automatically to accommodate larger values.

For more information on format specifiers, see . See also .

Note that only the I (integer), F (floating-point), and E (scientific notation) format
specifiers can be used with !X.Tickformat. Also, you cannot place a quoted string
inside a tick format. For example, ("<", F5.2, ">") is an invalid !X.Tickfor-
mat specification.

![XYZ].Ticklen

Corresponding Plot Keyword: [XYZ]Ticklen

The length of tick marks, expressed as a fraction of the plot size. The default value
is 0.02. A negative value makes tick marks that extend outside the window, rather
than inward.

![XYZ].Tickname

Corresponding Plot Keyword: [XYZ]Tickname

The annotation for each tick. A string array of up to 30 elements. Setting elements
of this array allows direct specification of the tick label. If this element contains a
null string, the default value, PV-WAVE annotates the tick with its numeric value.
Setting the element to a one-blank string suppresses the tick annotation.

Example

To produce a plot with an abscissa labeled with the days of the week:

!X.Tickname = ['SUN', 'MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT']

; Set up x-axis tick labels.

!X.Ticks = 6

; Use six tick intervals, requiring seven tick labels.

PLOT, Y

; Plot the data, this assumes that Y contains 7 elements.

 1253

The same plot can be produced, using keyword parameters, with:

PLOT, Y, XTickname = ['SUN', 'MON', 'TUE', $
'WED', 'THU', 'FRI', 'SAT'], XTicks = 6

; Set fields, as above, only temporarily.

See for information on creating axes with date and time data.

![XYZ].Ticks

Corresponding Plot Keyword: [XYZ]Ticks

The number of major tick intervals to draw for the axis. If ![XYZ].Ticks is set to 0,
the default, PV-WAVE will select from three to six tick intervals. Setting this field
to n, where n > 0, produces exactly n tick intervals, and n + 1 tick marks.

![XYZ].Tickv

Corresponding Plot Keyword: [XYZ]Tickv

The data values for each tick mark, an array of up to 30 elements. You can directly
specify the location of each tick by setting ![XYZ].Ticks to the number of tick
marks (the number of intervals +1) and storing the data values of the tick marks in
![XYZ].Tickv. If, by default, ![XYZ].Tickv(0) is equal to ![XYZ].Tickv(1),
PV-WAVE will automatically determine the value of the tick mark.

![XYZ].Title

Corresponding Plot Keyword: [XYZ]Title

A string containing the axis title.

![XYZ].Type

Corresponding Plot Keyword: [XYZ]Type

Specifies the type of axis, 0 for linear, 1 for logarithmic, 2 for Date/Time.

![XYZ].Window

Contains the normalized coordinates of the axis end points, the plot window. This
field is set by PLOT, CONTOUR, and SURFACE. Changing its value has no effect.
It is a two-element floating-point array.

1254 Chapter 4: System Variables PV-WAVE Reference Volume 3

1255

CHAPTER

5

Software Character Sets

Software Character Sets

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

1256 Chapter 5: Software Character Sets PV-WAVE Reference Volume 3

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

Software Character Sets 1257

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

1258 Chapter 5: Software Character Sets PV-WAVE Reference Volume 3

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

Software Character Sets 1259

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

1260 Chapter 5: Software Character Sets PV-WAVE Reference Volume 3

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

Software Character Sets 1261

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

1262 Chapter 5: Software Character Sets PV-WAVE Reference Volume 3

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

Software Character Sets 1263

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

A B C D E F G H I J

K L M N O P Q R S T

U V W X Y Z [\] ^

_ ‘ a b c d e f g h

i j k l m n o p q r

s t u v w x y z ! "

$ % & ’ () * + ,

- . / 0 1 2 3 4 5 6

7 8 9 : ; < = > ? @

1264 Chapter 5: Software Character Sets PV-WAVE Reference Volume 3

1265

CHAPTER

6

Special Characters
This chapter describes characters with special interpretation and their function in
PV-WAVE.

ampersand (&) — The ampersand separates multiple statements on one line.
Statements may be combined until the maximum line length of 511 characters is
reached. For example, the following line contains two statements:

I = 1 & PRINT, 'VALUE: ', I

apostrophe (') — Delimits string literals and indicates part of an octal or
hexadecimal constant.

asterisk (*) — In addition to denoting multiplication, designates an ending sub-
script range equal to the size of the dimension. For example, A(3:*) represents
all elements of the vector A except the first three elements.

“at” sign (@) — When the “at” sign is the very first character in a PV-WAVE
command line, it causes the compiler to substitute the contents of the command file
whose name appears after @. In addition to searching the current directory for the
file, PV-WAVE searches a list of locations where procedures are kept.

colon (:) — Ends label identifiers. Labels may only be referenced by GOTO and
ON_ERROR statements. The following line contains a statement with the label
LOOP1:

LOOP1: x = 2.5

In addition, the colon is used in CASE statements.

The colon also separates the starting and ending subscripts in subscript range
specifiers. For example A(3:6) designates the fourth, fifth, sixth, and seventh
elements of the variable A.

1266 Chapter 6: Special Characters PV-WAVE Reference Volume 3

dollar sign ($) — At the end of a line indicates that the current statement is
continued on the following line. The dollar sign character may appear anywhere a
space is legal except within a string constant (where it is interpreted literally). Any
number of continuation lines are allowed.

exclamation point (!) — Begins the names of system-defined variables. System
variables are predefined variables of a fixed type. Their purpose is to override
defaults for system procedures, to return status information, and to control the
action of PV-WAVE.

period or decimal point (.) — Indicates in a numeric constant that the number is
of floating-point or double-precision type. Example: 1.0 is a floating-point
number.

Also, in response to the WAVE> prompt, the period, if it is the first character on the
line, begins an executive command. For example:

WAVE> .RUN myfile

causes PV-WAVE to compile the file myfile.pro. If myfile.pro contains a
main program, the program will also be executed.

However, if the period is not the first character on the line as in the following
example,

WAVE> .RUN myfile

you receive a syntax error.

Also, the period precedes the name of a tag when referring to a field within a
structure. For example, a reference to a tag called NAME in a structure stored in the
variable A is: A.NAME.

quotation mark (") — The quotation mark precedes octal numbers which are
always integers and delimits string constants. Examples: "100B is a byte constant
equal to 6410, "Don't drink the water." is a string constant.

semicolon (;) — Begins a comment field of a statement. All text on a line following
a semicolon is ignored by PV-WAVE. A line may consist of just a comment or may
contain both a valid statement followed by a comment.

When the $ character is entered as the first character after the PV-WAVE prompt,
the rest of the line is sent to the operating system as a command. To send an
operating system command from within a procedure, use the SPAWN command.

1267

CHAPTER

7

Executive Commands
PV-WAVE executive commands compile programs, continue stopped programs,
and start previously compiled programs. All executive commands begin with a
period. Under UNIX, file names are case sensitive, while under OpenVMS and
Windows, either case may be used. Executive commands can be executed from
files or from the WAVE> prompt.

Using Executive Commands
Executive commands are summarized in the following table:

Executive Commands

Command Action

.CON Continues execution of a stopped program.

.GO Executes previously compiled main program from the beginning of the program.

.LOCALS Resizes the data area in terms of local variables and common block symbols.

..LOCALS Allocates space for procedures executed from within procedures.

.RNEW Compiles and possibly executes text from files or from the WAVE> prompt.

.RUN Compiles and possibly executes text from files or from the WAVE> prompt.

.SIZE Resizes the code area and the data area used to compile programs in terms of
bytes.

.SKIP Skips over the next statement and then single steps.

.STEP Executes a single statement. This command may be abbreviated as .S.

1268 Chapter 7: Executive Commands PV-WAVE Reference Volume 3

.CON
The .CON command continues execution of a program that has stopped because of
an error, a STOP statement, or a keyboard interrupt. PV-WAVE saves the location
of the beginning of the last statement executed before an error. If it is possible to
correct the error condition in the interactive mode, the offending statement may be
re-executed by typing .CON. After STOP statements, .CON continues execution at
the next statement.

NOTE Execution of a program interrupted by typing <Control>-C may also be
resumed at the point of interruption with the .CON command.

.GO
The .GO command starts execution at the beginning of a previously compiled main
program.

.LOCALS

The syntax of the .LOCALS command is:

.LOCALS local_vars common_symbols

The .LOCALS command is similar to the .SIZE command, in that it resizes the data
area (the data area is described in the previous section, Using .SIZE). The
.LOCALS command, however, lets you specify the data area size in terms of local
variables and common block symbols rather than in bytes. This command affects
the size of the data area for the $MAIN$-level (commands entered from theWAVE>
prompt), and the initial size of the data area for compiled procedures and functions.

The two parameters are positional, but not required. If you execute .LOCALS with
no parameters, the data area is set back to its default value, which is 500 local vari-
ables. If you want to use 700 variables at the $MAIN$ level, enter:

.LOCALS 700

.LOCALS clears and frees the current $MAIN$ data area and code area. It then
allocates a new code area of the same size as the previous one and a new data area
of the specified size.

For compiled procedures and functions, the compiler initially allocates code and
data areas of the same size as those that $MAIN$ is currently using. If you get
compiler error messages stating that the code and/or data area of a procedure or
function is full, you must first make the $MAIN$ code and/or data areas larger with
the .SIZE or .LOCALS executive command. Then when you recompile the
procedure or function, the compiler starts with the larger code and/or data areas.

Using Executive Commands 1269

..LOCALS

The syntax of the ..LOCALS compiler directive is:

..LOCALS local_vars common_symbols

This command is useful when you want to place the EXECUTE function inside a
procedure or function. EXECUTE takes a string parameter containing a PV-WAVE
command. This command argument is compiled and executed at runtime, allowing
the possibility for command options to be specified by the user. Because the data
area is compressed after compilation, there may not be enough room for additional
local variables and common block symbols created by EXECUTE. The ..LOCALS
command provides a method of allocating extra space for these additional items.

The ..LOCALS compiler directive is similar to the .LOCALS executive command,
except:

• ..LOCALS is only used inside procedures and functions.

• Its arguments specify the number of additional local variables and common
block symbols that will be needed at “interpreter” time (when the already-com-
piled instructions are interpreted).

• It is used in conjunction with the EXECUTE function, which can create new
local variables and common block symbols at runtime.

.RNEW

The .RNEW command compiles and saves procedures and programs in the same
manner as .RUN. However, all variables in the main program unit, including those
in common blocks, are erased. The –t, –l, and -c switches have the same effect
as with .RUN. See the examples below. Its syntax is:

.RNEW file1, ..., filen

See Sample Usage of .RUN and .RNEW on page 1270.

.RUN

The .RUN command compiles procedures, functions and main programs. The
.RUN command also executes main programs. The command may be followed by
a list of files to be compiled. Separate the filenames with blanks or commas:

.RUN file1, ..., filen

1270 Chapter 7: Executive Commands PV-WAVE Reference Volume 3

If no files are specified with the .RUN command, input is accepted from the key-
board at the WAVE> prompt until a complete program unit is entered. The values
of all the variables are retained.

Files containing PV-WAVE procedures, programs, and functions are assumed to
have the filename extension (suffix) .pro. If the filename is the same as the actual
function or procedure name, the function or procedure is compiled and executed.

The command arguments –t for terminal listing, or –l for listing to a named file,
may be used after the command name, and before the program file names, to pro-
duce a numbered program listing directed to the terminal or to a file. For instance,
to see a listing on the screen as a result of compiling a procedure contained in a file
named analyze.pro:

.RUN -t analyze

To compile the same procedure and save the listing in a file named:
analyze.lis:

.RUN -l analyze.lis ana1yze

In listings produced by PV-WAVE, the line number of each statement is printed at
the left margin. This number is the same as that printed in error statements, simpli-
fying location of the statement causing the error.

Each level of block nesting is indented four spaces to the right of the preceding
block level to improve the legibility of the program’s structure.

UNIX and OpenVMS USERS Use the command argument -c after .RUN to
compile a main program without executing it.

Sample Usage of .RUN and .RNEW

Some examples of the .RUN and .RNEW commands are:
.RUN

; Accept a program from the keyboard (WAVE> prompt). Retain the
; present variables.

.RUN myfile

; Compile the file myfile.pro. If myfile.pro is not found in the current
; directory, PV-WAVE looks for the file in the directory search path.

.RUN -t a, b, c

; Compiles the files a.pro, b.pro, and c.pro. Lists the programs on the
; terminal.

.RNEW -l myfile.lis myfi1e, yourfile

; Erases all variables. Compiles the files myfile.pro and yourfile.pro.
; Produces a listing of myfile in the file myfile.lis.

Using Executive Commands 1271

.SKIP

The .SKIP command skips one or more statements and then single steps. This
command is useful for continuing over a program statement which caused an error.
If the optional argument n is present, it gives the number of statements to skip, oth-
erwise, a single statement is skipped. The syntax is:

.SKIP [n]

For example, consider the following program segment:

...
OPENR, 1, 'missing'
READF, 1, xxx, ..., ...

...

If the OPENR procedure fails because the specified file does not exist, program
execution will halt with the OPENR procedure as the current procedure. Execution
may not be resumed with the executive command .CON because it attempts to re-
execute the offending OPENR procedure, causing the same error.

The remainder of the program can be executed by:

❑ Opening the correct file manually by typing in a valid OPENR procedure.

❑ Entering .SKIP, which skips over the incorrect OPENR procedure.

❑ Entering .CON, which resumes execution of the program at the READF
procedure.

.SIZE

The syntax of the .SIZE command is:

.SIZE code_size data_size

The .SIZE command resizes the code area and data area. These memory areas are
used when PV-WAVE programs are compiled. The code area holds internal
instruction codes that the compiler generates. The data area, also used by the com-
piler, contains variable name, common block, and keyword information for each
compiled function, procedure, and main program.

After successful compilation, a new memory area of the required size is allocated
to hold the newly compiled program unit.

By default, the size of the code area is about 800 bytes, and it grows dynamically
as needed to accommodate the activity of your session. The initial size of the data
area is 8,000 bytes (enough space to hold 500 local variables).

1272 Chapter 7: Executive Commands PV-WAVE Reference Volume 3

CAUTION Resizing the code and data areas erases the currently compiled main
program and all main program variables.

For example, to extend the code and data areas to 40,000 and 10,000 bytes
respectively:

.SIZE 40000 10000

The upper limit for both code_size and data_size is over 2 billion bytes.

.STEP

The .STEP command executes one or more statements in the current program start-
ing at the current position, stops, and returns control to the interactive mode. This
command is useful in debugging programs. If the optional argument n is present, it
gives the number of statements to execute, otherwise, a single statement is exe-
cuted. The syntax of the .STEP command is:

.STEP [n]

or

.S [n]

A-1

APPENDIX

A

The PV-WAVE HDF Interface
This appendix discusses:

• What is the PV-WAVE HDF interface?

• Where to find example programs and NCSA documentation in the PV-WAVE
distribution.

• Using PV-WAVE HDF functions.

• The PV-WAVE HDF Base functions.

NOTE The PV-WAVE HDF interface is designed for the experienced HDF,
NetCDF, and PV-WAVE user.

What is the PV-WAVE HDF Interface?
PV-WAVE provides an extensive interface to the NCSA (National Center for
Supercomputer Applications) HDF (Hierarchical Data Format) C library, which is
in the public domain. PV-WAVE’s interface to the HDF library is fully supported
by Visual Numerics; however, Visual Numerics is not responsible for questions or
problems specifically related to the HDF library. Please direct such problems or
questions directly to NSCA.

The PV-WAVE HDF interface is divided into two sets of functions: convenience
routines and base functions.

A-2 Appendix A: The PV-WAVE HDF Interface PV-WAVE Reference Volume 3

The convenience routines are a set of PV-WAVE routines developed for general sit-
uations where you need to access HDF functionality from PV-WAVE. The
convenience routines are described in this reference. For a list of these routines, see
Chapter 1, Functional Summary of Routines.

The extensive set of base functions provides direct access within PV-WAVE to the
HDF library, which is dynamically linked to PV-WAVE and invoked at runtime.
The calling sequence for each base function is listed in this appendix.

Example Programs Are Available
To help you get the most out of the PV-WAVE HDF base functions, a collection of
example programs is available in:

(UNIX) $VNI_DIR/hdf-4_00/test

(OpenVMS) VNI_DIR:[HDF-4_00.TEST]

(Windows) $VNI_DIR\hdf-4_00\test

To run these test programs, either add the test directory path to the PV-WAVE sys-
tem variable !Path, or simply start your PV-WAVE session directly from the test
directory.

In addition, the convenience routines themselves provide good examples of how
the base functions can be used in other applications. The convenience routines are
located in:

(UNIX) $VNI_DIR/hdf-4_00/lib

(OpenVMS) VNI_DIR:[HDF-4_00.LIB]

(Windows) $VNI_DIR\hdf-4_00\lib

Printing NCSA Documentation

An extensive collection of NCSA documentation on HDF and NetCDF is located
in the subdirectories of:

(UNIX) $VNI_DIR/hdf-4_00/doc

(OpenVMS) VNI_DIR:[HDF-4_00.DOC]

(Windows) $VNI_DIR\hdf-4_00\doc

These documents are stored as compressed PostScript files that you can print on
any PostScript laser printer. Simply uncompress the files before printing them.

The NCSA documents that are included with PV-WAVE are:

Using the PV-WAVE HDF Functions A-3

• HDF User’s Guide, Version 4.0r2, July 1996, University of Illinois at Urbana-
Champaign.

• HDF Reference Manual, Version 4.0r2, July 1996, University of Illinois at
Urbana-Champaign.

• NetCDF User’s Guide, Version 2.3, April 1993, University Corporation for
Atmospheric Research.

For more information on these documents, refer to the README files in:

(UNIX) $VNI_DIR/hdf-4_00/doc

(OpenVMS) VNI_DIR:[HDF-4_00.DOC]

(Windows) $VNI_DIR\hdf-4_00\doc

Other Sources of Information on HDF and NetCDF

NCSA documentation is directly available from:

NCSA Documentation Orders

152 Computing Applications Building

605 East Springfield Avenue

Champaign, IL 61820

(217) 244-0072

or from FTP site ftp.ncsa.uiuc.edu

NetCDF documentation is available from the FTP site unidata.ucar.edu in
the directory pub/netcdf.

Using the PV-WAVE HDF Functions

Initializing the HDF Module

Before you can use any of the PV-WAVE HDF base or convenience routines, you
must initialize the HDF module. To to this, type:

WAVE> @hdf_startup
% Compiled module: HDF_INIT.

PV-WAVE:HDF 4.00 Module Initialized

After the module is initialized, you can use any of the PV-WAVE HDF routines.

A-4 Appendix A: The PV-WAVE HDF Interface PV-WAVE Reference Volume 3

TIP Include a call to HDF_STARTUP in your PV-WAVE system startup file, or
your personal PV-WAVE startup file.

HDF_STARTUP Initializes Common Block Variables

HDF_STARTUP calls a function HDF_INIT which initializes the variables in the
hdf_common common block. These variables match the flags that are defined by
the header files to the HDF and NetCDF C libraries. For example, the NetCDF flag
NC_WRITE is set to the value 1 in the file when the PV-WAVE HDF module is
initialized.

These variables are used to define:

• Default palette and string sizes

• Flags for Raster 8 encoding schemes

• Flags for Raster 24 bit interlace schemes

• Flags for SDS number types

• Flags for HOPEN file opening status

• Tag values, as found in the header file

(UNIX) $VNI_DIR/hdf-4_00/src/hdf

(OpenVMS) VNI_DIR:[HDF-4_00.SRC.HDF]

(Windows) $VNI_DIR\hdf-4_00\hdf

The HDF Calling Interfaces manual refers to these common variables in HDF
calls. These variables are used frequently in many of the calls to PV-WAVE HDF
convenience routines and base routines.

NOTE hdf_common must be included in all PV-WAVE procedures and func-
tions that use PV-WAVE HDF routines.

Input Data Is Converted to Required Data Type

Input data to the PV-WAVE HDF base functions is usually converted to the
required data type. This alters the input parameters if they are not the correct data
type.

An error message

XXX must be declared in the calling procedure.

Using the PV-WAVE HDF Functions A-5

indicates that the data type and space required for the supplied variable is used
within, but not allocated by, the service HDF routine. By defining the PV-WAVE
variable with a dummy value of the proper data type, the PV-WAVE HDF wrapper
will automatically convert the fetched value to the desired data type.

Using the Usage and Help Keywords

If you know the name of the routine you want to call, but do not know the calling
sequence, use the Usage or Help keywords. For example, the following command
displays the parameters for the NCCREATE function:

tmp = NCCREATE(/Usage)
% NCCREATE: usage: status = NCCREATE (path, cmode, Help=help,
Usage=usage)

These keywords are not part of HDF or NetCDF, but are provided for convenience
to PV-WAVE HDF users.

Ensure Correct Data Types with SDS GET Routines

When using an SDS “GET” routine, be sure that the data types with which you
fetch the annotated data are the same as your main dataset. Otherwise, you will get
unexpected results.

Use FORTRAN Array Alignment

Arrays in PV-WAVE are aligned similar to FORTRAN (i.e., column-major order
or first subscript varying fastest), therefore, datasets and images should be aligned
as discussed in the HDF documentation for FORTRAN. For data read or written by
C, this will result in the data being transposed from the PV-WAVE representation.
For example, a 24-bit raster image array in PV-WAVE is defined as “3 X width X
height” for pixel interlacing, however, in C, the same image array would be defined
as “height X width X 3”.

Annotation Routines May Require Further Processing

Annotation routines which read or write descriptions (i.e., DFANADDFDS,
DFANGETDESC, HDFPUTANN, etc.) operate on byte arrays rather than strings
and may require further processing.

A-6 Appendix A: The PV-WAVE HDF Interface PV-WAVE Reference Volume 3

Slab Routines Replace Slice Routines

NCSA has replaced the slice routines for reading and writing hyperslabs of scien-
tific data with equivalent slab routines. The slab routines are supported in
PV-WAVE HDF; however, the slice routines are not.

Base Functions Assume Valid Input

The PV-WAVE HDF convenience routines are written to check input data for
errors before continuing execution. The PV-WAVE HDF base routines assume that
the input data is valid, and performs minimal tests on the input data. Because of
this, the possibility for failure is present. If you are using PV-WAVE HDF base rou-
tines and are experiencing core dumps, double check your input data for correct
size and data type.

PV-WAVE HDF Base Function Interface
The PV-WAVE HDF base functions let you access all of the functions described in
the NSCA HDF Reference Manual from within PV-WAVE.

These functions are located in the library:

(UNIX) $VNI_DIR/hdf-4_00/lib

(OpenVMS) VNI_DIR:[HDF-4_00.LIB]

(Windows) $VNI_DIR\hdf-4_00\lib

For detailed information on these routines, refer to the HDF Reference Manual.

24-bit Raster Image Set: The DF24 Interface

For complete descriptions of these functions, see the HDF Reference Manual.

status = DF24ADDIMAGE (filename, image, xdim, ydim, Help=help,
Usage=usage)

status = DF24GETDIMS (filename, pxdim, pydim, pil, Help=help, Usage=usage)

status = DF24GETIMAGE (filename, image, xdim, ydim, Help=help,
Usage=usage)

ref = DF24LASTREF (Help=help, Usage=usage)

nimages= DF24NIMAGES (filename, Help=help, Usage=usage)

PV-WAVE HDF Base Function Interface A-7

status = DF24PUTIMAGE (filename, image, xdim, ydim, Help=help,
Usage=usage)

status = DF24READREF (filename, ref, Help=help, Usage=usage)

status = DF24REQIL (il, Help=help, Usage=usage)

status = DF24RESTART (Help=help, Usage=usage)

status = DF24SETCOMPRESS (type, cinfo, Help=help, Usage=usage)

status = DF24SETDIMS (xdim, ydim, Help=help, Usage=usage)

status = DF24SETIL (il, Help=help, Usage=usage)

Annotations: The DFAN Interface

For complete descriptions of these functions, see the HDF Reference Manual.

status = DFANADDFDS (file_id, desc, desclen, Help=help, Usage=usage)

status = DFANADDFID (file_id, id, Help=help, Usage=usage)

status = DFANGETDESC (filename, tag, ref, desc, maxlen, Help=help,
Usage=usage)

desclen = DFANGETDESCLEN (filename, tag, ref, Help=help, Usage=usage)

desclen = DFANGETFDS (file_id, desc, maxlen, isfirst, Help=help,
Usage=usage)

fidlen = DFANGETFDSLEN (file_id, isfirst, Help=help, Usage=usage)

fidlen = DFANGETFID (file_id, id, maxlen, isfirst, Help=help, Usage=usage)

fidlen = DFANGETFIDLEN (file_id, isfirst, Help=help, Usage=usage)

status = DFANGETLABEL (filename, tag, ref, label, maxlen, Help=help,
Usage=usage)

lablen = DFANGETLABLEN (filename, tag, ref, Help=help, Usage=usage)

numrefs = DFANLABLIST (filename, tag, reflist, labellist, listsize, maxlen,
startpos, Help=help, Usage=usage)

ref = DFANLASTREF (Help=help, Usage=usage)

A-8 Appendix A: The PV-WAVE HDF Interface PV-WAVE Reference Volume 3

status = DFANPUTDESC (filename, tag, ref, desc, desclen, Help=help,
Usage=usage)

status = DFANPUTLABEL (filename, tag, ref, label, Help=help, Usage=usage)

Palettes: The DFP Interface

For complete descriptions of these functions, see the HDF Reference Manual.

status = DFPADDPAL (filename, palette, Help=help, Usage=usage)

status = DFPGETPAL (filename, palette, Help=help, Usage=usage)

ref = DFPLASTREF (Help=help, Usage=usage)

npals = DFPNPALS (filename, Help=help, Usage=usage)

status = DFPPUTPAL (filename, palette, overwrite, filemode, Help=help,
Usage=usage)

status = DFPREADREF (filename, ref, Help=help, Usage=usage)

status = DFPRESTART (Help=help, Usage=usage)

status = DFPWRITEREF (filename, ref, Help=help, Usage=usage)

8-bit Raster Image Sets: The DFR8 Interface

For complete descriptions of these functions, see the HDF Reference Manual.

status = DFR8ADDIMAGE (filename, image, xdim, ydim, compress, Help=help,
Usage=usage)

status = DFR8GETDIMS (filename, pxdim, pydim, pispal, Help=help,
Usage=usage)

status = DFR8GETIMAGE (filename, image, xdim, ydim, pal, Help=help,
Usage=usage)

ref = DFR8LASTREF (Help=help, Usage=usage)

nimages = DFR8NIMAGES (filename, Help=help, Usage=usage)

status = DFR8PUTIMAGE (filename, image, xdim, ydim, compress, Help=help,
Usage=usage)

status = DFR8READREF (filename, ref, Help=help, Usage=usage)

PV-WAVE HDF Base Function Interface A-9

status = DFR8RESTART (Help=help, Usage=usage)

status = DFR8SETCOMPRESS (type, cinfo, Help=help, Usage=usage)

status = DFR8SETPALETTE (pal, Help=help, Usage=usage)

status = DFR8WRITEREF (filename, ref, Help=help, Usage=usage)

Scientific Data Sets: Single File DFSD Interface

For complete descriptions of these functions, see the HDF Reference Manual.

status = DFSDADDDATA (filename, rank, dimsizes, data, Help=help,
Usage=usage)

status = DFSDCLEAR (Help=help, Usage=usage)

status = DFSDENDSLAB (Help=help, Usage=usage)

status = DFSDGETCAL (pcal, pcal_err, pioff, pioff_err, cal_nt, Help=help,
Usage=usage)

status = DFSDGETDATA (filename, rank, dimsizes, data, Help=help,
Usage=usage)

status = DFSDGETDATALEN (llabel, lunit, lformat, lcoordsys, Help=help,
Usage=usage)

status = DFSDGETDATASTRS (label, unit, format, coordsys, Help=help,
Usage=usage)

status = DFSDGETDIMLEN (dim, llabel, lunit, lformat, Help=help,
Usage=usage)

status = DFSDGETDIMS (filename, prank, sizes, maxrank, Help=help,
Usage=usage)

status = DFSDGETDIMSCALE (dim, maxsize, scale, Help=help, Usage=usage)

status = DFSDGETDIMSTRS (dim, label, unit, format, Help=help,
Usage=usage)

status = DFSDGETFILLVALUE (fill_value, Help=help, Usage=usage)

status = DFSDGETNT (pnumbertype, Help=help, Usage=usage)

status = DFSDGETRANGE (pmax, pmin, Help=help, Usage=usage)

A-10 Appendix A: The PV-WAVE HDF Interface PV-WAVE Reference Volume 3

ref = DFSDLASTREF (Help=help, Usage=usage)

ndatasets = DFSDNDATASETS (filename, Help=help, Usage=usage)

status = DFSDPRE32SDG (filename, ref, ispre32, Help=help, Usage=usage)

status = DFSDPUTDATA (filename, rank, dimsizes, data, Help=help,
Usage=usage)

status = DFSDREADREF (filename, ref, Help=help, Usage=usage)

status = DFSDREADSLAB (filename, start, slab_size, stride, buffer, buffer_size,
Help=help, Usage=usage)

status = DFSDRESTART (Help=help, Usage=usage)

status = DFSDSETCAL (cal, cal_err, ioff, ioff_err, cal_nt, Help=help,
Usage=usage)

status = DFSDSETDATASTRS (label, unit, format, coordsys, Help=help,
Usage=usage)

status = DFSDSETDIMS (rank, dimsizes, Help=help, Usage=usage)

status = DFSDSETDIMSCALE (dim, dimsize, scale, Help=help, Usage=usage)

status = DFSDSETDIMSTRS (dim, label, unit, format, Help=help,
Usage=usage)

status = DFSDSETFILLVALUE (fill_value, Help=help, Usage=usage)

status = DFSDSETLENGTHS (maxlen_label, maxlen_unit, maxlen_format,
maxlen_coordsys, Help=help, Usage=usage)

status = DFSDSETNT (numbertype, Help=help, Usage=usage)

status = DFSDSETRANGE (maxi, mini, Help=help, Usage=usage)

status = DFSDSTARTSLAB (filename, Help=help, Usage=usage)

status = DFSDWRITEREF (filename, ref, Help=help, Usage=usage)

status = DFSDWRITESLAB (start, stride, count, data, Help=help,
Usage=usage)

The H Interface

For complete descriptions of these functions, see the HDF Reference Manual.

PV-WAVE HDF Base Function Interface A-11

status = HCLOSE (file_id, Help=help, Usage=usage)

status = HGETFILEVERSION (file_id, majorv, minorv, release, string,
Help=help, Usage=usage)

status = HGETLIBVERSION (majorv, minorv, release, string, Help=help,
Usage=usage)

status = HISHDF (filename, Help=help, Usage=usage)

fileid = HOPEN (path, access, ndds, Help=help, Usage=usage)

status = HXSETCREATEDIR (dirname, Help=help, Usage=usage)

status = HXSETDIR (dirname, Help=help, Usage=usage)

Scientific Data Sets: The NetCDF Interface

For complete descriptions of these functions, see the HDF Reference Manual.

status = NCABORT (cdfid, Help=help, Usage=usage)

status = NCATTCOPY (incdf, invar, name, outcdf, outvar, Help=help,
Usage=usage)

status = NCATTDEL (cdfid, varid, name, Help=help, Usage=usage)

status = NCATTGET (cdfid, varid, name, value, Help=help, Usage=usage)

status = NCATTINQ (cdfid, varid, name, datatype, len, Help=help,
Usage=usage)

status = NCATTNAME (cdfid, varid, attnum, name, Help=help, Usage=usage)

status = NCATTPUT (cdfid, varid, name, datatype, len, value, Help=help,
Usage=usage)

status = NCATTRENAME (cdfid, varid, name, newname, Help=help,
Usage=usage)

status = NCCLOSE (cdfid, Help=help, Usage=usage)

status = NCCREATE (path, cmode, Help=help, Usage=usage)

status = NCDIMDEF (cdfid, name, length, Help=help, Usage=usage)

status = NCDIMID (cdfid, name, Help=help, Usage=usage)

A-12 Appendix A: The PV-WAVE HDF Interface PV-WAVE Reference Volume 3

status = NCDIMINQ (cdfid, dimid, name, length, Help=help, Usage=usage)

status = NCDIMRENAME (cdfid, dimid, name, Help=help, Usage=usage)

status = NCENDEF (cdfid, Help=help, Usage=usage)

status = NCINQUIRE (cdfid, ndims, nvars, natts, recdim, Help=help,
Usage=usage)

status = NCOPEN (path, mode, Help=help, Usage=usage)

status = NCREDEF (cdfid, Help=help, Usage=usage)

status = NCSETFILL (cdfid, fillmode, Help=help, Usage=usage)

status = NCSYNC (cdfid, Help=help, Usage=usage)

status = NCTYPELEN (datatype, Help=help, Usage=usage)

status = NCVARDEF (cdfid, name, datatype, ndims, dim, Help=help,
Usage=usage)

status = NCVARGET (cdfid, varid, start, count, value, Help=help, Usage=usage)

status = NCVARGET1 (cdfid, varid, coords, value, Help=help, Usage=usage)

status = NCVARGETG (cdfid, varid, start, count, stride, imap, values,
Help=help, Usage=usage)

status = NCVARGETS (cdfid, varid, start, count, stride, values, Help=help,
Usage=usage)

status = NCVARID (cdfid, name, Help=help, Usage=usage)

status = NCVARINQ (cdfid, varid, name, datatype, ndims, dim, natts, Help=help,
Usage=usage)

status = NCVARPUT (cdfid, varid, start, count, value, Help=help, Usage=usage)

status = NCVARPUT1 (cdfid, varid, coords, value, Help=help, Usage=usage)

status = NCVARPUTG (cdfid, varid, start, count, stride, imap, values,
Help=help, Usage=usage)

status = NCVARPUTS (cdfid, varid, start, count, stride, values, Help=help,
Usage=usage)

status = NCVARRENAME (cdfid, varid, name, Help=help, Usage=usage)

PV-WAVE HDF Base Function Interface A-13

Scientific Data Sets: The SD Interface

For complete descriptions of these functions, see the HDF Reference Manual.

size = DFKNTSIZE (data_type, Help=help, Usage=usage)

status = SDATTRINFO (id, index, name, nt, count, Help=help, Usage=usage)

status = SDCREATE (fid, name, nt, rank, dimsizes, Help=help, Usage=usage)

status = SDDIMINFO (id, name, l_size, nt, nattr, Help=help, Usage=usage)

status = SDEND (id, Help=help, Usage=usage)

status = SDENDACCESS (id, Help=help, Usage=usage)

status = SDFILEINFO (fid, datasets, attrs, Help=help, Usage=usage)

status = SDFINDATTR (id, attrname, Help=help, Usage=usage)

status = SDGETCAL (sdsid, cal, cale, ioff, ioffe, nt, Help=help, Usage=usage)

status = SDGETDATASTRS (sdsid, l, u, f, c, len, Help=help, Usage=usage)

status = SDGETDIMID (sdsid, number, Help=help, Usage=usage)

status = SDGETDIMSCALE (id, data, Help=help, Usage=usage)

status = SDGETDIMSTRS (id, l, u, f, len, Help=help, Usage=usage)

status = SDGETFILLVALUE (sdsid, val, Help=help, Usage=usage)

status = SDGETINFO (sdsid, name, rank, dimsizes, nt, nattr, Help=help,
Usage=usage)

status = SDGETRANGE (sdsid, pmax, pmin, Help=help, Usage=usage)

status = SDIDTOREF (id, Help=help, Usage=usage)

status = SDISCOORDVAR (id, Help=help, Usage=usage)

status = SDNAMETOINDEX (fid, name, Help=help, Usage=usage)

status = SDREADATTR (id, index, buf, Help=help, Usage=usage)

status = SDREADDATA (sdsid, start, stride, l_end, data, Help=help,
Usage=usage)

status = SDSELECT (fid, index, Help=help, Usage=usage)

A-14 Appendix A: The PV-WAVE HDF Interface PV-WAVE Reference Volume 3

status = SDSETATTR (id, name, nt, count, data, Help=help, Usage=usage)

status = SDSETCAL (sdsid, cal, cale, ioff, ioffe, nt, Help=help, Usage=usage)

status = SDSETDATASTRS (sdsid, l, u, f, c, Help=help, Usage=usage)

status = SDSETDIMNAME (id, name, Help=help, Usage=usage)

status = SDSETDIMSCALE (id, count, nt, data, Help=help, Usage=usage)

status = SDSETDIMSTRS (id, l, u, f, Help=help, Usage=usage)

status = SDSETEXTERNALFILE (id, filename, offset, Help=help, Usage=usage)

status = SDSETFILLVALUE (sdsid, val, Help=help, Usage=usage)

status = SDSETRANGE (sdsid, pmax, pmin, Help=help, Usage=usage)

status = SDSTART (name, HDFmode, Help=help, Usage=usage)

status = SDWRITEDATA (sdsid, start, stride, l_end, data, Help=help,
Usage=usage)

Vgroups: The V interface

For complete descriptions of these routines, see the HDF Reference Manual.

status = VADDTAGREF (vg, tag, ref, Help=help, Usage=usage)

status = VATTACH (f, vgid, accesstype, Help=help, Usage=usage)

VDETACH, vg, Help=help, Usage=usage

VEND, f, Help=help, Usage=usage

VGETCLASS, vkey, vgclass, Help=help, Usage=usage

status = VGETID (f, vgid, Help=help, Usage=usage)

VGETNAME, vkey, vgname, Help=help, Usage=usage

status = VGETNEXT (vg, id, Help=help, Usage=usage)

status = VGETTAGREF (vg, which, tag, ref, Help=help, Usage=usage)

status = VGETTAGREFS (vg, tagarray, refarray, n, Help=help, Usage=usage)

status = VINQTAGREF (vg, tag, ref, Help=help, Usage=usage)

status = VINQUIRE (vg, nentries, vgname, Help=help, Usage=usage)

PV-WAVE HDF Base Function Interface A-15

status = VINSERT (vgroup_id, v_id, Help=help, Usage=usage)

status = VISVG (vg, id, Help=help, Usage=usage)

status = VISVS (vg, id, Help=help, Usage=usage)

status = VLONE (f, idarray, asize, Help=help, Usage=usage)

status = VNTAGREFS (vg, Help=help, Usage=usage)

status = VSETCLASS(vkey, vgclass, Help=help, Usage=usage)

status = VSETNAME(vkey, vgname, Help=help, Usage=usage)

VSTART, f, Help=help, Usage=usage

Vdata: The VS Interface

For complete descriptions of these routines, see the HDF Reference Manual.

status = VSATTACH (f, vsid, accesstype, Help=help, Usage=usage)

VSDETACH, vs, Help=help, Usage=usage

status = VSELTS (vs, Help=help, Usage=usage)

status = VSFDEFINE (vs, field, localtype, order, Help=help, Usage=usage)

status = VSFEXIST (vs, fields, Help=help, Usage=usage)

status = VSFIND (f, vsname, Help=help, Usage=usage)

VSGETCLASS, vs, vsclass, Help=help, Usage=usage

status = VSGETFIELDS (vs, fields, Help=help, Usage=usage)

status = VSGETID (f, vsid, Help=help, Usage=usage)

status = VSGETINTERLACE (vs, Help=help, Usage=usage)

VSGETNAME, vs, vsname, Help=help, Usage=usage

status = VSINQUIRE (vs, nelt, interlace, fields, eltsize, vsname, Help=help,
Usage=usage)

status = VSLONE (f, idarray, asize, Help=help, Usage=usage)

status = VSREAD (vs, buf, nelt, interlace, Help=help, Usage=usage)

status = VSSEEK (vs, eltpos, Help=help, Usage=usage)

A-16 Appendix A: The PV-WAVE HDF Interface PV-WAVE Reference Volume 3

VSSETCLASS, vs, vsclass, Help=help, Usage=usage

status = VSSETFIELDS (vs, fields, Help=help, Usage=usage)

status = VSSETINTERLACE (vs, interlace, Help=help, Usage=usage)

VSSETNAME, vs, vsname, Help=help, Usage=usage

status = VSSIZEOF (vs, fields, Help=help, Usage=usage)

status = VSWRITE (vs, buf, nelt, interlace, Help=help, Usage=usage)

Vdata Fields: The VF Interface

For complete descriptions of these functions, see the HDF Reference Manual.

status = VFFIELDESIZE (vkey, index, Help=help, Usage=usage)

status = VFFIELDISIZE (vkey, index, Help=help, Usage=usage)

status = VFFIELDNAME (vkey, index, Help=help, Usage=usage)

status = VFFIELDORDER (vkey, index, Help=help, Usage=usage)

status = VFFIELDTYPE (vkey, index, Help=help, Usage=usage)

status = VFNFIELDS (vkey, Help=help, Usage=usage)

Vdata Query: The VSQ Interface

For complete descriptions of these functions, see the HDF Reference Manual.

status = VSQUERYCOUNT (vs, count, Help=help, Usage=usage)

status = VSQUERYFIELDS (vs, flds, Help=help, Usage=usage)

status = VSQUERYINTERLACE (vs, intr, Help=help, Usage=usage)

status = VSQUERYNAME (vs, name, Help=help, Usage=usage)

status = VSQUERYREF (vkey, Help=help, Usage=usage)

status = VSQUERYTAG (vkey, Help=help, Usage=usage)

status = VSQUERYVSIZE (vs, size, Help=help, Usage=usage)

PV-WAVE HDF Base Function Interface A-17

High Level Vdata/Vgroups: The VH interface

For complete descriptions of these functions, see the HDF Reference Manual.

status = VHMAKEGROUP (f, tagarray, refarray, n, vgname, vgclass, Help=help,
Usage=usage)

status = VHSTOREDATA (f, field, buf, n, datatype, vsname, vsclass, Help=help,
Usage=usage)

status = VHSTOREDATAM (f, field, buf, n, datatype, vsname, vsclass, order,
Help=help, Usage=usage)

A-18 Appendix A: The PV-WAVE HDF Interface PV-WAVE Reference Volume 3

B-1

APPENDIX

B

Output Devices and Window
Systems

This appendix discusses the following output devices and window systems that are
supported by PV-WAVE.
Supported Output Devices and Window Systems

Device Name See Page Description

NULL N/A No graphic output

CGM B-5 Computer Graphics Metafile generator

HP B-8 Hewlett-Packard Graphics Language (HPGL)
plotters

PCL B-14 Hewlett-Packard Printer Control Language (PCL)

PM B-17 Pixel Map output

PS B-19 PostScript devices

REGIS B-34 Regis graphics output devices

TEK B-36 Tektronix or compatible terminals

WIN32 B-39 Microsoft Windows WIN32 driver

WMF B-53 Windows Metafile

X B-58 X Window System

Z B-86 Z-buffer device

B-2 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Window System Features
PV-WAVE utilizes the native window system by creating and using one or more
largely independent windows, each of which can be used for the display of graphics
and/or images. One color table is shared among these windows. Up to 32 separate
windows can be active at any time. Windows are referenced using their index,
which is an integer value between 0 and 31.

“Dithering” or halftoning techniques are used to display images with multiple
shades of gray on monochrome displays — displays that can only display white or
black. This topic is discussed in the PV-WAVE User’s Guide.

Graphic and image output is always directed to the current window. When a win-
dow system is selected as the current graphics device, the index number of the
current window is found in the !D.Window system variable. This variable equals
–1 if no window is open or selected. The WSET procedure is used to change the
current window. WSHOW hides or displays a window. WDELETE deletes a
window.

The WINDOW procedure creates a new window with a given index. If a window
already exists with the same index, it is first deleted. The size, position, title, and
number of colors may also be specified. If you access the display before creating
the first window, PV-WAVE automatically creates a window with an index number
of 0 and with the default attributes.

How Is Backing Store Handled?

One of the features that distinguishes various window systems is how they handle
the issue of backing store. When part of a window that was previously not visible
is exposed, there are two basic approaches that a window system can take. Some
keep track of the current contents of all windows and automatically repair any dam-
age to their visible regions (retained windows). This saved information is known as
the backing store. Others simply report the damage to the program that created the
window and leave repairing the visible region to the program (non-retained win-
dows). There are convincing arguments for and against both approaches. It is
generally more convenient for PV-WAVE if the window system handles this prob-
lem automatically, but this often comes at a performance penalty. The actual cost
of retained windows varies between systems and depends partially on the
application.

The X Window and Microsoft Windows systems do not by default keep track of
window contents. Therefore, when a window on the display is obscured by another
window, the contents of its obscured portion is lost.

Window System Features B-3

UNIX and OpenVMS USERS Re-exposing the window causes the X server to
fill the missing data with the default background color for that window, and request
the application to redraw the missing data. Applications can request a backing store
for their windows, but servers are not required to provide it. Most current X servers
do not provide backing store, and even those that do cannot necessarily provide it
for all requesting windows. Therefore, requesting backing store from the server
might help, but there is no certainty.

Windows USERS Re-exposing the window causes the Microsoft Windows to
fill the missing data with the default background color for that window, and request
the application to redraw the missing data.

The window system drivers allow you to control backing store using the Retain
keyword to the DEVICE and WINDOW procedures. Using Retain with DEVICE
allows you to set the default action for all windows, while using it with WINDOW
lets you override the default for the new window. The possible values for this key-
word are summarized in the following table, and are described in greater detail
following the table.

0 — A value of 0 specifies that no backing store is kept. In this case, exposing a
previously obscured window leaves the missing portion of the window blank.
Although this behavior can be inconvenient, it usually has the highest performance
because there is no need to keep a copy of the window contents.

1 — (The Default) Setting the Retain keyword to 1 causes PV-WAVE to request
that a backing store be maintained. If the window system decides to accept the
request, it automatically repairs the missing portions when the window is exposed.
X Windows may or may not, depending on the capabilities of the server and the
resources available to it.

2 — Specifies that PV-WAVE should keep a backing store for the window itself,
and repair any window damage when the window system requests it. This option

Value Description

0 No backing store.

1 (The Default) The server or window system is requested to retain
the window.

2 PV-WAVE should provide a backing pixmap and handle the back-
ing store directly (X Window System only).

B-4 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

exists mainly for the X Window System. Under X, a pixmap (off-screen display
memory) the same size as the window is created at the same time the window is
created, and all graphics operations sent to the window are also sent to the pixmap.
When the server requests PV-WAVE to repair freshly exposed windows, this pix-
map is used to fill in the missing contents. Pixmaps are a precious resource in the
X server, so backing pixmaps should only be requested for windows with contents
that must absolutely be preserved.

If the type of backing store to use is not explicitly specified using the Retain key-
word, PV-WAVE assumes Option 1 and requests the window system to keep a
backing store.

UNIX USERS Some IBM AIX systems do not have backing store enabled in the
X server. For this reason, DEVICE, Retain=2 is set by the Standard Library
procedure SETDEMO_RS6000.pro. With backing store enabled, you can achieve
increased performance by setting DEVICE, Retain=1. Your system adminis-
trator can help you determine whether or not backing store is enabled on your
system. To enable backing store, kill your workstation’s X server and restart with:

xinit -- -bs -fn fixed

CGM Output
Computer Graphics Metafile, or CGM, is a standard for storing graphics output. To
direct graphics output from PV-WAVE to a CGM file, enter the command:

SET_PLOT, 'CGM'

This causes PV-WAVE to use the CGM driver for producing graphical output,
including line plots, contour plots, surface plots, and raster images. Once the CGM
driver is enabled via SET_PLOT, the DEVICE procedure is used to control its
actions, as described in Controlling CGM Output with DEVICE Keywords on page
B-5. The default settings for the CGM driver are listed in the following table:

Setting Default Value

Output file name wave.cgm

File status Closed

Metafile type Clear Text

Number of colors in color table 254

CGM Output B-5

The CGM driver supports clear text and binary CGM output. To see the driver’s
current settings, enter:

INFO, /Device

TIP If you want to send a CGM file to a hardcopy printer, and you want to modify
the color table, it is a good idea to modify the color table before sending CGM
graphics output to the file. For more information about modifying color tables, see
the PV-WAVE User’s Guide.

TIP Run the MSWORD_CGM_SETUP procedure before importing a CGM file
into Microsoft Word. For example:

SET_PLOT, ’CGM’

DEVICE, File=’myplot.cgm’

MSWORD_CGM_SETUP

PLOT, dist(20)

DEVICE, /Close

Controlling CGM Output with DEVICE Keywords

The following keywords to the DEVICE procedure provide control over the CGM
driver:

Clip — Specifies that all coordinates will be reduced to fit within the VDC coordi-
nate range. This keyword is primarily used with the Xoffset and Yoffset keywords
to protect the metafile from containing coordinates which are outside the range of
the VDC system.

Color table offset 1

Clip to VDC range ON

Horizontal offset 0 Coordinates

Vertical offset 0 Coordinates

Scale factor None

Standard Cell Array Standard

Setting Default Value

B-6 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Close — Closes the current CGM output file.

Colors — Specifies the number of colors in the color table. Be sure to specify the
number of colors in the color table before any graphics output is written to the file.

Ct_Offset — Specifies the location (or offset) of the first element in the color table.
As with the Colors keyword, this value should be specified before any graphics out-
put is written to the file.

Filename — Specifies the name of the CGM output file to be opened. If the key-
word is not specified, the default name wave.cgm is used.

Index_From_Zero — If nonzero, maps the PV-WAVE colortable indices directly
to the CGM color table indices. That is, the indices are mapped 0–>0, 1–>1, and so
on. By default, the PV-WAVE to CGM color indices are mapped 0–>1, 1–>2, and
so on. This keyword disables the Color and Ct_Offset keywords.

Metafile_Type — Specifies the metafile type. Options are clear_text and
binary. The default value is clear_text. The binary type is machine-spe-
cific and is more difficult to transfer.

Scale_Factor — Includes a floating-point value in the metafile for the Scale Mode
Metric command. This allows for CGM interpreters to scale the graphics output
appropriately for “exact sizing”. The metric scale-factor represents the distance (in
millimeters) in the displayed picture — this corresponds to one VDC unit.

Std_Cell_Array — Specifies that images created with the binary output
(CELL_ARRAY commands) are compliant with the CGM standard.
Std_Cell_Array is enabled by default. Disabling this keyword may result in some
non-standard cell array commands for odd-sized images. The non-standard cell
array option is provided for downward compatibility.

Xoffset — Specifies the number of horizontal coordinate units to offset the graph-
ics output. Xoffset is specified by a positive normalized coordinate in the range
{0.0...1.0}.

Yoffset — Specifies the number of vertical coordinate units to offset the graphics
output. Yoffset is specified by a positive normalized coordinate in the range
{0.0...1.0}.

Using the CGM Driver

The CGM output file is automatically opened when the CGM driver is selected and
PV-WAVE commands are issued that result in graphics output; there is no explicit
OPEN command. If more than one CGM file is to be created, use the following
command sequence:

CGM Output B-7

SET_PLOT, 'CGM'

; Select the CGM driver for graphics output.

DEVICE, Filename='filename1'

; Open the first file.
...

; Graphics output commands here.

DEVICE, /Close

; Close the first file.

DEVICE, Filename='filename2'

; Open another file.
...

; Graphics output commands here.

DEVICE, /Close

; Close the second file, etc.

Note also that color table changes should be made every time a new CGM file is
opened. In the absence of changes, the new CGM file contains the default color
table, rather than the current color table.

Using Color with CGM Output

To create and load a color table with four elements, black, red, green, and blue:

TVLCT, [0,255,0,0], [0,0,255,0], [0,0,0,255]

Drawing text or graphics with a color index of 1 results in black, 2 in red, 3 in
green, and 4 in blue.

Changing the Image Background Color

Images that are displayed with a black background on a monitor frequently look
better in hardcopy form if the background is changed to white. This is easily
accomplished with CGM output by issuing the statement, where A is the image
variable:

A(WHERE(A EQ 0B)) = 255B

Changing the CGM Background Color

To set the background color for a CGM metafile, use the ERASE command with a
color index. The index is used to define the background color. For example:

ERASE, 150

B-8 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Binary CGM Output for VAX/OpenVMS Machines

Binary CGM output is written to a fixed-length file with a record length of 512
bytes. To display the CGM metafile with Visual Numerics’ VAX/OpenVMS
Extended Metafile System, provide the CGM metafile filename in quotes followed
by format 2, record 512.

For example,

CGM> set metafile "cgmfile" format 2 record 512

CGM> interpret

HPGL Output
HPGL (Hewlett-Packard Graphics Language) is a plotter control language used to
produce graphics on a wide family of pen plotters.

To use HPGL as the current graphics device, issue the command:

SET_PLOT, 'HP'

This causes PV-WAVE to use HPGL for producing graphical output. Once the
HPGL driver is enabled via SET_PLOT, the DEVICE procedure is used to control
its actions, as described in Controlling HPGL Output with DEVICE Keywords on
page B-9. The default settings for the HPGL driver are given in the following table:

Setting Default Value

Output file name wave.hp

Orientation portrait

Erase no action

Polygon fill software

Turn plotter logically on/off no

Specify xon/xoff flow control yes

Horizontal offset .3175 cm (.125 in.)

Vertical offset 11.43 cm (4.5 in.)

Width 17.78 cm (7 in.)

Height 12.7 cm (5 in.)

HPGL Output B-9

Use the statement:

INFO, /Device

to view the current HPGL driver settings.

Controlling HPGL Output with DEVICE Keywords

The following keywords to the DEVICE procedure provide control over the HPGL
driver:

Close_File — PV-WAVE creates, opens and writes a file containing the generated
graphics output. The Close_File keyword outputs any buffered commands and
closes the file.

CAUTION Under UNIX, if you close the output file with the Close_File DEVICE
keyword, and then execute a command (such as PLOT) that creates more output,
PV-WAVE reopens the same file, erasing the previous contents. To avoid losing the
contents of an output file, use the Filename keyword to specify a different filename,
or use SET_PLOT to switch to a different graphics driver, or be sure to print the
closed output file before creating more output.

NOTE See the discussion of printing output files in the PV-WAVE User’s Guide
for more information on this topic.

Eject — In order to perform an erase operation on a plotter, it is necessary to
remove the current sheet of paper and load a fresh sheet. The ability of various plot-
ters to do this varies, so the Eject keyword allows you to specify what should be
done. The following table gives the possible values:

Many HPGL plotters lack a sheet feeder, and require you to load the next page
manually. Therefore, the default action is for PV-WAVE to not issue any page eject

Value Meaning

0 (Default) Do nothing. Note that this is likely to cause one page to plot
over the previous one, so you should limit yourself to one page of out-
put per file.

1 Use the sheet feeder to load the next page.

2 Put the plotter off-line at the beginning of each page, except the first.

B-10 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

instructions. In this case, you must restrict yourself to generating only a single plot
at a time.

If your plotter has a sheet feeder, you need to issue the command:

DEVICE, /Eject

to tell PV-WAVE that it should use the sheet feeder instead of placing the plotter
off-line. If your plotter does not have a sheet feeder, but it does understand the
HPGL NR command, use the command:

DEVICE, Eject=2

to place the plotter off-line at the start of every plot except the first one. This causes
the plotter to wait between plots for you to replace the paper. When you put the
plotter back on-line, the graphics commands for the new page are executed by the
plotter. Consult the programming manual for your plotter to determine if this
instruction is provided.

Filename — By default all generated output is sent to a file named wave.hp.
The Filename keyword can be used to change this default. If you specify a file-
name, the following occurs:

• If the file is already open (as happens if plotting commands have been directed
to the file since the call to SET_PLOT), then the file is completed and closed
as if Close_File had been specified.

• The specified file is opened for subsequent graphics output.

Inches — By default, the Xoffset, Xsize, Yoffset, and Ysize keywords are specified
in centimeters. However, if Inches is present and nonzero, these keywords are taken
to be in inches instead.

Landscape — PV-WAVE normally generates plots with portrait orientation (the x-
axis is along the short dimension of the page). If Landscape is present, landscape
orientation (the x-axis is along the long dimension of the page) is used instead.

Output — Specifies a scalar string that is sent directly to the graphics output file
without any processing, allowing you to send arbitrary commands to the file. Since
PV-WAVE does not examine the string, it is your responsibility to ensure that the
string is correct for the target device.

Polyfill — Some plotters (e.g., HP7550A) can perform polygon filling in hardware,
while others (e.g., HP7475) cannot. PV-WAVE therefore assumes that the plotter
cannot, and generates all polygon operations in software using line drawing. Spec-
ifying a nonzero value for the Polyfill keyword causes PV-WAVE to use the
hardware polygon filling. Setting it to zero reverts to software filling.

HPGL Output B-11

Different implementations of HPGL plotters may have different limits for the num-
ber of vertices that can be specified for a polygon region before the plotter runs out
of internal memory. Since this limit can vary, the HPGL driver cannot check for
calls to Polyfill that specify too many points. Therefore, it is possible for you to pro-
duce HPGL output that causes an error when sent to the plotter. To avoid this
situation, minimize the number of points used. On the HP7550A, the limit is about
127 points. If you do generate output that exceeds the limit imposed by your plot-
ter, you have to break that polygon filling operation into multiple smaller
operations.

Plotter_On_Off — There are some configurations in which an HPGL plotter is
connected between the computer and a terminal. In this mode (known as eavesdrop
mode), the plotter ignores everything it is sent and passes it through to the terminal
— the plotter is logically off. This state continues until an escape sequence is sent
that turns the plotter logically on. At this point the plotter interprets and executes
all input as HPGL commands. Another escape sequence is sent at the end of the
HPGL commands to return the plotter to the logically off state.

Most configurations do not use eavesdrop mode, and the plotter is always logically
on. However, if you are using this style of connection, you must use
Plotter_On_Off to instruct PV-WAVE to generate the necessary on/off commands.
If present and nonzero, Plotter_On_Off causes each output page to be bracketed by
device control commands that turn the plotter logically on and off. Specifying a
value of zero stops the issuing of such commands. You should only use this key-
word before any output has been generated.

Portrait — If Portrait is present, PV-WAVE generates plots using portrait orienta-
tion, the default.

Xoffset — Specifies the x position on the page of the lower-left corner of output.
Xoffset is specified in centimeters unless Inches is specified. (In some cases, offset
is taken from the origin. See the Note at the end of this section for details.)

Xon_Xoff — If present and nonzero, Xon_Xoff causes each output page to start
with device control commands that instruct the plotter to obey xon/xoff (^S/^Q)
style flow control. Specifying a value of zero stops the issuing of such commands.
You should only use this keyword before any output has been generated. Such
handshaking is the default. To turn it off, use the command:

DEVICE, Xon_Xoff=0

Often, it is not necessary to tell the plotter to obey flow control because the printing
facilities on the system handle such details for you, but it is usually harmless.

Xsize — Specifies the width of output PV-WAVE generates. Xsize is specified in
centimeters unless Inches is specified.

B-12 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Yoffset — Specifies the y position on the page of the lower-left corner of output
generated by PV-WAVE. Yoffset is specified in centimeters unless Inches is speci-
fied. (In some cases, offset is taken from the origin. See the Note following the
keyword descriptions for details.)

Ysize — Specifies the height of output generated by PV-WAVE. Ysize is specified
in centimeters unless Inches is specified.

If you are plotting to an HP plotter in the series 757X, 758X, and 759X, you will
need to specify the Xoffset and Yoffset from the origin instead of the lower-left cor-
ner of output. Because the default values for Xoffset and Yoffset are assume a lower-
left corner origin, you will have to set these keywords to appropriate values when-
ever plotting to one of the above listed plotters. For example, to center a plot, use
the following equations to find the offsets:

Xoffset = -(Xsize/2)

Yoffset = -(Ysize/2)

where Xsize and Ysize are the width and height, respectively, of the plot to be
generated.

NOTE If you have trouble with plots not completing and you have a plotter that
allows you to set switches to enable pen buffering, make sure that this switch is set.
If it is not, turn the plotter off, set the switch, and send your plot to the plotter again.

Supported Features of HPGL

PV-WAVE is able to produce a wide variety of graphical output using HPGL.

Here is a list of what is supported:

• All types of vector graphics can be generated, including line plots, contours,
surfaces, etc.

• HPGL plotters can draw lines in different colors selected from the pen carou-
sel. It should be noted that color tables are not used with HPGL. Instead, each
color index refers directly to one of the pens in the carousel.

• Some HPGL plotters can do polygon filling in hardware. Others can rely on the
software polygon filling provided by PV-WAVE.

• It is possible to generate graphics using the hardware-generated text charac-
ters, although such characters do not give much improvement over the standard
software fonts. To use hardware characters, set the !P.Font system variable to
zero, or set the Font keyword to the plotting routines to zero. For more infor-
mation on fonts, see the PV-WAVE User’s Guide.

HPGL Output B-13

• Here is a list of what is not supported:

• Since HPGL is designed to drive pen plotters, it does not support the output of
raster images. Therefore the TV and TVSCL procedures do not work with
HPGL.

• Since pen plotters are not interactive devices, they cannot support such opera-
tions as cursors and windows.

Specifying Linestyles in HPGL Output

The Linestyle graphics keyword allows you to specify any of 6 linestyles. This key-
word is documented in Chapter 3, Graphics and Plotting Keywords.

HPGL is not able to support all of the standard PV-WAVE linestyles. The follow-
ing table summarizes the differences between the PV-WAVE linestyles and those
supported by HPGL.

TIP If your HPGL plotter is connected to an HP-IB interface, you must run
PV-WAVE’s HPGL output through a filter before you can plot it. The following
UNIX command accomplishes this task:

tr -d ’/012’ <wave.hp >newwave.hp

HPGL Supported Linestyles

Index Normal Line Style HPGL Style

0 Solid same

1 Dotted same

2 Dashed same

3 Dash Dot The relative size of the dash and
dot are different.

4 Dash Dot Dot Dot Dash Dot Dot

5 Long Dashes same

B-14 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

PCL Output
PCL (Printer Control Language) is used by Hewlett-Packard laser and ink jet print-
ers to produce graphics output. This driver does not support the use of color and
does not support the use of hardware fonts.

NOTE When printing from VDA Tools to a PCL device, all output that appears in
black in the VDA Tool will appear in white on the printed page (i.e., it will not be
visible).

To direct graphics output to a PCL file, issue the command:

SET_PLOT, 'PCL'

This causes PV-WAVE to use the PCL driver for producing graphical output. Once
the PCL driver is enabled via SET_PLOT, the DEVICE procedure is used to con-
trol its actions, as described in Controlling PCL Output with DEVICE Keywords on
page B-15. The default settings for the PCL driver are given in the following table:

By default, PCL writes black on white paper. The default color index when PCL is
selected is 0. If the color index is set to 255 when PCL is selected, the result is white
writing on white, which is invisible on white paper. Color tables are not used with
PCL.

Use INFO, /Device to view the driver’s current settings.

Setting Default Value

Output file name wave.pcl

Mode Portrait

Optimization Level 0 (None)

Dither Method Floyd-Steinberg

Resolution 300 dpi

Horizontal Offset 1.27 cm (1/2 in.)

Vertical Offset 2.54 cm (1 in.)

Width 17.78 cm (7 in.)

Height 12.7 cm (5 in.)

PCL Output B-15

UNIX USERS When you print files to a PCL device from a UNIX system, you
may need to specify the -v option in the print command. This option indicates that
a raster image is being transmitted. For example:

lpr -Plj250_q -v wave.pcl

OpenVMS USERS Use the PASSALL parameter. For example:

PRINT /QUEUE=LJ250_Q /PASSALL WAVE.PCL

Controlling PCL Output with DEVICE Keywords

The following keywords to the DEVICE procedure provide control over the PCL
driver:

Close_File — PV-WAVE creates, opens and writes a file containing the generated
graphics output. The Close_File keyword outputs any buffered commands and
closes the file.

CAUTION Under UNIX, if you close the output file with the Close_File DEVICE
keyword, and then execute a command (such as PLOT) that creates more output,
PV-WAVE reopens the same file, erasing the previous contents. To avoid losing the
contents of an output file, use the Filename keyword to specify a different filename,
or use SET_PLOT to switch to a different graphics driver, or be sure to print the
closed output file before creating more output.

NOTE For more information on this topic, see the discussion of printing output
files in the PV-WAVE User’s Guide.

Filename — By default all generated output is sent to a file named wave.pcl.
The Filename keyword can be used to change this default. If you specify a file-
name, the following occurs:

• If the file is already open (as happens if graphics have been directed to the file
since the call to SET_PLOT), then the file is completed and closed as if
Close_File had been specified.

• The specified file is opened for subsequent graphics output.

Floyd — If present and nonzero, selects the Floyd-Steinberg method of dithering.
For information on this dithering method, see the PV-WAVE User’s Guide.

B-16 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Inches — By default, the Xoffset, Xsize, Yoffset, and Ysize keywords are specified
in centimeters. However, if Inches is present and nonzero, they are taken to be in
inches instead.

Landscape — PV-WAVE normally generates plots with portrait orientation (the x-
axis is along the short dimension of the page). If Landscape is present, landscape
orientation (the x-axis is along the long dimension of the page) is used instead.

Optimize — It is desirable, though not always possible, to compress the size of the
output file. Such optimization reduces the size of the output file, and improves I/O
speed to the printer. There are three levels of optimization:

• 0 — No optimization is performed. This is the default because it will work with
any PCL device. However, users of devices which can support optimization
should use one of the other optimization levels.

• 1 — Optimization is performed using PCL optimization primitives. This gives
the best output compression and printing speed. Unfortunately, not all PCL
devices support it. On those that can’t, the result will be garbage printed on the
page.

The required sequences are: <ESC>*b0M (Select full graphics mode),
<ESC>*b1M (Select compacted graphics mode 1), and <ESC>*b2M
(Select compacted graphics mode 2). To determine if your printer supports
the required escape sequences, consult the programmers manual for the
device.

The HP LaserJet II does not support this optimization level. The DeskJet
PLUS does.

• 2 — PV-WAVE attempts to optimize the output by explicitly moving the left
margin and then outputting non-blank sections of the page. This is primarily
intended for use with the LaserJet II, which does not support optimization level
1.

NOTE Level 2 optimization can be very slow on some devices (such as the Desk-
Jet PLUS). On such devices, it is best to avoid this optimization level.

Ordered — Selects the Ordered Dither method of dithering when displaying
images on a monochrome display. For information on this dithering method, see
the PV-WAVE User’s Guide.

Pixels — By default, the Xoffset, Xsize, Yoffset, and Ysize keywords are specified
in centimeters. However, if Pixels is present and nonzero, they are taken to be in

Pixel Map Output B-17

pixels instead. Note that the selected resolution will determine how large a region
is actually written on the page.

Portrait — If Portrait is present, PV-WAVE will generate plots using portrait ori-
entation, the default.

Resolution — The resolution at which the PCL printer will print. PCL supports
resolutions of 75, 100, 150, and 300 dots per inch. The default is 300 dpi. Lower
resolution gives smaller output files, while higher resolution gives superior quality.

Threshold — Specifies use of the threshold dithering algorithm. For information
on this dithering method, see the PV-WAVE User’s Guide.

Xoffset — Specifies the x position on the page of the lower-left corner of output
generated by PV-WAVE. Xoffset is specified in centimeters unless Inches or Pixels
is specified.

Xsize — Specifies the width of the PV-WAVE output. Xsize is specified in centi-
meters unless Inches or Pixels is specified.

Yoffset — Specifies the y position on the page of the lower-left corner of output
generated by PV-WAVE. Yoffset is specified in centimeters unless Inches or Pixels
is specified.

Ysize— Specifies the height of the PV-WAVE output. Ysize is specified in centime-
ters unless Inches or Pixels is specified.

PCL Image Background Color

Images that are displayed with a black background on a monitor frequently look
better if the background is changed to white when displayed with PCL. This is eas-
ily done with the following statement, where A is the image variable:

A(WHERE(A EQ 0B)) = 255B

Pixel Map Output
The Pixel Map buffer allows you to create PV-WAVE graphical output in memory.
This output buffer is useful for creating images using batch mode methods or back-
ground processes.

To direct graphics output to the PM buffer, enter the command:

SET_PLOT, ’PM’

B-18 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

This causes PV-WAVE to use the PM buffer driver for producing graphical output.
Once the PM buffer driver is enabled via SET_PLOT, the DEVICE procedure is
used to control its actions, as described in Controlling PM buffer Output with
DEVICE Keywords on page B-18.

Use INFO, /Device to view the driver’s current settings.

Controlling PM buffer Output with DEVICE Keywords

The following keywords to the DEVICE procedure provide control of the PM
buffer driver:

Close — Deallocates the memory used by the buffers. The PM buffer device is
reinitialized if subsequent graphics operations are directed to the device.

Get_Graphics_Function — See the description of the Get_Graphics_Function
keyword in X Window System on page B-58.

Get_Write_Mask — See the description of the Get_Write_Mask keyword in X
Window System on page B-58.

Set_Character_Size — A two-element vector that changes the standard width and
height of the vector-drawn fonts. The first element in the vector contains the new
character width, and the second element contains the height. By default, characters
are approximately 8-pixels wide, with 12 pixels between lines.

Set_Colors — Sets the number of pixel values, !D.N_Colors. This value is used by
a number of routines to determine the scaling of pixel data and the default drawing
index. Allowable values range from 2 to 256, and the default value is 256. Use this
parameter to make the PM buffer device compatible with devices with fewer than
256 color indices. The number of colors can be changed at any time without affect-
ing any accumulated graphics present in the buffer (it does not delete the current
buffer).

Set_Graphics_Function — See the description of the Set_Graphics_Function
keyword in X Window System on page B-58.

The PM buffer allows you to use all graphics functions supported by the X driver.

Set_Resolution — Two-element vector that sets the width and height of the buff-
ers. The default size is 640-by-512. If this size is not the same as the existing
buffers, the current buffers are destroyed and the device is reinitialized.

Set_Write_Mask — See the description of the Set_Write_Mask keyword in X Win-
dow System on page B-58.

PostScript Output B-19

Example 1

SET_PLOT,’PM’

; Switch output to the PM buffer.

DEVICE, Set_Resolution = [256,256], $

Set_Colors=128

; Make a 256x256 buffer with 128 colors.

LOADCT, 15

; Load a color table.

SHADE_SURF, data

; Make a plot.

TVLCT, r, g, b, /Get

; Get the color table RGB values.

cmap =TRANSPOSE([[r],[g],[b]])

; Put RGB values into a colormap array.

imgarr = TVRD()

; Read the image from the PM buffer.

stat = IMAGE_WRITE(’output.gif’, $

IMAGE_CREATE(imgarr, Colormap=cmap))

; Write the image and colormap to a GIF file.

DEVICE, /Close

; De-allocate memory used by the device.

PostScript Output

NOTE The default PostScript fonts changed with PV-WAVE 6.21. The previous
default PostScript font was 12 point Helvetica. The new default PostScript font is
14 point Times Roman. You can change the default font by editing the file
fontmap_ps, which is discussed in the chapter Using Fonts in the PV-WAVE
User’s Guide. To see which

PostScript is a programming language designed to convey a description of virtually
any desired page containing text and graphics. It is widely available on laser print-
ers and typesetters.

To direct graphics output to a PostScript file, enter the command:

SET_PLOT, 'PS'

B-20 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

This causes PV-WAVE to use the PostScript driver for producing graphical output.
Once the PostScript driver is enabled via SET_PLOT, the DEVICE procedure con-
trols its actions, as described in Controlling PostScript Output with DEVICE
Keywords on page B-21. The default settings for the PostScript driver are given in
the following table.

NOTE Unlike monitors where white is the most visible color, PostScript writes
black on white paper. Setting the output color index to 0, the default when Post-
Script output is selected, writes black. A color index of 255 writes white which is
invisible on white paper. Color tables are not used with PostScript unless the color
mode has been enabled using the DEVICE procedure. See below for information
on using PV-WAVE with color PostScript.

NOTE All PostScript printers impose a limit on the number of vertices a polygon
may contain. This limit (750 vertices for most printers) is checked, and an error
message is printed if it is exceeded.

TIP Use INFO, /Device to view the driver’s current settings.

Postscript Driver Default Settings

Setting Default Value

Output file name wave.ps

Mode portrait, non-encapsulated, no color

Paper letter

Horizontal offset 1.905 cm (3/4 in.)

Vertical offset 12.7 cm (5 in.)

Width 17.78 cm (7 in.)

Height 12.7 cm (5 in.)

Scale factor 1.0

Font size 14 pt.

Font Times Roman

bits / image pixel 4

PostScript Output B-21

NOTE PostScript hardware fonts can be rotated and transformed by general 3D
transforms in PV-WAVE.

Additional Text Formatting Commands

The following text formatting commands are new and can be used with the Post-
Script, WIN32, WMF, and X drivers:

Refer to the PV-WAVE User’s Guide for a comprehensive list of text formatting
commands.

Controlling PostScript Output with DEVICE Keywords

The following keywords to the DEVICE procedure provide control over the Post-
Script driver:

PostScript fonts are selected using DEVICE keywords. For example:

DEVICE, /Helvetica, /Bold

See Using PostScript Fonts on page B-26 for a complete list of these keywords.

Bits_Per_Pixel — PV-WAVE is capable of producing PostScript images with 1, 2,
4, or 8 bits per pixel. Using more bits per pixel gives higher resolution at the cost
of generating larger files. Bits_Per_Pixel is used to specify the number of bits to
use. The default number of bits is four.

The Apple Laserwriter is capable of only 32 different shades of gray (which can be
represented by 5 bits). Thus, specifying 8 bits per pixel does not give 256 levels of
gray as might be expected, only 32, at a cost of sending twice the number of bits to

Formatting
Command

Description

!FB Switch to the bold face of the current font.

!FI Switch to the italic face of the current font.

!FU Underline the current font.

!FN Switch to the normal form of the current font.

!Pxx Switch to point size xx of the current font, where xx is a
two digit integer (01-99).

B-22 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

the printer. Often, 4 bits (16 levels of gray) will give acceptable results with a large
savings in file size.

Close_File — PV-WAVE creates, opens and writes a file containing the generated
graphics output. The Close_File keyword outputs any buffered commands and
closes the file.

CAUTION Under UNIX, if you close the output file with the Close_File DEVICE
keyword, and then execute a command (such as PLOT) that creates more output,
PV-WAVE reopens the same file, erasing the previous contents. To avoid losing the
contents of an output file, use the Filename keyword to specify a different filename,
or use SET_PLOT to switch to a different graphics driver, or be sure to print the
closed output file before creating more output.

Color — Enables color PostScript output if present and nonzero. For details on
using color PostScript devices see Using Color PostScript Devices on page B-29.

Encapsulated — Specifies that the PostScript produced by PV-WAVE is to be
included in another PostScript document, such as one produced by TEX, LATEX,
FrameMaker, Microsoft Word, or Ventura Publisher.

By default PV-WAVE assumes that its PostScript-generated output will be sent
directly to a printer. It therefore includes PostScript commands to center the plot
on the page and to eject the page from the printer. These commands are undesirable
if the output is going to be inserted into the middle of another PostScript document.
If Encapsulated is present and nonzero, PV-WAVE does not generate these
commands.

PV-WAVE follows the standard PostScript convention for encapsulated files. It
assumes the standard PostScript scaling is in effect (72 points per inch). In addi-
tion, it declares the size, or bounding box, of the plotting region at the top of the
output file. This size is determined when the output file is opened (when the first
graphics command is given) by multiplying the size of the plotting region (as spec-
ified with the Xsize and Ysize keywords) by the current scale factor (as specified by
the Scale_Factor keyword). Changing the size of the plotting region or scale factor
once any graphics have been output will not be reflected in the declared bounding
box, and will confuse programs that attempt to import the resulting graphics.
Therefore, when generating encapsulated PostScript do not change the plot region
size of scaling factor after issuing graphics commands. If you want to change these
parameters, use the Filename keyword to start a new file.

To explicitly disable the encapsulated PostScript option, use DEVICE,
encaps=0.

PostScript Output B-23

NOTE You cannot reposition encapsulated output (including EPSI output) via
Xoffset or Yoffset keywords. This allows full positioning control for the including
product, such as MS Word.

Epsi — Produces an output file in encapsulated PostScript interchange (EPSI) for-
mat. When the Epsi keyword is present and nonzero, the Encapsulated keyword is
automatically assumed. For detailed information on the Encapsulated keyword,
see the description given previously in this section.

Like normal encapsulated PostScript files, EPSI files can be imported into many
desktop publishing and word processing systems; however, EPSI format provides
a previewing capability that allows an approximation of the printed PostScript out-
put to be displayed on the screen. Previewed EPSI graphics are displayed in
monochrome only.

TIP EPSI images sometimes appear differently when printed than they do in win-
dows on the screen. This occurs because the driver’s EPSI bitmap size is fixed no
matter what the size of the original PV-WAVE image, and the PV-WAVE image is
scaled into this bitmap. In addition, printed PostScript files can take advantage of
scalable pixels, while pixels on the screen are static. Try experimenting with the
other DEVICE keywords when you specify /Epsi to see which combination gives
the best results with your particular size image. The driver’s EPSI bitmap size (888-
by-635 pixels) works well in many cases.

NOTE You can print EPSI files directly, but only when the file is generated in por-
trait mode (see the description of the Portrait keyword below).

Filename — By default all generated output is sent to a file named wave.ps. The
Filename keyword can be used to change this default. If you specify a filename, one
or both of the following actions occur:

• If the file is already open (as happens if plotting commands have been directed
to the file since the call to SET_PLOT), then the file is completed and closed
as if Close_File had been specified.

• The specified file is opened for subsequent graphics output.

Font_Size — Specifies the default height used for displayed text. Font_Size is
given in points (a common unit of measure used in typesetting). The default size is
12 point text.

B-24 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Get_Fontmap — Returns a list of the current font map settings. If /Get_Fontmap
is specified, the information is printed to the screen. If a variable name is specified
(e.g., Get_Fontmap=varname), a string array is returned.

The information returned by Get_Fontmap is in the same form as the strings spec-
ified with Set_Fontmap. The only exception to this pattern is that the first string
returned in a string array is labeled as font 0 and is the current default font.

Inches — By default, the Xoffset, Xsize, Yoffset, and Ysize keywords are specified
in centimeters. However, if Inches is present and nonzero, they are taken to be in
inches instead.

Landscape — PV-WAVE normally generates plots with portrait orientation (with
the x-axis along the short dimension of the page). If Landscape is present, land-
scape orientation (with the x-axis is along the long dimension of the page) is used
instead.

TIP In both portrait and landscape mode, the x offset is measured as a displace-
ment along the page’s short dimension, and y offset is measured as a displacement
along the page’s long dimension. This may cause you some confusion when you
are trying to orient graphics on a landscape page. The following figure demon-
strates the correct way to specify offset for PostScript’s landscape mode.

Output — Specifies a scalar string that is sent directly to the graphics output file
without any processing, allowing you to send arbitrary commands to the file. Since
PV-WAVE does not examine the string, it is your responsibility to ensure that the
string will be recognized by the target device.

o

o

A B C

Xoffset = 1

Yoffset = 1

oo

Landscape OrientationXoffset = 1

Yoffset = 10

PostScript Output B-25

Papername — Specifies the size of paper to be used for printing. If you set the key-
word value to ‘Letter’, then standard 8.5x11-inch paper is used; ‘tabloid’ is 11x17-
inch paper (Default: ‘Letter’)

NOTE For 11x17 output, you must be using a PostScript Level 2-compliant
device.

TIP The PostScript driver does not automatically scale up for 11x17 output. You
may want to adjust the Xsize, Ysize, Xoffset, Yoffset keywords accordingly.

Path_Points — Lets you change the maximum number of points in any PostScript
path. The PostScript Language Reference Manual defines this limit as “Maximum
number of points specified in all active path descriptions, including the current
path, clip path, and paths saved by save and gsave”. The default value is 750
because that is the maximum that some printers can handle. The PostScript Lan-
guage Reference Manual states that 1500 is a typical limit for Level 1
implementations. The maximum for any particular printer can depend on the Post-
Script implementation being used, the amount of memory in the printer itself and
other software being used to access the printer. If you set Path_Points to a number
larger than the default and your printer reports a PostScript memory error, then
reduce the Path_Points number.

Portrait — If Portrait is present, PV-WAVE generates plots using portrait orienta-
tion (the default).

Scale_Factor — Specifies a scale factor applied to the entire plot. Its default value
is 1.0, allowing output to appear at its normal size. Scale_Factor magnifies or
shrinks the resulting output.

Set_Fontmap — Associates specific font characteristics with a particular hardware
font command. This keyword can be used to specify a single string containing the
information for one font, or an array of strings containing the information for mul-
tiple fonts.

For example, to associate 16 point Helvetica italic with font command !5, use the
following DEVICE call:

DEVICE, Set_Fontmap=’5 Helvetica-Oblique, 16’

Now, whenever the !5 font command appears in a text string, the text output
appears in 16 point Helvetica italic. This keyword only affects hardware fonts (that
is, when !P.Font=0).

B-26 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

NOTE A default font mapping is defined in a configuration file that is read when
the PS driver is initialized. For information on this configuration file, see the Using
Fonts chapter in the PV-WAVE User’s Guide.

User_Font — A scalar string that gives the name of a PostScript font to use. This
font name must be specified exactly as the PostScript interpreter expects it, with
the correct case and spelling. User_Font lets you use fonts not known to
PV-WAVE.

Xoffset — Specifies the x position on the page of the lower-left corner of output
generated by PV-WAVE. By default, Xoffset is specified in centimeters unless the
Inches keyword is specified. Scale_Factor does not affect the value of Xoffset.

Xsize — Specifies the width of output. By default, Xsize is specified in centimeters
unless the Inches keyword is specified Scale_Factor modifies the value of Xsize.
Hence, the statement:

DEVICE, /Inches, Xsize=7.0, Scale_Factor=0.5

results in a real width of 3.5 inches.

Yoffset — Specifies the y position on the page of the lower-left corner of output
generated by PV-WAVE. By default, Yoffset is specified in centimeters unless the
Inches keyword is specified. Scale_Factor does not affect the value of Yoffset.

Ysize — Specifies the height of output. By default, Ysize is specified in centimeters
unless the Inches keyword is specified. Scale_Factor modifies the value of Ysize.
Hence, the statement:

DEVICE, /Inches, Ysize=5.0, Scale_Factor=0.5

results in a real width of 2.5 inches.

Using PostScript Fonts

By default, PV-WAVE uses software characters for annotating plots (i.e., !P.Font
is –1). These characters are of good quality and are extremely flexible. However, if
this flexibility is not required, higher quality characters are available via PostScript
fonts. In order to get PV-WAVE to use the PostScript fonts, do one of the
following:

• Set !P.Font to 0 by entering:

!P.Font = 0

• Use the Font keyword with the plotting and graphics procedures to specify font
0. For example:

PostScript Output B-27

PLOT, temps, Title='Average Temp', Font=0

The default PostScript font is 12-point Helvetica. To change this font, use the
DEVICE procedure keywords, as shown in the following table. Note that not all
fonts may be available on a particular device.

NOTE When generating three-dimensional plots, it is best to use the software
fonts, because PV-WAVE can draw them in perspective with the rest of the plot.
For details on software fonts, see the PV-WAVE User’s Guide.

PostScript Fonts

PostScript Font DEVICE Keywords

Courier /Courier

Courier Bold /Courier, /Bold

Courier Oblique /Courier, /Oblique

Courier Bold Oblique /Courier, /Bold, /Oblique

Helvetica /Helvetica

Helvetica Bold /Helvetica, /Bold

Helvetica Oblique /Helvetica, /Oblique

Helvetica Bold Oblique /Helvetica, /Bold, /Oblique

Helvetica Narrow /Helvetica, /Narrow

Helvetica Narrow Bold /Helvetica, /Narrow, /Bold

Helvetica Narrow Oblique /Helvetica, /Narrow, /Oblique

Helvetica Narrow Bold Oblique /Helvetica, /Narrow, /Bold, /Oblique

ITC Avant Garde Gothic Book /Avantgarde, /Book

ITC Avant Garde Gothic Book Oblique /Avantgarde, /Book, /Oblique

ITC Avant Garde Gothic Demi /Avantgarde, /Demi

ITC Avant Garde Gothic Demi Oblique /Avantgarde, /Demi, /Oblique

ITC Bookman Demi /Bkman, /Demi

ITC Bookman Demi Italic /Bkman, /Demi, /Italic

ITC Bookman Light /Bkman, /Light

ITC Bookman Light Italic /Bkman, /Light, /Italic

B-28 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

When using PostScript fonts, commands may be inserted into the text in order to
specify positioning and special characters. These commands are described in the
following table. They are similar to the commands provided for the standard soft-
ware characters.

ITC Zapf Chancery Medium Italic /Zapfchancery, /Medium, /Italic

ITC Zapf Dingbats /Zapfdingbats

New Century Schoolbook /Schoolbook

New Century Schoolbook Bold /Schoolbook, /Bold

New Century Schoolbook Italic /Schoolbook, /Italic

New Century Schoolbook Bold Italic /Schoolbook, /Bold, /Italic

Palatino /Palatino

Palatino Bold /Palatino, /Bold

Palatino Italic /Palatino, /Italic

Palatino Bold Italic /Palatino, /Bold, /Italic

Symbol /Symbol

Times /Times

Times Bold /Times, /Bold

Times Italic /Times, /Italic

Times Bold Italic /Times, /Bold, /Italic

PostScript Text Positioning Commands

Command Description

!A Shift above the division line.

!E Shift up to the exponent level and decrease the character size by
a factor of 0.44.

!MX Insert a bullet character.

!N Shift back to the normal level and original character size.

PostScript Fonts (Continued)

PostScript Font DEVICE Keywords

PostScript Output B-29

Using Color PostScript Devices

If you have a color PostScript device you can enable the use of color with the
statement:

DEVICE, /Color

Enabling color also enables the color tables. Text and graphic color indices are
translated to RGB by dividing the red, green, and blue color table values by 255.
As with most display devices, color indices range from 0 to 255. Zero is normally
black and white is normally represented by an index of 255.

PostScript Supports Color Images

As with black and white PostScript, images may be output with 1, 2, 3, 4 or 8 bits,
yielding 1, 2, 16, or 256 possible colors. In addition, images can be either pseudo-
color or true color. For a thorough comparison of pseudo-color and true color, see
the PV-WAVE User’s Guide.

Changing the Image Background Color

Images that are displayed with a black background on a monitor frequently look
better if the background is changed to white when displayed with PostScript. This
is easily done with the following statement, where A is the image variable:

A(WHERE(A EQ 0B)) = 255B

Creating Publication-quality Documents

The combination of PV-WAVE and the PostScript page description language gives
you a powerful tool for creating publication-quality documents with text, graphics,
and images arranged together on the page. Three examples of how to insert Post-
Script output into text documents follow, but these are not exclusive. Consult your
word processing or desktop publishing manual to see how your software handles
encapsulated PostScript files.

!B Shift below the division line.

!I Shift down to the index level and decrease the character size by
a factor of 0.44.

!! Display the ! symbol.

PostScript Text Positioning Commands (Continued)

Command Description

B-30 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Inserting PV-WAVE Plots into LATEX Documents

LATEX is a special version of the TEX page formatting language developed by
Donald E. Knuth for producing publication-quality documents. LATEX was devel-
oped by Leslie Lamport to make the TEX language easier to use. Although TEX is
released into the public domain, commercial versions of TEX are supported by pri-
vate vendors. One such vendor is ArborText, Inc., of Ann Arbor, Michigan. The
examples below describe how Visual Numerics has used ArborText’s TEX, LATEX,
and DVILASER/PS software on Sun workstations to incorporate PV-WAVE
graphs and images into publication-quality documents.

is an example of a PV-WAVE-generated PostScript plot that has been inserted into
a LATEX document. It was produced with the following statements:

SET_PLOT, 'PS'

; Select the PostScript driver.

DEVICE, /Encapsulated, Filename='pic1.ps'

; Use ENCAPSULATED because output is for use with LATEX.

x = FINDGEN(200)

PLOT, 10000 * SIN(x/5) / EXP(x/100), $
Linestyle=2, Title='PV-WAVE ' + $
'PostScript plot', Xtitle='Point Number', $
Ytitle='Y Axis Title', Font=0

; Plot the sine wave. Set the font to hardware font.

OPLOT, 10000 * COS(x/5) / EXP(x/100), Linestyle=4

; Add the cosine.

XYOUTS, 100, -6000, 'Sine', Font=0

; Annotate the plot.

OPLOT, [120, 180], [-6000, -6000], Linestyle=2

; Annotate the plot

XYOUTS, 100, -8000, 'Cosine', Font=0

; Annotate the plot

OPLOT, [120, 180], [-8000, -8000], Linestyle=4

Note the use of the Encapsulated keyword in the call to DEVICE. This is what
allows you to import the file into a LATEX document. Simply omit the Encapsu-
lated keyword from the call to DEVICE if you want to produce a plot that can be
printed directly.

PostScript Output B-31

Figure B-1 Sample PostScript plot using Helvetica font.

Any kind of PostScript plot can be included in LATEX documents. In , a PV-WAVE
PostScript image has been included. In this case, the same image is reproduced four
times. Each time, a different number of bits are used per image pixel. The illustra-
tion was produced with the following statements:

SET_PLOT, 'PS'

DEVICE, /Encapsulated, Filename='pic4.ps'

OPENR, 1, !Dir+'/data/mandril.img'

; Open image file.

a = BYTARR(256, 256, /Nozero)

; Variable to hold image.

READU, 1, a

; Input the image.

CLOSE, 1

; Done with the file.

FOR i = 0,3 DO BEGIN

; Output the image four times.
DEVICE, Bits_Per_Pixel=2^i

; Use 1, 2,4, and 8 bits per pixel.
TV,a,i ,Xsize=2.5, Ysize=2.5, /Inches

; Output using TV with position numbers 0, 1, 2, and 3.
ENDFOR

B-32 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Figure B-2 1, 2, 4, and 8-bit PostScript images.

The LATEX Insertplot Macro

The following LATEX macro, named insertplot, is used to insert PV-WAVE-
generated PostScript files into LATEX documents. The definition of this macro
depends upon the TEX DVI to PostScript translation program used and is therefore
not portable between various DVI programs.

However, given familiarity with TEX it is relatively easy to modify the macro to suit
the various DVI programs encountered in practice. The insertplotmacro is as
follows:

% Insert a PostScript plot made by

% PV-WAVE into a LATEX document:

% For the ArborText program dvips.

%

% This macro creates a captioned figure

% of the specified size and uses the

% \special command to insert the Post

% Script.

%

% Usage: \insertplot{file}{caption}

PostScript Output B-33

% {label}{width}{height}

% file = name of file containing the PostScript.

% caption = caption of figure

% label = latex \label{} for figure to

% be used by \ref{} macro.

% width = width of figure, in inches.

% height = height of figure, in inches.
%

% Insert a plot.

\newcommand{\insertplot}[5]{%

% Usage: \insertplot{file}{caption}

% {label}{width in inches}{height}

\begin{figure}%

\hfill\hbox to 0.05in{\vbox to #5in{\vfil%

\inputplot{#1}{#4}{#5}%Include the plot

% file

}\hfill}%

\hfill\vspace{-.1in}% Fudge factor to

% tighten things up a bit.

\caption{#2}\label{#3}

\end{figure}}
%
%

% Include a PostScript File, this varies

% according to the DVI program: Usage:

% \inputplot{filename}{width}{height}

% When called from insertplot, the current

% position is at the bottom CENTER of the

% figure box.

\newcommand{\inputplot}[3]{%

% Output PostScript commands to scale

% default sized (7 wide by 5 high) PV-WAVE

% plot into the specified size. Also

% set origin to the current point less

% half the width of the box, centering the

% box above the current point.

\special{ps:: gsave #2 -36 mul 0 rmoveto
currentpoint translate #2 7.0 div #3 5.0
div scale}%

\special{ps: plotfile #1}\special{ps::
 grestore}}

%
%

B-34 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Regis Output
PV-WAVE provides Regis graphics output for the Digital VT240, VT330, and
VT340 series of terminals. To output graphics to such terminals, enter the
command:

SET_PLOT, 'REGIS'

This causes PV-WAVE to use the Regis driver for producing graphical output.
Once the Regis driver is enabled via SET_PLOT, the DEVICE procedure is used
to control its actions, as described in the next section, Controlling Regis Output
with DEVICE Keywords.

Controlling Regis Output with DEVICE Keywords

The following keywords to the DEVICE procedure provide control over the Regis
driver:

Average_Lines — Controls the method of writing images to the VT240. If this key-
word is set, as it is by default, even and odd pairs of image lines are averaged and
written to a single line. If clear, each image line is written to the screen (see the dis-
cussion below).

This keyword has no effect when using a VT300 series terminal.

Close_File — PV-WAVE creates, opens, and writes a file containing the generated
graphics output. The Close_File keyword outputs any buffered commands and
closes the file.

CAUTION Under UNIX, if you close the output file with the Close_File DEVICE
keyword, and then execute a command (such as PLOT) that creates more output,
PV-WAVE reopens the same file, erasing the previous contents. To avoid losing the
contents of an output file, use the Filename keyword to specify a different filename,
or use SET_PLOT to switch to a different graphics driver, or be sure to print the
closed output file before creating more output.

NOTE See the discussion of printing output files in the the PV-WAVE User’s
Guide.

Filename — By default all generated output is sent to a file named wave.regis.
The Filename keyword can be used to change this default. When you specify a file-
name, the following occurs:

Regis Output B-35

• If the file is already open (as happens if graphics have been directed to the file
since the call to SET_PLOT), then the file is completed and closed as if
Close_File had been specified.

• The specified file is opened for subsequent graphics output.

Plot_To — Directs the Regis output that would normally go to the user’s terminal
to the specified I/O unit. The logical unit specified should be open with write access
to a device or file.

Do not use the interactive graphics cursor when graphic output is not directed to
your terminal. To direct the graphic data to both the terminal and the file, set the
unit to the negative of the actual unit number. If the specified unit number is zero,
then Regis output to the file is stopped.

Tty — Directs output to both a file and the terminal.

VT240 — Sets driver for VT240 series terminals.

VT241 — Same as VT240.

VT340 — Sets driver for VT340 series terminals (the default).

VT341 — Same as VT340.

The default setting for Regis output is: VT340, 16 colors, 4 bits per pixel.

Limitations of REGIS Output
• Four colors are available with VT240 and VT241 terminals, sixteen colors are

available with the VT330 and VT340.

• Thick lines are emulated by filling polygons. There may be a difference in line-
style appearance between thick and normal lines.

• Image output is slow and poor quality, especially on the VT240 series.

• The VT240 is only able to write pixels on even numbered screen lines.
PV-WAVE offers two methods of writing images to the VT240:
Even and odd pairs of rows are averaged and written to the screen. An n, m
image will occupy n columns and m screen rows. If this method is selected,
graphics and image coordinates coincide. This method is the default:
Average_Lines=1. Routines that rely on a uniform graphics and image
coordinate system, such as SHADE_SURF, will only work in this mode.
Each line of the image is written to the screen, displaying every image pixel.
An n, m image occupies 2m lines on the screen (Average_Lines=0).
Graphics and image coordinates coincide only at the lower left corner of the
image.

• Pixel values may not be read back from the terminal, rendering the TVRD
function inoperable.

B-36 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Tektronix Terminals
The Tektronix 4000 (4010, 4014, etc.), 4100 and 4200 series of graphics terminals
(and the multitude of terminals and microcomputers that emulate them) are among
the most common graphics devices available. To use PV-WAVE graphics with such
terminals, enter the command:

SET_PLOT, ’TEK’

This causes PV-WAVE to use the Tektronix driver for producing graphical output.

Controlling Tektronix Output with DEVICE Keywords

The following keywords to the DEVICE procedure provide control over the Tek-
tronix driver:

Colors — The number of colors supported by the terminal. Only used with 4100
series terminals. For example, if your terminal has 4-bit planes, the number of col-
ors is 24 –16:

DEVICE, Colors=16

Valid values of this parameter are: 2, 4, 8, 16, or 64; other values cause problems.
Some Tektronix terminals do not operate properly if this parameter does not
exactly match the number of colors available in the terminal hardware.

This parameter sets the field !D.N_Colors, which affects the loading of color tables
via the Standard Library procedures, the scaling used by the TVSCL procedure,
and the number of bits output by the TV procedure to the terminal. It also changes
the default color, !P. Color, to the number of colors minus one.

Gin_Chars — The number of characters PV-WAVE reads when accepting a GIN
(Graphics Input) report. The default is 5. If your terminal is configured to send a
carriage return at the end of each GIN report, set this parameter to 6. If the number
of GIN characters is too large, the CURSOR procedure will not respond until two
or more keys are struck. If it is too small, the extra characters sent by the terminal
will appear as input to the next PV-WAVE prompt.

Plot_To — Directs the Tektronix graphic output that would normally go to the
user’s terminal to the specified I/O unit. The logical unit specified should be open
with write access to a device or file. Save graphic output in files for later playback,
redirection to other terminals, or to devices that accept Tektronix graphic
commands.

Do not use the interactive graphics cursor when graphic output is not directed to
your terminal. To direct the graphic data to both the terminal and the file, set the

Tektronix Terminals B-37

unit to the negative of the actual unit number. If the specified unit number is zero,
then Tektronix output to the file is stopped.

Reset_String — The string used to place the terminal back into the normal inter-
active mode after drawing graphics. Use this parameter, in conjunction with the
Set_String keyword, to control the mode switching of your terminal. For example,
the GraphON 200 series terminals require the string <ESC>2 to activate the alpha-
numeric window after drawing graphics. The call to set this is:

DEVICE, Reset=string(27b) + ’2’

If the 4100 series mode switch is set, using the keyword Tek4100, the default mode
re-setting string is <ESC>%!1, which selects the ANSII code mode.

Set_String — The string used to place the terminal into the graphics mode from
the normal interactive terminal mode. If the 4100 series mode switch is set, using
the keyword Tek4100, the default graphic mode setting string is<ESC>%!0, which
selects the Tektronix code mode.

Tek4014 — If nonzero, specifies that coordinates are to be output with full 12-bit
resolution. If this keyword is not present or is zero, 10-bit coordinates are output.
By default, PV-WAVE sends 10-bit coordinates. 12-bit coordinates are compatible
with most terminals, even those without the full resolution, but require more char-
acters to send.

NOTE The 4014 and the 4100 modes may be used together. The coordinate sys-
tem PV-WAVE uses for the Tektronix is 0 to 4095 in the x direction and 0 to 3120
in the y direction, even when not in the 4014 mode — in the 10-bit case the internal
coordinates are divided by 4 prior to output.

Tek4100 — Indicates that the terminal is a 4100 series terminal. The use of color,
ANSII and Tektronix mode switching, hardware line styles, and pixel output with
the TV procedure is supported with 4100 series terminals. Also, text is output
differently.

The default setting for Tektronix output is: 10-bit coordinates, 4000 series termi-
nals, and no use of color.

Notes on the Tektronix Driver

Once the Tektronix driver is enabled via SET_PLOT, the DEVICE procedure is
used to control its actions, and to configure PV-WAVE for the specific features of
your terminal. See Controlling Tektronix Output with DEVICE Keywords on page
B-36 for more information. If you never call the DEVICE procedure, PV-WAVE
assumes a standard Tektronix 4000 series compatible terminal.

B-38 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

The 4200 series is upwardly compatible with the 4100 series; all references to the
4100 series also include the 4200 series. To set up PV-WAVE for use with a 4100
series compatible terminal with n colors:

SET_PLOT, ’TEK’

DEVICE, /TEK4100, Colors = n

The number of colors should be set to 2B where B is the number of bit planes in
your terminal. If you use a Tektronix compatible terminal that requires calling the
DEVICE procedure for configuration, you should probably create and use a start-
up procedure that calls the DEVICE procedure, see the section on modifying your
environment in the PV-WAVE Programmer’s Guide.

The line drawing procedures work with all models. Color and the display of images
(albeit very slowly and frequently of a poor quality because of the low number of
colors) is usable only with 4100 series terminals. Hardware polygon fill works only
on the 4100 series.

Because of the tremendous variation among the requirements and abilities of these
terminals, it is crucial that you configure PV-WAVE properly for your terminal.

Limitations of Tektronix and Tektronix-compatible
Terminals

Because of hardware restrictions, you will encounter the following limitations
when using Tektronix and Tektronix-compatible terminals with PV-WAVE:

• Pixel coordinates do not match the coordinates used by the rest of the graphic
procedures. This is because no two models of Tektronix terminals are alike.
The graphics procedures use the default coordinate system of 1024-by-780, or
4096-by-3120 in the 12-bit mode. The size of the pixel memory and coordinate
system vary widely between models. The Position parameter for the TV and
TVSCL procedures does not work.

• The cursor cannot be positioned from the computer, meaning the TVCRS pro-
cedure may not be used in the Tektronix mode.

• Pixel values may not be read back from the terminal, rendering the TVRD
function inoperable.

CAUTION If you try to display images produced with the SHADE_SURF and
SHOW3 procedures, PV-WAVE may abort. Because of a limitation in the range of
image coordinates available on Tektronix devices, they are not well suited to the
display of images.

WIN32 Driver B-39

WIN32 Driver
WIN32 is the default driver for PV-WAVE running under Microsoft Windows.
This driver controls graphics output from PV-WAVE to the Windows workspace.

NOTE If you are running a Windows NT system, WIN32 hardware fonts can be
rotated and transformed by general 3D transforms in PV-WAVE.

Selecting the WIN32 Driver

To enable WIN32 as the current graphics device, enter the following command:
SET_PLOT, ’WIN32’

This causes PV-WAVE to use the WIN32 driver for producing subsequent graphics
output. Once the WIN32 driver is enabled via SET_PLOT, the DEVICE procedure
is used to control its actions, as described in Controlling the WIN32 Driver with
DEVICE Keywords on page 40 below.

NOTE WIN32 is the default device for Windows, so selecting WIN32 as the cur-
rent graphics device is not necessary unless you have previously selected some
other device and want to return to WIN32.

Listing the Current Settings for the WIN32 Driver
Use the command:
INFO, /Device

to view the current WIN32 driver settings.

Additional Text Formatting Commands

The following text formatting commands are new and can be used with the Post-
Script, WIN32, WMF, and X drivers. These commands can only be used when
hardware fonts are enabled (!P.Font=0).

Formatting Command Description

!FB Switch to the bold face of the current font.

!FI Switch to the italic face of the current font.

!FU Underline the current font.

!FN Switch to the normal form of the current font.

!Pxx Switch to point size xx of the current font, where xx is a
two digit integer (01-99).

B-40 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Refer to the PV-WAVE User’s Guide for a comprehensive list of text formatting
commands.

Controlling the WIN32 Driver with DEVICE Keywords

The following keywords to the DEVICE procedure provide control over the
WIN32 driver:

Close_Display — Deletes all generated windows from the Windows workspace
and returns PV-WAVE to the initial graphics state.

Copy — Copies a rectangular area of pixels from one region of a window to
another. The argument of Copy is a six- or seven-element array: [Xs, Ys, Nx, Ny, Xd,
Yd, W], where: (Xs, Ys) is the lower-left corner of the source rectangle, (Nx, Ny)
are the number of columns and rows in the rectangle, and (Xd, Yd) is the coordinate
of the destination rectangle. Optionally, W is the index of the window from which
the pixels should be copied to the current window. If it is not supplied, the current
window is used for both source and destination. Copy can be used to increase the
pace of animation. This is described in Using Pixmaps to Improve Application Per-
formance on page B-75.

Cursor_Crosshair — Selects the crosshair cursor type.

Cursor_Image — Specifies the cursor pattern. The value of this keyword must be
a 16-line by 16-column bitmap, contained in a 16-element short integer vector.
Each line of the bitmap must be a 16-bit pattern of ones and zeros, where one (1)
is white and zero (0) is black. The offset from the upper-left pixel to the point that
is considered the “hot spot” can be provided via the Cursor_XY keyword.

Cursor_Original — Selects the Windows default cursor — the cursor in use by the
window manager when PV-WAVE starts. This cursor pattern is used by default.

Cursor_Wait — Specifies the wait cursor, usually an hourglass icon.

Cursor_XY — A two-element integer vector giving the x, y pixel offset of the cur-
sor “hot spot”, the point which is considered to be the mouse position, from the
upper-left corner of the cursor image. This parameter is only applicable if
Cursor_Image is provided. The cursor image is displayed top-down — in other
words, the first row is displayed at the top.

Direct_Color — When specified with a Depth value, selects the DirectColor visual
with Depth bits per pixel. For example:

Direct_Color=24

WIN32 Driver B-41

The Direct_Color keyword has effect an only if no windows have been created.
The Direct_Color and True_Color keywords are essentially synonymous when
used with the WIN32 driver: they perform identical functions.

Font — Specifies the name of the font used when the hardware font is selected (that
is, when !P.Font=0). For example, to select the font 14 point New Times Roman
bold, use the following DEVICE call:

DEVICE, Font=’Times New Roman, 14, bold’

Windows provides the Character Map accessory tool that can be used by all appli-
cations to show the fonts available on your system.

NOTE The size of the font selected also affects the size of software-drawn text
(e.g., the Hershey fonts). The “!” commands accepted for software fonts for sub-
scripts and superscripts do not work for hardware fonts.

TrueType hardware fonts can be rotated but not projected. When generating 3D
plots, it is best to use the software characters because PV-WAVE can draw them in
perspective with the rest of the plot. For more information on software fonts, see
the PV-WAVE Programmer’s Guide.

Get_Fontmap — Returns a list of the current font map settings. If /Get_Fontmap
is specified, the information is printed to the screen. If a variable name is specified
(e.g., Get_Fontmap=varname), a string array is returned.

The information returned by Get_Fontmap is in the same form as the strings spec-
ified with Set_Fontmap. The only exception to this pattern is that the first string
returned in a string array is labeled as font 0 and is the current default font.

Get_Graphics_Function — Returns the value of the current graphics function (set
with the Set_Graphics_Function keyword). This keyword can be used to save the
value of the current graphics function, change it temporarily, and then restore it.
See the example in the section Using Graphics Functions to Manipulate Color on
page B-83.

Get_Window_Position — Places the x and y device coordinates (relative to the
lower-left corner of the display) of the window’s lower-left corner into a named
variable.

Get_Write_Mask — Specifies the name of a variable to receive the current value
of the write mask. For example:

DEVICE, Get_Write_Mask=mask

For more information on the write mask, refer to Using the Write Mask and Graph-
ics Functions to Manipulate Color on page B-82.

B-42 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Max_Lines — Sets the maximum number of identical line segments that will be
cached before forcing a screen redraw. The WIN32 driver uses an internal cache
for drawing line segments. Instead of drawing each line individually, lines with
common characteristics are drawn as a group. This feature increases drawing effi-
ciency and rendering speed. To disable Max_Lines, set the keyword equal to one.
(Default: 500 lines.)

Max_Pens — Sets the maximum number of pens that will be cached before forcing
a screen redraw. (Default: 10 pens, each of which can hold 500 line segments.) To
disable Max_Pens, set the keyword equal to one.

NOTE The line caching feature may affect some PV-WAVE behavior that is
familiar to you. In general, this applies to any operation that depends on the order
in which lines are drawn. For example, using OPLOT with the color set to the back-
ground color to erase drawn lines may not work as expected. This is because some
or all of the second set of lines may be drawn before the first set they were intended
to overwrite. To avoid this, use the EMPTY procedure to force the driver to empty
the line cache first.

Pseudo_Color — When specified with a Depth value, selects the PseudoColor
visual with Depth bits per pixel. For example:

Pseudo_Color=8

The Pseudo_Color keyword has an effect only if no windows have been created.

Set_Character_Size — A two-element vector that changes the standard width and
height of the vector-drawn fonts. The first element in the vector contains the new
character width, and the second element contains the height. By default, character
size is set to the size of the default hardware font.

Set_Fontmap — Associates specific font characteristics with a particular hardware
font command. This keyword can be used to specify a single string containing the
information for one font, or an array of strings containing the information for mul-
tiple fonts.

For example, to associate 16 point Helvetica italic with font command !5, use the
following DEVICE call:

DEVICE, Set_Fontmap=’5 Helvetica, 16, italics’

Now, whenever the !5 font command appears in a text string, the text output
appears in 16 point Helvetica italic. This keyword only affects hardware fonts (that
is, when !P.Font=0).

WIN32 Driver B-43

NOTE A default font mapping is defined in a configuration file that is read when
the WIN32 driver is initialized. For information on this configuration file, see the
Fonts chapter in the PV-WAVE User’s Guide.

Set_Graphics_Function — Windows allows applications to specify the Graphics
Function. This is a logical function which specifies how the source pixel values
generated by a graphics operation are combined with the pixel values already
present on the screen. The complete list of possible values is given in the following
table. The default graphics function is GXcopy, which causes new pixels to com-
pletely overwrite any previous pixels.

Graphics Functions

Logical Function Code Definition Windows ROP Code

GXclear 0 0 R2_BLACK

GXand 1 src AND dst R2_MASKPEN

GXandReverse 2 src AND (NOT dst) R2_MASKPENNOT

GXcopy 3 src R2_COPYPEN

GXandInverted 4 (NOT src) AND dst R2_MASKNOTOPEN

GXnoop 5 dst R2_NOP

GXxor 6 src XOR dst R2_XORPEN

GXor 7 src OR dst R2_MERGEPEN

GXnor 8 (NOT src) AND (NOT dst) R2_NOTMASKPEN

GXequiv 9 (NOT src) XOR dst R2_NOTXORPEN

GXinvert 10 (NOT dst) R2_NOT

GXorReverse 11 src OR (NOT dst) R2_MERGEPENNOT

GXcopyInverted 12 (NOT src) R2_NOTCOPYPEN

GXorInverted 13 (NOT src) OR dst R2_MERGENOTPEN

GXnand 14 (NOT src) OR (NOT dst) R2_NOTMERGEPEN

GXset 15 1 R2_WHITE

B-44 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Set_Write_Mask — Sets the write mask to the specified value. Under Windows,
the write mask can range from 0 to 255. See also Using the Write Mask and Graph-
ics Functions to Manipulate Color on page B-82.

True_Color — When specified with a Depth value, selects the TrueColor visual
with Depth bits per pixel. For example: True_Color=24

The True_Color keyword has an effect only if no windows have been created. The
Direct_Color and True_Color keywords are essentially synonymous when used
with the WIN32 driver: they perform identical functions.

Window_State — Returns an array containing values indicating the status for all
available PV-WAVE windows. Each element of the array contains a value equal to
the sum of the following values:

In the following example, the fourth element of winarray contains the value 3,
or 1 + 2. This indicates that the window is active and backing store is active.

WINDOW, 3

; Open window 3.

DEVICE, Window_State=winarray

PRINT, winarray

Resizing Graphics

Prior to Version 6.0 of PV-WAVE for Microsoft Windows, it was necessary to use
special keywords so that displayed graphics would resize whenever the user resized
a window using its border. This is no longer the case. Window resizing is now the
default behavior and is automatically provided for all normal PV-WAVE graphics
windows.

0 Window closed

1 Window active on display

2 Backing store active

4 Metafile active

0 0 0 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0

WIN32 Driver B-45

Windows Metafile Limitations

A Windows metafile is used to retain graphics in a window. The metafile is
“replayed” into the graphic window whenever the window is resized. Metafiles are
also used when you print the window. If you expect that your graphics might be
subject to resizing, you should be aware of two limitations inherent in metafiles.

Resolution Dependency for Plots

Metafiles are limited by the resolution of the graphics window in which you ini-
tially constructed a plot. So if you draw a plot to a small (low-resolution) window
and then resize that window to full screen, you will likely see “aliasing” effects due
to the low resolution of the original plot. For example, you might see “stairsteps”
in diagonal lines or squared-off corners in small arcs or circles. You will see the
same kinds of effects if you print the plot to a printer that has a higher resolution
that your graphics window.

You can solve this problem by plotting to a high-resolution (large) window when
you intend to make high-resolution plots. If you do not wish to view this large win-
dow (or you need to make it larger than your display) then you can use the /Pixmap
keyword with the WINDOW command to make the window invisible.

Disappearing “Dots”

Another problem with metafiles is that they cannot reproduce a “dot” (a single-
pixel point). So, if you use, for example, Psym=3 (a dot) in a PLOT command, it
will appear on the screen, but when you resize the window or print the graph, the
dot will disappear. This is because these pixels are treated differently by the meta-
file. (Note that this problem does not affect images, such as those you might dispay
with the TV procedure, for example.)

To solve the disappearing-dot problem, you can turn off metafiles by using the
/NoMeta keyword with the WINDOW command. This results in a bitmap (DIB
file) being used for repainting and printing. Since bitmaps are not resizable, pixels
can’t be lost. But keep in mind that when the graphic is printed, it will be scaled to
fit the printed region, so you will see effects such as wider lines and possibly boxes
in place of dots. This problem can also be solved by using a higher resolution win-
dow for the initial plot.

Graphics Window Commands

The following commands operate upon the contents of graphics windows. Most of
these commands allow for the interchange of graphics between PV-WAVE and
other graphics applications.

B-46 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

For detailed information on these commands, see their individual descriptions in
this Reference.

• WCOPY — Copies the contents of a graphics window onto the Clipboard.

• WPASTE — Pastes the contents of the Clipboard into a graphics window.

• WREAD_DIB — Loads a Device Independent Bitmap (DIB) from a file
directly into a specified graphics window.

• WREAD_META — Loads a Windows enhanced metafile (EMF) into a speci-
fied graphics window. Note that EMF graphics are designed to be used only
with 32-bit applications; they cannot be pasted into a 16-bit application.

• WWRITE_DIB — Saves the contents of a graphics window into a file as a
Device Independent Bitmap (DIB).

• WWRITE_META — Saves the contents of a graphics window into a file as a
Windows enhanced metafile (EMF). Note that EMF graphics are designed to
be used only with 32-bit applications; they cannot be pasted into a 16-bit
application.

• WPRINT — Prints the contents of the specified graphics window.

TIP You can also use the graphics window Control menu to import, export, and
print graphics.

Use of Color in the WIN32 Driver

This section discusses how color tables and color palettes are handled by the
WIN32 driver. For general information on color tables and how PV-WAVE handles
color, see the PV-WAVE Programmer’s Guide.

NOTE The color model used by the WIN32 driver in PV-WAVE Version 6.0 has
changed from previous releases of PV-WAVE. Earlier releases, specifically version
4.2 and PV-WAVE Personal Edition, used a color model that was very similar to
that used by the X Windows X11 driver. For PV-WAVE 6.0, changes to the WIN32
driver were made to support high-color Windows video drivers and required a sim-
plification of the way color tables and palettes are handled.

Windows Video Modes

Windows graphics output depends on a piece of software called a video driver that
provides an interface between Windows Graphics Device Interface (GDI) calls and

WIN32 Driver B-47

the video hardware installed in the computer. This software is usually provided by
the manufacturer of the video card. Depending on the capabilities of the hardware,
video drivers usually support several video modes. A video mode is a combination
of screen resolution, color depth and refresh rate.

Screen resolution is usually expressed in terms of the number of horizontal and ver-
tical pixels displayed on the screen. Common resolutions are 640x480 (VGA),
800x600, 1024x768, and 1280x1024. Higher resolutions require more memory on
the video card and a more capable monitor.

Color depth refers to the number of colors that can be displayed at once on the
screen. This is usually one of 16, 256, 65636 (16-bit), or 16777216 (24-bit) and is
directly related to the number of bits of video memory required to store the color
information for a single pixel. In combination with the resolution, this determines
what video modes are available for a given amount of memory on a video card. For
instance, 1024x768 resolution with 256 colors requires 768KB of memory and so
should be available on most video cards with at least 1 MB of video RAM while
the same resolution with 24 bits of color information would require 2304KB and
would not be available unless the video card has more than 2MB of video memory.

Refresh rate refers to how quickly the video card transfers information to the mon-
itor and is not relevant to this discussion.

PV-WAVE Color Model

PV-WAVE inherently uses an 8-bit pseudo-color model. Color values are repre-
sented as an index into the current color table. The color table consists of three byte
arrays that have 256 elements; the arrays represent the relative amounts of red,
green and blue in a particular color. When a particular value is placed in a
PV-WAVE graphics window (by the TV procedure, for instance) the graphics
driver determines what color to display by using the value as an index into the color
table arrays. When the color table changes (via the LOADCT procedure, for
instance) the color represented by a particular value is likely to be different and, if
so, will result in a new color being displayed in the graphics window.

In PV-WAVE’s WIN32 graphics driver, the contents of a graphics window are
stored in a DIB (Device Independent Bitmap) created using the
DIB_RGB_COLORS format. This means that the window image is stored in an
exact parallel to PV-WAVE’s color model: an array of 8-bit values that act as indi-
ces into a color table which contains 8 bits each of red, green, and blue color
information.

B-48 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Interaction Between PV-WAVE and the Video Driver

When a graphics window is painted, the DIB section is transferred from normal
memory to video memory where it appears on the screen. This operation is called
a blit. As part of the blit operation, the video driver and Windows determine how
to map the pixel information in the DIB into the current video mode. This is usually
a highly optimized operation in the video driver.

The way a pixel value in the DIB gets mapped to a color on the video screen
depends on the current color depth that the video driver is using. In general, Win-
dows will map a given pixel color to the closest matching RGB value that the video
driver can display. This is likely to be an unsatisfactory match for a driver in 16
color VGA mode, while a driver in 24-bit mode will be able to match any requested
color exactly.

256 Color Drivers and Palettes

When Windows is using a video mode with 256 colors, pixel values in video mem-
ory represent an index into a palette (as opposed to directly representing the color
as is the case in 16- and 24-bit modes). A palette serves exactly the same function
as PV-WAVE’s color table — it allows the selection of a subset of the 16 million
colors that can be represented by the RGB triple.

The palette is controlled by the application that the user is currently using — the
foreground application. With certain exceptions (discussed below), the foreground
application can set the palette to represent whatever set of colors it wants. Back-
ground applications try to render their data as best they can given that the
foreground application controls the palette; this often results in “flashing” as appli-
cations redraw their data when they move from background to foreground. When
PV-WAVE is the foreground application, it directly maps the current color table to
the Windows palette.

The exception is that Windows reserves the top and bottom 10 entries in the palette
(for a total of 20 colors) for the system colors used to draw controls and window
decorations. This results in less distraction for the user since only the contents of
application windows will flash while window frames and controls will not.

The PV-WAVE WIN32 Driver in 256 Color Mode

The penalty for non-flashing window frames is that only 236 colors are available
to PV-WAVE while it needs 256 to represent the color table. Earlier versions of the
WIN32 driver used the color limiting mechanisms implemented to support the X
driver to reduce the color table size to 236. The drawback to this approach is that
it makes PV-WAVE’s behavior dependent on the current video mode — the same

WIN32 Driver B-49

program will give different results with a different video mode. It also caused per-
formance problems since it was necessary to continuously transform data
transferred to and from the screen.

With PV-WAVE Version 6.0, the WIN32 driver always indicates that PV-WAVE
has 256 colors available; if it needs to display in a palletized video mode, 20 colors
evenly distributed through the color table are not mapped to the palette. The other
236 colors will be exactly represented but the 20 unmapped colors will map to the
closest match available in the palette, either among the 236 PV-WAVE colors or
the 20 system colors. For most of the PV-WAVE color tables, the closest match is
immediately adjacent in the color table and the unmapped colors are very difficult
to notice. Any discrepancy is purely visual; all PV-WAVE operations, including
TV and TVRD, set and return the proper color and these operations return consis-
tent results regardless of the current video model.

Using Bitmaps

Windows can direct graphics to either windows or bitmaps:

• Windows — Windows are the usual windows that appear on the screen and
contain graphics. Drawing to a window produces a viewable result.

• Bitmaps — Bitmaps are areas of invisible graphics memory. Drawing to a bit-
map simply updates the bitmap memory.

Bitmaps are useful because it is possible to write graphics to a bitmap and then
copy the contents of the bitmap to a window where it can be viewed. The process
works by placing the desired images into bitmap memory and then copying them
in succession to a visible window.

Creating a Bitmap

To create a bitmap, use the Bitmap keyword with the WINDOW procedure. For
example, to create a 1280-by-1280 bitmap in window 1:

WINDOW, 1, /Bitmap, Xsize=1280, Ysize=1280

Once they are created, bitmaps are treated just like normal windows, although
some operations (WSHOW, for instance) don’t have any noticeable effect when
applied to a bitmap. Note also that the bitmap’s resolution does not have to be
restricted to the size of the display’s resolution.

Example — Animating a Series of Bitmap Images

The following example shows how animation can be performed using bitmap
memory. It uses a series of 15 heart images taken from the file abnorm.dat.
(This file is located in the data subdirectory of the main PV-WAVE directory.) It

B-50 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

creates a bitmap and writes all 15 images to it. It then uses the Copy keyword of the
DEVICE procedure to copy the images to a visible window. Pressing any key
causes the animation to halt:

PRO animate_heart

; This procedure animates a series of heart data.
OPENR, u, !Data_Dir+’abnorm.dat’,/Get_Lun

; Open the file containing the images.

frame = ASSOC(u, BYTARR(64, 64))

; Associate a file variable with the file. Each heart image is 64-by-64 pixels.

WINDOW, 0, /Bitmap, Xsize=7680, Ysize=512

; Window 0 is a bitmap large enough to hold one double-sized
; image tall and 15 double-sized images wide. The resized
; images will be placed in this bitmap.

FOR i = 0, 15-1 DO TVSCL, $
REBIN(SMOOTH(frame(i), 3), 512, 512), i

; Write each image to bitmap memory. SMOOTH is used to
; improve the appearance of each image and REBIN is used to enlarge each image
to the final display size.

FREE_LUN, u

; Close the image file and free the file unit.

WINDOW, 1, Xsize=512, Ysize=512, Title=’Heart’

; Window 1 is a visible window that is used to display the
; animated data, creating the appearance of a beating heart.

i = 0L

; Load the current frame number.

WHILE GET_KBRD(0) EQ ’’ DO BEGIN
DEVICE, Copy=[i * 512, 0, 512, 512, 0, 0, 0]

; Display frames until any key is pressed. Copy the next image
; from the bitmap to the visible window.

i = (i + 1) MOD 15

; Keep track of total frame count.
ENDWHILE

END

Using the Write Mask and Graphics Functions to Manipulate
Color

The write mask can be used to superimpose (overlay) one graphics pattern over
another when plotting to a graphics window, allowing you to create special effects.

WIN32 Driver B-51

Another possible application for the write mask is to simultaneously manage two
4-bit-deep images in a single graphics window instead of a single 8-bit-deep image.
You could use the write mask to control whether the current graphics operation
operates on the “top” image or the “bottom” image.

Using Graphics Functions to Manipulate Color

The WIN32 driver provides two keywords for inquiring and manipulating the
graphics function — Get_Graphics_Function and Set_Graphics_Function.

The value of the Set_Graphics_Function keyword controls the logical graphics
function; this function specifies how the source pixel values generated by a graph-
ics operation are combined with the pixel values already present on the screen. To
see a complete list of graphics function codes, refer to the Set_Graphics_Function
keyword description in the section X Window System on page B-58.

In the following example, POLYFlLL is used to select the area to be inverted. Col-
ors represented by color index 1 are XORed with the image currently displayed in
that area.

DEVICE, Get_Graphics=oldg, Set_Graphics=6

; Set graphics function to exclusive or (GXxor), saving the old
; function.

POLYFILL, [[x0,y0], [x0,y1], [x1,y1], [x1,y0]], /Device, Color=1

DEVICE, Set_Graphics_Function=oldg

; Restore the previous graphics function.

The default value for the Set_Graphics_Function keyword is GXcopy, which
means that the source graphics from the current operation get copied into the win-
dow, destroying any graphics that were previously displayed there.

Interaction Between the Set_Write_Mask and the
Set_Graphics_Function Keywords

You use the Set_Write_Mask keyword to specify the planes whose bits you are
manipulating or the plane you want to use for the special effects. The way the two
graphics patterns are combined depends on the value you provide for the
Set_Graphics_Function keyword. For example, you could use the following
commands:

DEVICE, Set_Graphics_Function=6

DEVICE, Set_Write_Mask=8

B-52 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

to extract the fourth bit (the binary equivalent of the decimal value 8) of the image
in the current graphics window. The extracted plane is XORed (XOR is the graph-
ics function specified by setting the Set_Graphics_Function keyword equal to 6)
with the source pattern (the result of the current graphics operation). After the
graphics function is implemented, the result is drawn in the current graphics win-
dow using whichever color(s) in the color table match the resultant value(s).

Interaction Between the Set_Graphics_Function Keyword and and
Colors

The graphics functions specified by the Set_Graphics_Function keyword operate
individual colors, not on hardware pixel values as they do with the X driver.

Window IDs

The PV-WAVE WINDOW procedure has two keywords, Get_Win_Id and
Set_Win_Id that provide access to the WIN32 window handle associated with a
PV-WAVE graphics window.

Get_Win_Id returns the HWND that was returned from the WIN32
CreateWindowAPI call. If you are making PV-WAVE calls from another appli-
cation via a connectivity mechanism, you can use this keyword to get the window
handle and then use the handle as an argument to an API call like HideWindow.
You can also use the handle if you need to subclass a PV-WAVE graphics window
for any reason.

Set_Win_Id causes PV-WAVE to use a window that already exists as a graphics
window. For instance, you might have created a window in a Visual Basic form in
which you would like PV-WAVE to display graphics. You can do this by passing
PV-WAVE the window handle of the existing window at runtime using the
Set_Win_Id keyword. PV-WAVE will subclass the window referred to by the han-
dle when the keyword is used with a WINDOW command. When the driver is
closed or when PV-WAVE exits, subclassing is removed.

See the WIN32 Programmer’s Reference for more information about window han-
dles and subclassing.

WMF Driver B-53

WMF Driver
The WMF driver creates Windows Enhanced Metafile output. The output can be
saved either to a file or sent directly to a printer.

The WMF driver is a 24-bit device. For more information on 24-bit color and the
WMF driver, see Handling 24-bit Color on page B-54.

NOTE If you are running a Windows NT system, WMF hardware fonts can be
rotated and transformed by general 3D transforms in PV-WAVE.

Selecting the WMF Driver

To enable WMF as the current graphics device, enter the following command:

SET_PLOT, ’WMF’

This causes PV-WAVE to use the WMF driver for producing subsequent graphics
output. Once the WMF driver is enabled via SET_PLOT, the DEVICE procedure
is used to control its actions, as described in Controlling the WMF Driver with
DEVICE Keywords below.

Listing the Current Settings for the WMF Driver

Use the command:

INFO, /Device

to view the current WMF driver settings.

Sending PV-WAVE Output Directly to a Printer

The following steps can be used to send Windows Metafile output directly to a
Windows printer:

Step 1 Select the WMF driver:

 SET_PLOT, ’WMF’

Step 2 Indicate output should be sent directly to the printer:

 DEVICE, /Print

B-54 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Step 3 Select the printer to send output to (if other than the default printer):

printer = WIN32_PICK_PRINTER()

 - or -

 DEVICE, Set_Printer=’printer_name’

Step 4 Execute graphics commands (PLOT, SURFACE, XYOUTS, etc.)

Step 5 Close the Windows Metafile and the output is sent to the printer:

 DEVICE, /Close_File

Handling 24-bit Color

The WMF driver is a 24-bit device. Colors specified with this device must conform
to the PV-WAVE 24-bit color convention, which is a PV-WAVE long integer with
the red, green, and blue color values occupying the lower three bytes, in order, from
the least significant byte. For instance, color values less than 256 are considered to
be shades of red. If the Pseudo_Color keyword is set to 8, color values less than
256 are taken to be indices into the PV-WAVE color map. Colors greater than 256
are still interpreted as 24-bit colors.

Because the WMF driver is a 24-bit device, you need to specify application colors
as RGB values in hexadecimal notation, rather than as an index into a color table.

To ensure that colors display correctly on all types of devices, we recommend that
you use the WoColorConvert function whenever you specify a color index in your
code.

WoColorConvert returns the RGB color value on 24-bit devices and the color table
index on 8-bit devices. By using WoColorConvert with all color index values in
your code, you ensure that your application colors will appear properly on all types
of devices.

For example:

TEK_COLOR

PLOT, DIST(10), Color=WoColorConvert(5)

If your code might be used with 8 and 24-bit displays, and/or the WMF driver, we
recommend you use the WoColorConvert function to ensure that colors display
correctly.

WMF Driver B-55

Additional Text Formatting Commands

The following text formatting commands are new and can be used with the Post-
Script, WIN32, WMF, and X drivers. These commands can only be used when
hardware fonts are enabled (!P.Font=0).

Refer to the PV-WAVE User’s Guide for a comprehensive list of text formatting
commands.

Controlling the WMF Driver with DEVICE Keywords

The following keywords to the DEVICE procedure provide control over the WMF
driver:

Close_File — Closes the currently open Windows Metafile. If the Print keyword
was specified, the file will be sent directly to the selected printer.

Direct_Color — If set to 24, the WMF driver interprets all colors as 24-bit. For the
WMF driver, this keyword is synonymous with the True_Color keyword. (Exam-
ple: Direct_Color=24)

Filename — Specifies the name of a file to save the Windows Metafile output in.
This keyword must be used prior to any graphics commands. If a graphics
command is used and neither the Print nor Filename keyword has been specified,
a Windows File Selector will be displayed.

Font — Specifies the name of the font used when the hardware font is selected (that
is, when !P.Font=0). For example, to select the font 14 point New Times Roman
bold, use the following DEVICE call:

DEVICE, Font=’Times New Roman, 14, bold’

Formatting
Command

Description

!FB Switch to the bold face of the current font.

!FI Switch to the italic face of the current font.

!FU Underline the current font.

!FN Switch to the normal form of the current font.

!Pxx Switch to point size xx of the current font, where xx is a two
digit integer (01-99).

B-56 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

TIP To avoid typing the font name, use the WIN32_PICK_FONT function to
select a font interactively from a dialog box. For example, if you enter this
command:

WAVE> DEVICE, Font=WIN32_PICK_FONT()

the Font dialog box appears. Pick the font and font characteristics that you wish to
use, and click OK. The font that you selcct is automatically set by the DEVICE
command.

Get_Fontmap — Returns a list of the current font map settings. If /Get_Fontmap
is specified, the information is printed to the screen. If a variable name is specified
(e.g., Get_Fontmap=varname), a string array is returned.

The information returned by Get_Fontmap is in the same form as the strings spec-
ified with Set_Fontmap. The only exception to this pattern is that the first string
returned in a string array is labeled as font 0 and is the current default font.

Get_Graphics_Function — See the description of the Get_Graphics_Function
keyword in X Window System on page B-58.

Get_Write_Mask — See the description of the Get_Write_Mask keyword in X
Window System on page B-58.

Inches — By default, the Xoffset, Xsize, Yoffset, and Ysize keywords are specified
in centimeters. However, if Inches is present and nonzero, these keywords are taken
to be in inches instead.

Landscape — PV-WAVE normally generates plots with portrait orientation (the x-
axis is along the short dimension of the page). If Landscape is present, landscape
orientation (the x-axis is along the long dimension of the page) is used instead. This
keyword only works if /Print is used.

Max_Lines — Sets the maximum number of identical line segments that will be
cached before forcing a screen redraw. The WIN32 driver uses an internal cache
for drawing line segments. Instead of drawing each line individually, lines with
common characteristics are drawn as a group. This feature increases drawing effi-
ciency and rendering speed. To disable Max_Lines, set the keyword equal to one.
(Default: 500 lines.)

Max_Pens — Sets the maximum number of pens that will be cached before forcing
a screen redraw. (Default: 10 pens, each of which can hold 500 line segments.) To
disable Max_Pens, set the keyword equal to one.

WMF Driver B-57

NOTE The line caching feature may affect some PV-WAVE behavior that is
familiar to you. In general, this applies to any operation that depends on the order
in which lines are drawn. For example, using OPLOT with the color set to the back-
ground color to erase drawn lines may not work as expected. This is because some
or all of the second set of lines may be drawn before the first set they were intended
to overwrite. To avoid this, use the EMPTY procedure to force the driver to empty
the line cache first.

Portrait — If Portrait is present, PV-WAVE generates plots using portrait orienta-
tion, the default. This keyword only works if /Print is used.

Print — If present and non-zero, specifies that output should be sent directly to the
selected Windows printer when the Windows Metafile is closed. As described in
Sending PV-WAVE Output Directly to a Printer on page B-53, either the
Set_Printer keyword or the WIN32_PICK_PRINTER function can be used to
select a destination printer. If neither is used, the default Windows printer is used.
The Print keyword must be specified before any output is made to the Windows
Metafile.

Pseudo_Color — If set to 8, the WMF driver interprets 8-bit color values (that is,
color values less than 256) as color map indices rather than as 24-bit colors. (Exam-
ple: Pseudo_Color=8)

Set_Character_Size — A two-element vector that changes the standard width and
height of the vector-drawn fonts. The first element in the vector contains the new
character width, and the second element contains the height. By default, character
size is set to the size of the default hardware font.

Set_Fontmap — Associates specific font characteristics with a particular hardware
font command. This keyword can be used to specify a single string containing the
information for one font, or an array of strings containing the information for mul-
tiple fonts.

For example, to associate 16 point Helvetica italic with font command !5, use the
following DEVICE call:

DEVICE, Set_Fontmap=’5 Helvetica, 16, italics’

Now, whenever the !5 font command appears in a text string, the text output
appears in 16 point Helvetica italic. This keyword only affects hardware fonts (that
is, when !P.Font=0).

B-58 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

NOTE A default font mapping is defined in a configuration file that is read when
the WMF driver is initialized. For information on this configuration file, see the
Fonts chapter in the PV-WAVE User’s Guide.

Set_Graphics_Function — See the description of the Set_Graphics_Function
keyword in X Window System on page B-58.

Set_Write_Mask — See the description of the Set_Write_Mask keyword in X Win-
dow System on page B-58.

Under Windows, the write mask can range from 0 to 255.

Thickness — Specifies the thickness (in millimeters) of lines drawn into the Win-
dows Metafile. The default thickness is 2.

True_Color — If set to 24, the WMF driver interprets all colors as 24-bit. For the
WMF driver, this keyword is synonymous with the Direct_Color keyword. (Exam-
ple: True_Color=24)

Xoffset — Specifies the x position on the page of the lower-left corner of output.
Xoffset is specified in centimeters unless Inches is specified. This keyword only
works if /Print is used.

Xsize — Specifies the width of output PV-WAVE generates. Xsize is specified in
centimeters unless Inches is specified.

Yoffset — Specifies the y position on the page of the lower-left corner of output
generated by PV-WAVE. Yoffset is specified in centimeters unless Inches is speci-
fied. This keyword only works if /Print is used.

Ysize — Specifies the height of output generated by PV-WAVE. Ysize is specified
in centimeters unless Inches is specified.

X Window System
PV-WAVE uses the X Window System to provide an environment in which you
can create one or more independent windows, each of which can be used for the
display of graphics and/or images.

The X Window System is the default windowing system for UNIX and OpenVMS
PV-WAVE platforms.

In X there are two basic cooperating processes, clients and servers. A server usually
consists of a display, keyboard, and pointer (such as a mouse) as well as the soft-
ware that controls them. Client processes (such as PV-WAVE) display graphics

X Window System B-59

and text on the screen of a server by sending X protocol requests across the network
to the server. Although in the simplest case, the server and client reside on the same
machine, this network-based design allows more elaborate configurations.

NOTE If you are running an X11R6 system, X Windows fonts can be rotated and
transformed by general 3D transforms in PV-WAVE.

Controlling Where Graphics are Displayed

When you use X, the environment variable $DISPLAY (UNIX) or the logical
DECW$DISPLAY (DECwindows Motif) must be set properly. Otherwise,
PV-WAVE may appear to “hang”. The following command allows PV-WAVE
windows to appear on the local display (the current workstation). Enter one of these
commands at the prompt of the current workstation before you start PV-WAVE,
depending on whether you are using UNIX or OpenVMS (DECwindows Motif):

(UNIX) setenv DISPLAY nodename:0.0

(OpenVMS) SET DISPLAY /CREATE /NODE=nodename -
/SCREEN=0.0 /TRANSPORT=transport_type

You must also be sure that an X server is running on the host machine specified
with the $DISPLAY environment variable or DECW$DISPLAY logical, and that
the machine PV-WAVE is running on has permission to communicate with that X
server. Refer to the documentation for your X-compatible window manager to
learn how to modify your X server’s permissions list.

Selecting the X Driver

To use X as the current graphics device, enter the following command:

SET_PLOT, ’X’

This causes PV-WAVE to use X for producing subsequent graphical output. Once
the X driver is enabled via SET_PLOT, the DEVICE procedure is used to control
its actions, as described in Controlling the X Driver with DEVICE Keywords on
page B-61.

Listing the Current Settings for the X Driver

Use the command:

INFO, /Device

to view the current X driver settings.

B-60 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Graphical User Interfaces (GUIs) for PV-WAVE Applications
Running Under X

If you wish to include a graphical user interface (GUI) with a PV-WAVE applica-
tion that you are writing for use with the X Window System, you have several
choices:

• WAVE Widgets — A versatile, easy-to-use set of functions for creating Motif
GUIs for PV-WAVE applications. WAVE Widgets are designed for PV-WAVE
developers with little or no experience using the Motif GUI toolkits. See the
PV-WAVE Application Developer’s Guide for detailed information on the Wid-
get Toolbox functions.

• Widget Toolbox — A set of highly flexible PV-WAVE functions used to cre-
ate Motif Graphical User Interfaces (GUIs) for PV-WAVE applications. The
Widget Toolbox functions call Motif routines directly, and are designed prima-
rily for developers who are already experienced using either Motif. See the
PV-WAVE Application Developer’s Guide for detailed information on the Wid-
get Toolbox functions.

• C-based Applications — PV-WAVE can be used to add visual data analysis
capability to an existing C application. The application interface can be devel-
oped in C, and, via interapplication communication functions, the C
application can call PV-WAVE to perform data processing and display
functions.

UNIX and OpenVMS USERS For more details on interapplication communi-
cation, refer to the PV-WAVE Application Developer’s Guide.

NOTE All the options listed above are fully compatible with the X Window Sys-
tem and can be used to facilitate access to your application. However, you are not
required to use any of them — your application can still run under X, even though
it does not have a Motif GUI.

Additional Text Formatting Commands

The following text formatting commands are new and can be used with the Post-
Script, WIN32, WMF, and X drivers. These commands can only be used when
hardware fonts are enabled (!P.Font=0).

X Window System B-61

Refer to the PV-WAVE User’s Guide for a comprehensive list of text formatting
commands.

Controlling the X Driver with DEVICE Keywords

The following keywords to the DEVICE procedure provide control over the X
driver:

Bypass_Translation — When this keyword is set, the translation table is bypassed
and color indices can be directly specified. Pixel values read via the TVRD func-
tion are not translated if this keyword is set, and thus the result contains the actual
(hardware) pixel values present in the display. By default, the translation table is
used with shared color tables. When displays with static (read-only) visual classes
and with private color tables are used, the translation table is always bypassed. For
more information about the translation table, refer to Color Translation Table on
page B-74.

Close_Display — Causes PV-WAVE to sever the connection with the X server.
This has the effect of deleting all generated windows from the screen of the server,
and returns PV-WAVE to the initial graphics state. One use for this option is to
change the number of colors used. See the section, When Color Characteristics are
Determined on page B-73, for details.

Copy — Copies a rectangular area of pixels from one region of a window to
another. The argument of Copy is a six- or seven-element array: [Xs, Ys, Nx, Ny, Xd,
Yd, W], where: (Xs, Ys) is the lower-left corner of the source rectangle, (Nx, Ny)
are the number of columns and rows in the rectangle, and (Xd, Yd) is the coordinate
of the destination rectangle. Optionally, W is the index of the window from which
the pixels should be copied to the current window. If it is not supplied, the current
window is used for both source and destination. Copy can be used to increase the

Formatting
Command

Description

!FB Switch to the bold face of the current font.

!FI Switch to the italic face of the current font.

!FU Underline the current font.

!FN Switch to the normal form of the current font.

!Pxx Switch to point size xx of the current font, where xx is a two
digit integer (01-99).

B-62 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

pace of animation. This is described in Using Pixmaps to Improve Application Per-
formance on page B-75.

Cursor_Crosshair — Selects the crosshair cursor type. The crosshair cursor style
is the default.

Cursor_Image — Specifies the cursor pattern. The value of this keyword must be
a 16-line by 16-column bitmap, contained in a 16-element short integer vector.
Each line of the bitmap must be a 16-bit pattern of ones and zeros, where one (1)
is white and zero (0) is black. The offset from the upper-left pixel to the point that
is considered the “hot spot” can be provided via the Cursor_XY keyword.

Cursor_Original — Selects the default cursor for the window system. Under X, it
is the cursor in use by the window manager when PV-WAVE starts.

Cursor_Standard — Selects one of the predefined cursors provided by X. The
available cursor shapes are defined in the file:

(UNIX) /usr/include/X11/cursorfont.h

(OpenVMS) DECW$INCLUDE:CURSORFONT.H

In order to use one of these cursors, select the number of the font and provide it as
the value of the Cursor_Standard keyword. For example, thecursorfont.h file
gives the value of Xc_Cross as being 30. In order to make that the current cursor,
use the statement:

DEVICE, Cursor_Standard=30

Cursor_XY — A two-element integer vector giving the x, y pixel offset of the cur-
sor “hot spot”, the point which is considered to be the mouse position, from the
upper-left corner of the cursor image. This parameter is only applicable if
Cursor_Image is provided. The cursor image is displayed top-down — in other
words, the first row is displayed at the top.

Direct_Color — When specified with a Depth value, selects the DirectColor visual
with Depth bits per pixel. For example:

Direct_Color=12

The Direct_Color keyword has effect only if no windows have been created.

Floyd — If present and nonzero, selects the Floyd-Steinberg dithering method. For
more information on this dithering method, the PV-WAVE User’s Guide.

Font — Specifies the name of the font used when the hardware font is selected. For
example, to select the font 8X13:

DEVICE, Font=’8X13’

X Window System B-63

Usually, the window system provides a directory of font files that can be used by
all applications. List the contents of that directory to find the fonts available on your
system. The size of the font selected also affects the size of software-drawn text
(e.g., the Hershey fonts). On some machines, fonts are kept in subdirectories of:

(UNIX) /usr/lib/X11/fonts

(OpenVMS) SYS$SYSROOT:[SYSCOMMON.SYSFONT]

Get_Fontmap — Returns a list of the current font map settings. If /Get_Fontmap
is specified, the information is printed to the screen. If a variable name is specified
(e.g., Get_Fontmap=varname), a string array is returned.

The information returned by Get_Fontmap is in the same form as the strings spec-
ified with Set_Fontmap. The only exception to this pattern is that the first string
returned in a string array is labeled as font 0 and is the current default font.

Get_Graphics_Function — Returns the value of the current graphics function (set
with the Set_Graphics_Function keyword). This can be used to remember the cur-
rent graphics function, change it temporarily, and then restore it. For an example,
see the example in the section Using Graphics Functions to Manipulate Color on
page B-83.

Get_Visuals — Displays the list of currently available visual classes. If a named
variable is specified with this keyword, the information is stored in a 2D array of
long values. The size of first dimension is 8, and the index is defined in the follow-
ing table:

The value of visual class item above is shown in the following table:

Index Description

0 Visual ID

1 Visual class

2 Depth

3 Size of colormap

4 Red mask

5 Green mask

6 Blue mask

7 Significant bits in the specification

B-64 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

The second dimension of the 2D array represents the number of available visual
classes.

Get_Window_Position — Places the x and y device coordinates of the window’s
lower-left corner into a named variable.

Get_Write_Mask — Specifies the name of a variable to receive the current value
of the write mask. For example:

Get_Write_Mask=mask

For more information on the write mask, refer to Using the Write Mask and Graph-
ics Functions to Manipulate Color on page B-82.

List_Fonts — Returns a list of the available X fonts. If /List_Fonts is specified, the
information is printed to the screen. If a variable name is specified (e.g.,
List_Fonts=varname), a string array is returned. This keyword works like the
UNIX command xlsfonts. If the Pattern_Font keyword is used to specify a pat-
tern, that pattern is used to filter the list of fonts returned by List_Fonts; otherwise,
List_Fonts returns all available fonts.

Ordered — If present and nonzero, selects the Ordered method of dithering. For
more information on dithering, see the PV-WAVE User’s Guide.

Pattern_Font — Specifies a pattern that is used to filter the fonts that are returned
by the List_Font keyword. For example, to list all the fonts in the adobe foundry,
enter this command:

DEVICE, /List_Fonts, Pattern=’-adobe-*’

NOTE X11R5 systems support scalable fonts. You can return the names of all
scalable fonts by specifying a complete font name (one with all 14 fields separated
by dashes) with a zero (0) in fields 7, 8, and 12 (the fields for pixel size, point size,
and average width). To list all scalable fonts, enter the command:

Visual Class Value

StaticGray 0

GrayScale 1

StaticColor 2

PseudoColor 3

TrueColor 4

DirectColor 5

X Window System B-65

DEVICE, /List_Fonts, Pattern_Font=’-*-*-*-*-*-*-0-0-*-*-*-0-*-*’

NOTE X11R6 systems allow fonts to be rotated and transformed by a general 3D
transform. (This is accomplished using the X Logical Font Description (XLFD)
extensions and does not include perspective.) You can return the names of all fonts
that support 3D transformation by specifying a matrix in either the pixel size or
point size fields (fields 7 or 8). To list all fonts capable of 3D transformation, enter
the command:

DEVICE, /List_Fonts, $
Pattern_Font=’-*-*-*-*-*-*-[1 0 0 1]-*-*-*-*-*-*-*’

In this case, the matrix is specified in the 7th field. All other fields contain the wild-
card symbol (*).

Pseudo_Color — When specified with a Depth value, selects the PseudoColor
visual with Depth bits per pixel. For example:

Pseudo_Color=8

The Pseudo_Color keyword has effect only if no windows have been created.

Retain — Specifies the default method used for backing store when creating new
windows. This is the method used when the Retain keyword is not specified with
the WINDOW procedure. Backing store is discussed in more detail in the subsec-
tion, How Is Backing Store Handled? on page B-2. The possible values for this
keyword are summarized in on page B-3.
If Retain is not used to specify the default method, method 1 (server-supplied back-
ing store) is used.

Set_Character_Size — A two-element vector that changes the standard width and
height of the vector-drawn fonts. The first element in the vector contains the new
character width, and the second element contains the height. By default, character
size is set to the size of the default hardware font.

Set_Fontmap — Associates specific font characteristics with a particular hardware
font command. This keyword can be used to specify a single string containing the
information for one font, or an array of strings containing the information for mul-
tiple fonts.

For example, to associate 14 point Times bold with font command !5, use the fol-
lowing DEVICE call and the complete X driver font name:

Set_Fontmap=’5 -adobe-times-bold-r-normal-*-14-*-*-*-*-*-*-*’

B-66 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Now, whenever the !5 font command appears in a text string, the text output
appears in 14 point Times bold. This keyword only affects hardware fonts (that is,
when !P.Font=0).

NOTE A default font mapping is defined in a configuration file that is read when
the X driver is initialized. For information on this configuration file, see the Fonts
chapter in the PV-WAVE User’s Guide.

Set_Graphics_Function — X allows applications to specify the Graphics Func-
tion. This is a logical function which specifies how the source pixel values
generated by a graphics operation are combined with the pixel values already
present on the screen. The complete list of possible values is given in the following
table. The default graphics function is GXcopy, which causes new pixels to com-
pletely overwrite any previous pixels.

Logical Graphics Functions and Values

Logical Function Code Definition Windows ROP Code

GXclear 0 0 R2_BLACK

GXand 1 src AND dst R2_MASKPEN

GXandReverse 2 src AND (NOT dst) R2_MASKPENNOT

GXcopy 3 src R2_COPYPEN

GXandInverted 4 (NOT src) AND dst R2_MASKNOTOPEN

GXnoop 5 dst R2_NOP

GXxor 6 src XOR dst R2_XORPEN

GXor 7 src OR dst R2_MERGEPEN

GXnor 8 (NOT src) AND (NOT dst) R2_NOTMASKPEN

GXequiv 9 (NOT src) XOR dst R2_NOTXORPEN

GXinvert 10 (NOT dst) R2_NOT

GXorReverse 11 src OR (NOT dst) R2_MERGEPENNOT

GXcopyInverted 12 (NOT src) R2_NOTCOPYPEN

GXorInverted 13 (NOT src) OR dst R2_MERGENOTPEN

GXnand 14 (NOT src) OR (NOT dst) R2_NOTMERGEPEN

GXset 15 1 R2_WHITE

X Window System B-67

Set_Write_Mask — Sets the write mask to the specified value. For an n-bit system,
the write mask can range from 0 to 2n – 1. For more information on the write mask,
refer to Using the Write Mask and Graphics Functions to Manipulate Color on
page B-82.

Static_Color — When specified with a Depth value, selects the StaticColor visual
with Depth bits per pixel. This keyword has effect only if no windows have been
created.

Static_Gray — When specified with a Depth value, selects the StaticGray visual
with Depth bits per pixel. This keyword has effect only if no windows have been
created.

Threshold — Specifies use of the threshold dithering algorithm — the simplest
dithering method. For more information on this dithering method, see PV-WAVE
User’s Guide.

Translation — Using the shared colormap (which is normally recommended)
causes PV-WAVE to translate between color indices (which always start with zero
and are contiguous) and the pixel values actually present in the display. The Trans-
lation keyword specifies the name of a variable to receive the translation vector. To
read the translation table:

DEVICE, Translation=Transarr

The result is a 256-element byte vector, Transarr. Element zero of Transarr
contains the pixel value allocated for the first color in the colormap, and so forth.

For more information on the translation table, refer to Color Translation Table on
page B-74.

True_Color — When specified with a Depth value, selects the TrueColor visual
with Depth bits per pixel. For example:

True_Color=12

The True_Color keyword has effect only if no windows have been created.

VisualID — If specified with the visual class ID number, selects the visual class
with visual class with given ID number.

NOTE To acquire visual class ID numbers use the X library client program xdpy-
info, or use the command DEVICE, /Get_Visuals.

Window_State — Returns an array containing values indicating the status
(open = 1, closed = 0) for all available PV-WAVE windows. For example:

WINDOW, 3

B-68 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

; Open window 3.

DEVICE, Window_State=winarray

PRINT, winarray

X Window Visuals

Visuals specify how the hardware deals with color. The X server of your display
may provide colors or only gray scale (black and white), or both. The color tables
may be changeable from within PV-WAVE (read-write), or they may be static
(read-only). The value of each pixel may be mapped to any color (Undecomposed
Colormap), or certain bits of each pixel are dedicated to the red, green, and blue
primary colors (Decomposed Colormap).

The X server provides six visual classes — read-write and read-only visuals for
three types of displays: Gray Scale, Undecomposed Color, and Decomposed Color.
The names of the visual classes are listed in the following table:

PV-WAVE supports all six types of visual classes, although not at all possible
depths (e.g., 4-bit, 8-bit, 24-bit).

NOTE For more information on the differences between pseudo color and 24-bit
(“true”) color, see PV-WAVE User’s Guide.

X servers from different manufacturers will each have a default visual class. Many
servers may provide multiple visual classes. For example, a server with display
hardware that supports an 8-bit deep, undecomposed, writable color map (Pseudo-

X Window System Visual Classes

Visual Class Name Writable Description

StaticGray no Gray scale

GrayScale yes Gray scale

StaticColor no Undecomposed color

PseudoColor yes Undecomposed color

TrueColor no Decomposed color

DirectColor yes Decomposed color

X Window System B-69

Color), may also easily support StaticColor, StaticGray, and GrayScale visual
classes.

TIP For more detailed information about X visual classes, refer to Volume 1 of the
Xlib Programming Manual, Second Edition, O’Reilly & Associates, Inc., Sebasto-
pol, CA, 1990.

Selecting a Visual Class

When opening the display, PV-WAVE asks the display for the following visual
classes, in order, until a supported visual class is found:

1. DirectColor, 24-bit
2. TrueColor, 24-bit
3. PseudoColor, 8-bit, then 4-bit
4. StaticColor, 8-bit, then 4-bit
5. GrayScale, any depth
6. StaticGray, any depth

You can override this default choice by using the DEVICE procedure to specify the
desired visual class and depth before you create a window.

For example, if you are using a display that supports both the 24-bit deep Direct-
Color visual class, and an 8-bit deep PseudoColor visual class, PV-WAVE will
select the 24-bit deep DirectColor visual class. To use PseudoColor, enter the fol-
lowing command before creating a window:

DEVICE, Pseudo_Color=8

NOTE If a visual type and depth is specified, using the DEVICE procedure, and
it does not match the default visual class of the screen, a new colormap is created.

Colormapped Graphics

Colormaps define the mapping from color index to screen pixel value. In this dis-
cussion, the term colormap is used interchangeably with the terms color table,
color translation table, or color lookup table — other terminology that you may be
familiar with from working with other systems. Colormaps perform a slightly dif-
ferent role on 8-bit workstations than they do on 24-bit workstations.

B-70 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

8-bit Graphics Primer

On an 8-bit workstation, the screen pixel value in video memory “looks up” the
red-green-blue color combination in its corresponding color table index (hence, the
term color lookup table). For example, a pixel value of 43 looks in color table loca-
tion 43 and may find Red=255, Green=0, and Blue=255. The three values at that
colortable location tell the red, green, and blue electron guns in the CRT what
intensities to display for that pixel. In this example, any pixel with a value of 43
will be displayed as magenta (100% red, 0% green, 100% blue).

24-bit Graphics Primer

On a 24-bit workstation, each pixel on the screen can be displayed in any one of a
possible 16.7 million (224) colors. The video memory on the machine is capable of
addressing each pixel on the screen with a 24-bit value, “decomposed” to eight bits
each for the red, green, and blue intensity values for that pixel.

Since each pixel in video memory directly references a set of three 8-bit red-green-
blue intensities, there is no need for a color lookup table as in an 8-bit system. How-
ever, because PV-WAVE is an 8-bit colortable-based software package (instead of
a “true” 24-bit software package), it performs similar conversions internally when
drawing to a 24-bit display.

Some 24-bit displays allow the screen to be treated as two separate 12-bit Pseudo-
Color visuals. This allows for “double-buffering”, a technique useful for
animation, or for storing distance data to simplify hidden line and plane calcula-
tions in 3D applications.

Although a 24-bit display takes up three times as much video memory as an 8-bit
system, the number of concurrent colors allowed on the screen is not limited by
memory — the number is limited only by the number of pixels on the screen
(assuming, of course, that the screen contains less than 16.7 million pixels). For
example, a 24-bit X Window display with 1280-by-1024 pixel resolution contains
1,310,720 pixels, and thus it can potentially display that many colors on the screen
at one time.

NOTE To see a formula for calculating how many colors a display is capable of
displaying, given the number of bits it has for describing each pixel, refer to the
PV-WAVE User’s Guide.

For more information about how colors are represented on 24-bit displays, refer to
Understanding 24-bit Graphics Displays on page B-79.

X Window System B-71

How PV-WAVE Allocates the Colormap

Many factors affect how PV-WAVE chooses the type of colormap. For example,
the keywords you supply with the DEVICE procedure control the way color is used
in graphics windows throughout that session.

PV-WAVE colormaps can be either shared or private, and either read-write or read-
only:

• Colormaps may be private or shared. This characteristic is determined by the
number and type of application(s) running during your session.

• Colormaps may be static (read-only) or writable. This characteristic is con-
trolled by the visual class that was invoked at the time the X server was started
(or restarted).

For more information about how to select PV-WAVE’s visual class, refer to Select-
ing a Visual Class on page B-69.

Shared Colormaps

The window manager creates a colormap when it is started. This is known as the
default colormap, and it can be shared by all applications using the display. When
any application requires a colormap entry, it can allocate one from this shared
colormap.

Advantages

Using the shared colormap ensures that all applications share the available colors
without conflict, and all color indices are available to every application. No appli-
cation is allowed to change a color that is allocated to another application.

In other words, PV-WAVE can change the colors it has allocated without changing
the colors that have been allocated by the window manager or other applications
that are running.

Disadvantages

On the other hand, using a shared colormap can involve the following
disadvantages:

• The window system’s interface routines must translate between internal pixel
values and the values required by the server, significantly slowing the transfer
of images.

• The number of available colors in the shared colormap depends on the window
manager being used and the demands of other applications. Thus, the number

B-72 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

of available colors can vary, and the shared colormap might not always have
enough colors available to perform the desired PV-WAVE operations.

• The allocated colors in a shared colormap do not generally start at 0 (zero) and
they are not necessarily contiguous. This makes it difficult to use the write
mask for certain operations.

For more information about the write mask, refer to Using the Write Mask and
Graphics Functions to Manipulate Color on page B-82.

Private Colormaps

An application can create its own private colormap. Most hardware can only dis-
play a single colormap at a time, so these private colormaps are called virtual
colormaps, and only one at a time is visible. When the window manager gives the
input focus to a window with a private colormap, the X server loads its virtual col-
ormap into the hardware colormap.

Advantages

The advantages of private colormaps include:

• Every color supported by the hardware is available to PV-WAVE, improving
the quality of images.

• Allocated colormaps always start at 0 (zero) and use contiguous colors, which
simplifies your use of the write mask.

• No translation between internal pixel values and the values required by the
server is required, which optimizes the transfer of images.

Disadvantages

On the other hand, using a private colormap can involve the following
disadvantages:

• You may see “flashing” when you move the pointer in and out of PV-WAVE
graphics windows. This happens because when the pointer moves inside a
PV-WAVE window, the PV-WAVE colormap is loaded, and other applications
are displayed using PV-WAVE’s colors. The situation is reversed when the
pointer moves out of the PV-WAVE window into an area under the jurisdiction
of a different application.

• Colors in a private colormap are usually allocated from the lower end of the
map first. But these typically are the colors allocated by the window manager
for such things as window borders, the color of text, and so forth.

• Since most PV-WAVE colormaps have very dark colors in the lower indices,
the result of having other applications use the PV-WAVE colormap is that the

X Window System B-73

portions of the screen that are not PV-WAVE graphics windows look dark and
unreadable.

When Color Characteristics are Determined

PV-WAVE decides how many colors and which combination of colormap and
visual class to use when it creates its first graphics window of that session. You can
create windows in two ways:

• Use the WINDOW procedure. WINDOW allows you to explicitly control
many aspects of how the window is created, including its X visual class.

• If no windows exist and a graphics operation requiring a window is executed,
PV-WAVE implicitly creates a window (window 0) using the default
characteristics.

Once the first window is created, all subsequent PV-WAVE windows share the
same colormap. The number of colors available is stored in the system variable
!D.N_Colors. For more information about !D.N_Colors, see the PV-WAVE User’s
Guide.

For more information about when color characteristics are determined when draw-
ing or plotting to a window running in a 24-bit visual class, refer to 24-bit Visual
Classes on page B-77.

Closing the Connection to the X Server to Reset Colors

To change the type of colormap used or the number of colors, you must first com-
pletely close the existing connection to the X server using the following command:

DEVICE, /Close_Display

You can then use the WINDOW procedure to specify the new configuration. How-
ever, remember that if you enter the command shown above, it will cause every
PV-WAVE graphics window that is currently open to be deleted.

TIP Another way to close the connection to the X server is to delete every
PV-WAVE graphics window that is currently open; this automatically closes the
connection.

How Many Colors PV-WAVE Maps into the Color Table

If the number of colors to use is explicitly specified using the Colors keyword with
the WINDOW procedure, PV-WAVE attempts to allocate the number of colors
specified from the shared colormap using the default visual class of the screen. If

B-74 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

enough colors aren’t available, a private colormap with that number of colors is
created instead.

For more information about the advantages and disadvantages of private color-
maps, refer to Private Colormaps on page B-72.

By default, the shared colormap is used whenever possible, and PV-WAVE allo-
cates all available colors from the shared colormap. The allocation occurs if no
window currently exists and a graphics operation causes PV-WAVE to implicitly
create one.

Reserving Colors for Other Applications’ Use

Specifying a negative value for the Colors keyword to the WINDOW procedure
causes PV-WAVE to use the shared colormap, allocating all but the specified num-
ber of colors. For example:

WINDOW, Colors = -16

allocates all but eight of the currently available colors. This allows other applica-
tions that might need their own colors (such as the window manager) to run in
tandem with PV-WAVE.

Color Translation Table

Colors in the shared colormap do not have to start from index zero, nor are they
necessarily contiguous. PV-WAVE preserves the illusion of a zero-based contigu-
ous colormap by maintaining a translation table between applications’ color
indices and the actual pixel values allocated from the X server. The color indices
range from 0 to !D.N_Colors – 1. Normally, you need not be concerned with this
translation table, but it is available using the statement:

DEVICE, Translation=Trans

This statement stores the current translation table, a 256-element byte vector, in the
variable Trans. Element zero of this translation vector contains the value pixel
allocated for the zeroth color in the PV-WAVE colormap, and so forth.

TIP In the case of a private colormap, each element of the translation vector con-
tains its own index value, because private colormaps start at zero and are
contiguous.

The translation table may be bypassed, allowing direct access to the display’s color
hardware pixel values, by specifying the Bypass_Translation keyword with the

X Window System B-75

DEVICE procedure. Translation is disabled by clearing the bypass flag, as shown
in the following command:

DEVICE, Bypass_Translation=0

When a private or static (read-only) color table is initialized, the bypass flag is
cleared. The bypass flag is always set when initializing a shared color table.

For more information about !D.N_Colors, refer to the PV-WAVE User’s Guide.

To see an example of how the translation table can affect displayed colors, see
Interaction Between the Set_Graphics_Function Keyword and Hardware Pixel
Values on page B-84.

Using Pixmaps to Improve Application Performance

The X Window System can direct graphics to either windows or pixmaps.

• Windows — Windows are the usual windows that appear on the screen and
contain graphics. Drawing to a window produces a viewable result.

• Pixmaps — Pixmaps are areas of invisible graphics memory contained in the
server. Drawing to a pixmap simply updates the pixmap memory.

Pixmaps are useful because it is possible to write graphics to a pixmap and then
copy the contents of the pixmap to a window where it can be viewed. This copy
operation is very fast because it happens entirely within the server, instead of com-
municating across the network to the client. Provided enough pixmap memory is
available for the server’s use, this technique works very well for animating a series
of images. The process works by placing the desired images into pixmap memory
and then copying them to a visible window.

To read a brief description of the relationship between the X server and the X client,
refer to X Window System on page B-58.

Creating a Pixmap

To create a pixmap, use the Pixmap keyword with the WINDOW procedure. For
example, to create a 128-by-128 pixmap in PV-WAVE window 1:

WINDOW, 1, /Pixmap, XSize=128, YSize=128

Once they are created, pixmaps are treated just like normal windows, although
some operations (WSHOW, for instance) don’t have any noticeable effect when
applied to a pixmap.

B-76 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Example — Animating a Series of Pixmap Images

The following example shows how animation can be performed using pixmap
memory. It uses a series of 15 heart images taken from the file heartbeat.dat.
(This file is located in the data subdirectory of the main PV-WAVE directory.) It
creates a pixmap and writes all 15 images to it. It then uses the Copy keyword of
the DEVICE procedure to copy the images to a visible window. Pressing any key
causes the animation to halt:

PRO animate_heart

; This procedure animates a series of heart data.

IF !Version.platform EQ ’VMS’ THEN $
OPENR, u, GETENV(’WAVE_DIR’)+$
’[data]heartbeat.dat’, /Get_Lun $

ELSE $

OPENR, u, ’$WAVE_DIR/data/heartbeat.dat’, /Get_Lun

; Open the file containing the images.

frame = ASSOC(u, BYTARR(256, 256))

; Associate a file variable with the file. Each heart image is
; 256-by-256 pixels.

WINDOW, 0, /Pixmap, XSize=7680, YSize=512

; Window 0 is a pixmap that is one double-sized image tall and
; 15 double-sized images wide. The images will be placed in this
; pixmap.

FOR i = 0, 15-1 DO TV, $
REBIN(SMOOTH(frame(i), 3), 512, 512), i

; Write each image to pixmap memory. SMOOTH is used to
; improve the appearance of each image and REBIN is used to
; enlarge/shrink each image to the final display size.

FREE_LUN, u

; Close the image file and free the file unit.

WINDOW, 1, XSize=512, YSize=512, Title=’Heart’

; Window 1 is a visible window that is used to display the animated
; data, creating the appearance of a beating heart.

i = 0L

; Load the current frame number.

WHILE GET_KBRD(0) EQ ’’ DO BEGIN
DEVICE, Copy=[i * 512, 0, 512, 512, 0, 0, 0]

; Display frames until any key is pressed. Copy the next image
; from the pixmap to the visible window.

i = (i + 1) MOD 15

; Keep track of total frame count.

X Window System B-77

ENDWHILE

END

In this example, the pixmap was made one image tall and 15 images wide for sim-
plicity. However, some X servers will refuse to display a pixmap that is wider than
the physical width of the screen. For this case, the above routine would have to be
rewritten to either use a shorter, taller pixmap or to use several pixmaps.

24-bit Visual Classes

If you do not request a visual class (by entering a DEVICE command prior to open-
ing the first graphics window), PV-WAVE uses the first class the device supports,
regardless of the root visual class. PV-WAVE queries the device about the follow-
ing visual classes, in order, until a supported visual class is found:

1. DirectColor, 24-bit
2. TrueColor, 24-bit
3. PseudoColor, 8-bit, then 4-bit
4. StaticColor, 8-bit, then 4-bit
5. GrayScale, any depth
6. StaticGray, any depth

PV-WAVE can operate in either of the two 24-bit visual classes. But because of the
search order, if your workstation is configured to run in a 24-bit mode, PV-WAVE
will choose DirectColor by default.

For more discussion concerning the search order for X visual classes, refer to
Selecting a Visual Class on page B-69.

DirectColor Mode

In DirectColor mode, color tables are always in effect and can be loaded.
PV-WAVE loads the color tables using the same LOADCT and TVLCT commands
you use when using PV-WAVE in 8-bit PseudoColor mode.

In this mode, color data is decompressed, meaning there are still only 256 slots in
the PV-WAVE color table while operating in DirectColor mode. When color data
is decompressed, 8 of the bits map to one of the 256 reds, 8 of the bits map to one
of the 256 greens, and 8 of the bits map to one of the 256 blues that have been
loaded into the 256 element color table (with LOADCT or TVLCT).

For more information about which bits are mapped to red, green, and blue, refer to
Specifying 24-bit Colors in Hexadecimal Notation on page B-79.

B-78 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

TrueColor Mode

In TrueColor mode, color tables cannot be loaded. However, PV-WAVE can load
a translation table. You load the translation table using either the LOADCT or
TVLCT commands. The translation table works just like a color table except that
it takes effect at drawing time (TV, PLOT, CONTOUR, etc.) rather than when you
enter the LOADCT or TVLCT command.

Example — Using PV-WAVE in TrueColor Mode

In TrueColor mode, the color map takes effect when the graphics command (PLOT,
SURFACE, TVSCL, etc.) is entered. An intriguing benefit of this behavior is that
several PV-WAVE color tables loaded into translation tables (using LOADCT or
TVLCT) may be used simultaneously during the same session, as shown in the fol-
lowing group of commands:

DEVICE, True_Color=24

; Define a TrueColor graphics window.

data = DIST(512)

; Create a sample data set that can be displayed as an image.

WINDOW, 0

LOADCT, 0

TVSCL, data

; Display the image in window 0 using grayish hues.

WINDOW, 1

LOADCT, 1

TVSCL, data

; Display the image in window 1 using bluish hues.

WINDOW, 2

LOADCT, 4

TVSCL, data

; Display the image in window 2 using shades of red, yellow, and
; green.

If the root window is also running in the 24-bit TrueColor visual class (just like
PV-WAVE in this example), you will not see any “flashing”, even though you are
entering LOADCT and TVSCL commands. For more information about the con-
dition known as “window flashing”, refer to Private Colormaps on page B-72.

PV-WAVE Does Not Inherit the X Visual Class

PV-WAVE does not inherit the visual class of the X Window System root window.
Thus, booting a machine with the root window set to any specific visual class has

X Window System B-79

no effect on the visual classes that are available for use by PV-WAVE (see the Note
later in this section for an exception to this statement). For example, you could edit
the /etc/ttys file of a Digital UNIX workstation (if it supported 24-bit visual
classes) such that it included the line:

0: window = ’/usr/bin/Xtm -class StaticGray’

and then proceed to simultaneously (and successfully) run two PV-WAVE sessions
— one in DirectColor mode and the other in PseudoColor mode.

NOTE Windows that are created with calls to WAVE Widgets or Widget Toolbox
functions and procedures are treated differently. These windows do inherit the X
visual class from their top-level shell, which in turn, inherits the X visual class from
the root window. In this sense, windows that are part of a graphical user interface
(GUI) are different from ordinary PV-WAVE graphics windows.

Understanding 24-bit Graphics Displays

A 24-bit raster image is actually made up of three component 8-bit images — a red,
a green, and a blue image, which combine to create a “true” color picture. With 24-
bit graphics displays, each pixel on the screen can be displayed in any one of a pos-
sible 16.7 million (224) colors.

The video memory in a 24-bit machine is capable of addressing each pixel on the
screen with 8 bits assigned to each of the red, green, and blue intensity values for
that pixel. These sets of 8-bit values are known as color planes, e.g., the “red
plane”, the “green plane”, and the “blue plane”. The three red-green-blue intensity
values for each 24-bit pixel in video memory are translated directly into color
intensities for the red, green, and blue electron guns in the CRT.

Specifying 24-bit Colors in Hexadecimal Notation

Colors in PV-WAVE graphics windows can be specified using the Color keyword.
In the range of {0…16,777,216}, the color magenta has a decimal value of
16,711,935. But when using 24-bit color, the convention is to represent this value
not as a decimal value, but as a 6-digit hexadecimal value. For example, the color
magenta can be passed to one of the graphics routines using the construct:

Color = ’ff00ff’x

The first two digits in this hexadecimal value correspond to the blue intensity, the
middle two digits correspond to the green intensity, and the right two digits corre-
spond to the red intensity. The interpretation of the various digits is shown in .

B-80 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Figure B-3 Hexadecimal notation can be used to represent 24-bit numbers; each two digits
describes either the red, green, or blue intensity. The top color shown in this figure is a light
gray, since the red, green, and blue components are all set to an equal intensity. The lower
color shown is the color magenta, where red and green are both set to full intensity (f f), but
the color green is essentially turned “off” by setting it equal to zero (00).

The hexadecimal notations for some of the most commonly-used colors are shown
in the following table.
Hexadecimal Notation for Comonly used Colors

Color Hexadecimal Notation

Black ’000000’x

White ’f f f f f f’x

Red ’0000f f’x

Green ’00f f00’x

Blue ’f f0000’x

Cyan ’f f f f 00’x

Magenta ’f f00f f’x

red intensity

green intensity

blue intensity

c0 c0 c0

red intensity

green intensity

blue intensity

ff 00 ff

Gray

Magenta

X Window System B-81

NOTE When programming with WAVE Widgets or Widget Toolbox, you can only
enter colors using color names. The hexadecimal form is not recognizable by the
WAVE Widgets or Widget Toolbox routines. For more information about how to
select colors for widgets in a graphical user interface (GUI), refer to the PV-WAVE
Application Developer’s Guide.

Specifying 24-bit Plot Colors

In the TrueColor visual class, raster graphics colors go through the translation
table, but vector graphics colors do not. This means that vector graphics colors in
plots can be specified explicitly despite any translation table that has been loaded.

For more information about the translation table, refer to Color Translation Table
on page B-74.

Example — Plotting with 24-bit Colors

The following example plots a line chart showing five data sets, each one plotted
in a different color. (Assume that mydata1, mydata2, mydata3, mydata4,
and mydata5 have all been defined as integers or floating-point vectors prior to
entering the commands shown below.)

DEVICE, True_Color=24

; Define a TrueColor graphics window.

PLOT, mydata1, Color=’00ff00’x

; Draw mydata1 using a green line.

OPLOT, mydata2, Color=’0000ff’x

; Draw mydata2 using a red line.

OPLOT, mydata3, Color=’ff0000’x

; Draw mydata3 using a blue line.

OPLOT, mydata4, Color=’00ffff’x

; Draw mydata4 using a yellow line.

OPLOT, mydata5, Color=’007fff’x

; Draw mydata5 using a orange line.

Yellow ’00f f f f’x

Medium Gray ’7f7f7f’x

Hexadecimal Notation for Comonly used Colors (Continued)

Color Hexadecimal Notation

B-82 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

NOTE The system variable !D.N_Colors must still be initialized properly prior to
opening the graphics window. For more information about how to initialize color
characteristics, refer to When Color Characteristics are Determined on page B-73.

Using the Write Mask and Graphics Functions to Manipulate
Color

If you are using PV-WAVE in one of the 24-bit visual classes, you may want to
consider using the write mask to isolate a certain group of bits, such as the red
group of bits, or the green group. This is relatively easy to do, since each pixel in
video memory directly references a set of three 8-bit red-green-blue intensities. For
more information about how to address the various planes of a 24-bit (24-plane)
workstation, refer to Understanding 24-bit Graphics Displays on page B-79.

In an 8-bit visual class, an analogous write mask operation is to use a write mask
of 1 so that only the “lowest” plane is affected. But this is a suitable choice only if
you want to force your application to display in monochrome on both color and
monochrome displays.

TIP For best results when using the write mask, use a color table that uses all 256
available colors, and bypass the translation table to make sure the color table starts
at zero (0). Unfortunately, a side effect of letting PV-WAVE allocate all 256 colors
is that you may see “window flashing” when using your application, as explained
in Private Colormaps on page B-72.

Using the Write Mask to Create Special Effects

The write mask can be used to superimpose (overlay) one graphics pattern over
another when plotting to a graphics window, allowing you to create special effects.
For example, some 24-bit displays allow the screen to be treated as two separate
12-bit Pseudo_Color visuals. This allows for “double-buffering”, a technique use-
ful for animation, or for storing distance data to simplify hidden line and plane
calculations in 3D applications.

Another possible application for the write mask is to simultaneously manage two
4-bit-deep images in a single graphics window instead of a single 8-bit-deep image.
You could use the write mask to control whether the current graphics operation
operates on the “top” image or the “bottom” image.

X Window System B-83

Using Graphics Functions to Manipulate Color

PV-WAVE’s X (and Windows) driver provides two keywords for inquiring and
manipulating the graphics function — Get_Graphics_Function and
Set_Graphics_Function.

The value of the Set_Graphics_Function keyword controls the logical graphics
function; this function specifies how the source pixel values generated by a graph-
ics operation are combined with the pixel values already present on the screen. To
see a complete list of graphics function codes, refer toTo see a complete list of
graphics function codes, refer to the Set_Graphics_Function keyword description
in the section X Window System on page B-58.

For example, the following code segment shows how to use the XOR graphics
function to toggle the “low bit” of the pixel value that determines the color in a rect-
angle defined by its diagonal corners (x0, y0) and (x1, y1):

DEVICE, Get_Graphics=oldg, Set_Graphics=6

; Set graphics function to exclusive or (GXxor), saving the old
; function.

POLYFILL, [[x0,y0], [x0,y1], [x1,y1], $

[x1,y0]], /Device, Color=1

; Use POLYFlLL to select the area to be inverted, and
; immediately XOR a pixel value of 1 with the image currently
; displayed in that area. XORing every pixel with the binary
; equivalent of 1 ensures that only the lowest bit of the color is
; affected.

DEVICE, Set_Graphics_Function=oldg

; Restore the previous graphics function.

The default value for the Set_Graphics_Function keyword is GXcopy, which
means that the source graphics from the current operation get copied into the win-
dow, destroying any graphics that were previously displayed there.

Interaction Between the Set_Write_Mask and the
Set_Graphics_Function Keywords

Use the Set_Write_Mask keyword to specify the planes whose bits you are manip-
ulating or the plane you want to use for the special effects. The way the two
graphics patterns are combined depends on the value you provide for the
Set_Graphics_Function keyword. For example, the following commands:

DEVICE, Set_Graphics_Function=6

DEVICE, Set_Write_Mask=8

B-84 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

extract the fourth bit (the binary equivalent of the decimal value 8) of the image in
the current graphics window. The extracted plane is XORed (XOR is the graphics
function specified by setting the Set_Graphics_Function keyword equal to 6) with
the source pattern (the result of the current graphics operation). After the graphics
function is implemented, the result is drawn in the current graphics window using
whichever color(s) in the color table match the resultant value(s).

Interaction Between the Set_Graphics_Function Keyword and
Hardware Pixel Values

The graphics functions specified by the Set_Graphics_Function keyword operate
on hardware pixel values. Unless the translation table is bypassed, like it is when
displays with static (read-only) visual classes and private color tables are used, a
color table index that represents a certain color will likely differ in value from the
hardware pixel value that represents the same color. This can produce unexpected
colors when you use the GX graphics functions.

An easy way to avoid getting such unexpected colors is to use Boolean OR, AND,
XOR, and NOT operators, rather than the GX graphics functions. For details, see
the following example.

Example — Understanding the Colors that are Produced by the GX Graphics
Functions

Suppose that you are using your X display in one of the 8-bit visual classes, and a
simple color translation table has been defined in the following way:

Figure B-4 An example color translation table.

Now enter the following commands:

data = [1, 2, 3]

; Define a simple dataset to experiment with.
GXand = 1

PLOT, data, Color=5

; The data is plotted in hardware color 1, because color 5 gets
; translated to hardware pixel value 1.

Hardware
Pixel
Value

PV-WAVE
Color Table
Index

4

5

6

3
1

7
Color Translation Table

X Window System B-85

PLOT, data, Color=(5 AND 6)

; The data is plotted in hardware color 3, because 5 ANDed with 6
; equals 4, which then gets translated to hardware pixel value 3.

DEVICE, Set_Graphics_Function=GXand

PLOT, data, Color=6

; The data is plotted in hardware color 1, because color 5 gets
; translated to hardware pixel value 1 and color 6 gets translated to
; hardware pixel value 7. Then, in hardware pixel values, 7 is ANDed
; with 1 and the result equals 1.

TIP You can check the values in the current translation table using the Translation
keyword; this keyword specifies the name of a variable to receive the translation
vector. To read the translation table, enter this command:

DEVICE, Translation=Transarr

The result is a 256-element byte vector, Transarr. Element zero of Transarr
contains the pixel value allocated for the first color in the PV-WAVE colormap, and
so forth.

X Window IDs

PV-WAVE provides methods for getting and setting X Window IDs for any
PV-WAVE window. PV-WAVE also supports methods for setting and getting X
Pixmap IDs for PV-WAVE windows.

To set the X Window ID for a PV-WAVE window, use the Set_Xwin_Id keyword
with the WINDOW procedure. The X Window ID must be a valid, existing ID for
the X server that PV-WAVE is using. When the Set_Xwin_Id keyword is used,
PV-WAVE uses the X window associated with the ID; PV-WAVE does not create
a new window. The programmer is responsible for synchronizing the use of this
window by the two programs.

NOTE If the X Window ID is from another program, PV-WAVE color table
changes may not affect the window.

To get the X Window ID for a PV-WAVE window, use the Get_Win_ID keyword
with the WINDOW procedure. The X Window ID returned from the WINDOW
procedure may be passed to another program. The other program may then write
into the PV-WAVE window. The programmer is responsible for synchronizing the
use of this window by the two programs.

Similarly, the Get_Xpix_Id keyword can be used to get the X Pixmap ID.

B-86 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

CAUTION The WDELETE procedure will delete all windows sharing a common
X Window ID. For example:

WINDOW, 0, Get_Xwin_Id=New_Xwin_Id

WINDOW, 1, Set_Xwin_Id=New_Xwin_Id

WDELETE, 1

The command WDELETE, 1 deletes both windows 1 and 0.

Z-buffer Output
The Z-buffer allows you to create complex 3D plots, image warping to polygons,
and transparency effects without special hardware.

To direct graphics output to the Z-buffer, enter the command:

SET_PLOT, ’Z’

This causes PV-WAVE to use the Z-buffer driver for producing graphical output.
Once the Z-buffer driver is enabled via SET_PLOT, the DEVICE procedure is used
to control its actions, as described in Controlling Z-buffer Output with DEVICE
Keywords on page B-86.

Use INFO, /Device to view the driver’s current settings.

Controlling Z-buffer Output with DEVICE Keywords

The following keywords to the DEVICE procedure provide control of the Z-buffer
driver:

Close — Deallocates the memory used by the buffers. The Z-buffer device is rein-
itialized if subsequent graphics operations are directed to the device.

Get_Graphics_Function — See the description of the Get_Graphics_Function
keyword in Controlling the X Driver with DEVICE Keywords on page B-61.

Get_Write_Mask — See the description of the Get_Write_Mask keyword in Con-
trolling the X Driver with DEVICE Keywords on page B-61.

Set_Character_Size — A two-element vector that changes the standard width and
height of the vector-drawn fonts. The first element in the vector contains the new
character width, and the second element contains the height. By default, characters
are approximately 8-pixels wide, with 12 pixels between lines.

Z-buffer Output B-87

Set_Colors — Sets the number of pixel values, !D.N_Colors. This value is used by
a number of routines to determine the scaling of pixel data and the default drawing
index. Allowable values range from 2 to 256, and the default value is 256. Use this
parameter to make the Z-buffer device compatible with devices with fewer than
256 color indices.

Set_Graphics_Function — See the description of the Set_Graphics_Function
keyword in Controlling the X Driver with DEVICE Keywords on page B-61.

The Z-buffer allows you to use all graphics functions supported by the X driver.

Set_Resolution — Two-element vector that sets the width and height of the buff-
ers. The default size is 640-by-512. If this size is not the same as the existing
buffers, the current buffers are destroyed and the device is reinitialized.

Set_Write_Mask — See the description of the Set_Write_Mask keyword in Con-
trolling the X Driver with DEVICE Keywords on page B-61.

Z-buffer Examples

Example 1

This example demonstrates how graphics can be rendered in memory (into the Z-
buffer) and then later displayed. The resulting image is shown in .

SET_PLOT, ’z’

SHADE_SURF, HANNING(23,23)

SURFACE, HANNING(23,23), /Noerase

img = TVRD(0,0,640,512)

SET_PLOT, ’x’

TV, img

B-88 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

Figure B-5 Resulting image from Example 1.

Example 2

This example creates a single image composed of two intersecting objects drawn
with hidden surfaces removed. This effect can only be accomplished with the Z-
buffer. The resulting image is shown in .

dev_name = !D.Name

; Remember current graphics device
im = BYTARR(512,512)

OPENR, 1, FILEPATH(‘mandril.img’, SubDir=’data’)

; Open the file containing the image.
READU, 1, im

CLOSE, 1

SET_PLOT, ‘z’

ERASE

; Erase the Z-buffer in case there was something in there before.
SHADE_SURF, HANNING(23,23), /Save

; Draw a surface.
; Remember the 3D viewing transform (/Save).

verts=[[0,0,0], [20,0,0.5], [20,20,1], $
[0,20,0.5]]

; Create a 3D quadrilateral in data coordinates.

Z-buffer Output B-89

POLYFILL, Verts, Pattern = im, $
Image_coord=[[0,0],[511,0],[511,511], $
[0,511]], /T3d

; Draw the transformed quadrilateral with an image mapped
; onto it.

res = TVRD(0,0,640,512)

SET_PLOT, dev_name

TVSCL, res

; Notice how the two objects intersect.

Figure B-6 Resulting image from Example 2.

Example 3

In this example, the same image from the previous example is created; however,
this time maximum intensity projection is used to produce a transparency effect.
The resulting image is shown in .

dev_name = !D.Name

; Remember current graphics device
im = BYTARR(512,512)

OPENR, 1, FILEPATH(‘mandril.img’, SubDir=’data’)

READU, 1, im

CLOSE, 1

SET_PLOT, ’z’

B-90 Appendix B: Output Devices and Window Systems PV-WAVE Reference Volume 3

ERASE

; Erase the Z-buffer in case there was something in there before.
SHADE_SURF, HANNING(23,23), /Save

; Draw a surface.
; Remember the 3D viewing transform (/Save).

verts=[[0,0,0], [20,0,0.5], [20,20,1], [0,20,0.5]]

; Create a 3D quadrilateral in data coordinates.
POLYFILL, Verts, Pattern = im, $

Image_coord=[[0,0],[511,0],[511,511], [0,511]], /T3d

; Draw the transformed quadrilateral with an image mapped
; onto it.

res = TVRD(0,0,640,512)

SET_PLOT, dev_name

TVSCL, res

; Notice how the two objects interact this time. You can partially see
; through the surface to the image passing through it.

Figure B-7 Resulting image from Example 3.

Index - A 1

Reference Index

A
ABS function 46
absolute value 46
ACOS function 47
ADD_EXEC_ON_SELECT procedure 48
ADDVAR procedure 49
AFFINE function 50
ALOG function 51
ALOG10 function 52
ampersand, separating multiple statements

1265
animation

See also images
controlling the pace 1077, 1102
cycling through images 1077
data in pixmaps 1074, 1103
double-buffering on 24-bit displays B-70
image 1159
improving using pixmaps B-75
of images using bitmaps B-49
sequences of images 1073, 1102

annotation
alignment of the text 1197
angle of 1213
axis tick marks 1225
axis title 1229, 1253
centering of text 1197
character size 1203, 1219, 1239, 1249
color of 1204
contour plots 1199
display without data 1212
formatting commands B-39
map 574
margin for 1249
plots 1189
size of title 1203, 1239

3D orientation of text 1222
tick marks 1252
title of plot 1224, 1245
width of text string 1225
X axis 1221

application programming. See program-
ming

arc-cosine 47
arcsine 55
area of polygon 676
array

shift along one dimension 818
subset 835

arrays
arbitrary type, creating 553
average of 61
building tables from 93
calculating determinant of 282
complement of 1135
compute logical AND 502
conversion of indices 503
correlation coefficient of 166
creating

associative 53
dynamically 553
from unique elements 960
integer type 505, 509
list arrays 533
longword type 547
strings 830, 868
with arbitrary initialization 756

days of the month 590
days of the week 183
diagonal, making or extracting 284
double-precision complex type 190
double-precision floating type 187
double-precision type 186

2 Index - B PV-WAVE Reference

elements, number of 597
expanding into higher dimensions 342
extrema 344
finding the maximum value 575
floating type 364, 366
homogeneous region, counting 87
homogeneous region, isolating 86
integer type 505, 509
intersection of 1135
linear log scaling 651
log-linear scaling 651
log-log scaling 651
longword type 547
mean of 865
median value of 577
minimum value of 584
non-zero elements, locating 1133
OR together 504
padding 634
reading

from display 951
reformatting 745
replicating values of 756
resample to new dimensions 758
resizing of 160, 743
reversing direction of 762
rotating 772
scaling to byte values 102
shifting elements of 819
size and type of 832
smoothing of 838
sorting contents of 854, 858
standard deviation of 865
string 830, 868
subscripts

of points inside polygon region 683,
690

sum elements of 931
summing 901
table grouping 399
table sorting 631
tensor product 927
transformation 50
transposition of 936
tuples, finding unique 959
union of 1135

ASARR function 53
ASCII

fixed format I/O 242

free format data, writing to a file 250
reading files 203, 218

ASIN function 55
ASKEYS function 56
ASSOC function 58
ATAN function 60
average, boxcar 838
AVG function 61
axes

See also tick marks
adding to plot 63
annotation of 1225, 1229
color of 1204
date/time 1253
endpoints of 1253
global control of 1248–1253
linear 1253
logarithmic 1230, 1253
saving scaling parameters 1218
without data 1212

AXIS procedure 63

B
backing store, for windows B-2
back-substitution for linear equations 910
bandpass filters 286
BAR procedure 66
BAR2D procedure 73
BAR3D procedure 75
base 10 logarithm 52
basis function, example of 170
BESELI function 77
BESELJ function 78
BESELY function 80
BILINEAR function 82
bilinear interpolation 82
BINDGEN function 85
bit shifting operation 516
bitmap

See also pixmap
animation of series B-49
creating with WINDOW procedure B-

49
directed to graphics window 1138
examples of B-49
used for cursor pattern B-40
with WIN32 driver B-49

BLOB function 86

Index - C 3

BLOBCOUNT function 87
boundary 88
BOUNDARY function 88
BREAKPOINT procedure 89
breakpoints

entered from command line 89
buffer, flushing output 321, 367
BUILD_TABLE function 93
BUILDRESOURCEFILENAME function 90
BYTARR function 96
byte

arrays, creating 96
converting data to 97
extracting data from 97
scaling 102

BYTE function 97
BYTEORDER procedure 100
BYTSCL function 102

C
C_EDIT procedure 109
CALL_UNIX function 105
callback

procedures 336
registering 334

Cartesian product 171
CD procedure 107
CeditTool procedure 1086
center 3D data in display 113
CENTER_VIEW procedure 113
CGM output B-4–B-7
characters

converting parameters to 872
special 1265

CHEBYSHEV function 115
CHECK_MATH function 118
CHECKFILE procedure 116
child processes, spawning 855, 859
CINDGEN function 121
city names 969
clear output buffer 321, 367
clear screen 324
client

in X Window Systems B-58
clipboard

copy graphics to 1070
pasting graphics from 1145

clipping

defining a rectangle for 1204
graphics output 1204
of graphics window 1215, 1239
strings 889
suppressing 1242

CLOSE procedure 122
closing

files 122
code area, PV-WAVE 1271
color

See also colormaps; color systems;
color tables

as 6-digit hexadecimal value B-79
background

plotting background color 1198
PostScript output B-29
setting with system variable

1238
bar, purpose of 1079
characteristics, determining B-73
decomposed into red, green, and

blue B-70
editing interactively 1083, 1092
8-bit display B-70
histogram equalizing 434
images 1102
index, set for graphics elements

1204
model, PV-WAVE B-47
number available on graphics device

1235
PostScript devices B-29
pseudo B-29
raster graphics B-81
reserving for other applications B-74
rotate with color bar 1081, 1094
running out of B-72
specifying by name B-81
surface bottom 1199
translation

in X Windows B-74
table B-61, B-69, B-74

true-color B-29
24-bit display B-70
unexpected B-84
vector graphics B-81
WMF driver corrections B-54
X Windows B-68

color tables

4 Index - C PV-WAVE Reference

convert HSV to RGB 451
convert RGB to HLS or HSV 123
copying 792
creating 1086
editing 1083, 1092
expanding 870
histogram equalizing 434, 437
HLS based system 448, 723
indices 1087
loading

custom color table 537
from variables 949
predefined tables 535

lookup table B-70
modifying 587
palette window 129, 636, 1086
replacing 587
stretching 870, 1094
supplied with PV-WAVE 535, 587
Tektronix 4115 color table 925
tools, interactive 109, 124, 635
24-bit devices B-70

COLOR_CONVERT procedure 123
COLOR_EDIT procedure 124
COLOR_PALETTE procedure 129
colormap

compared to color table B-69
how PV-WAVE

chooses one B-71
obtains B-73

private, advantages/disadvantages B-72
shared, advantages/disadvantages B-71

column-oriented data
reading 210, 225, 245, 253

commands
.RNEW 1270

comment, adding a 1266
compare 780
COMPILE procedure 131
compiling

memory requirements 1271
one or more statements 337
saving compiled procedure 131
suppressing messages 1247

complement 1135
complex

arrays, creating 135, 138
conjugate 142
data type 135

COMPLEX function 135
COMPLEXARR function 138
Computer Graphics Metafile. See CGM
concurrent processes 334
CONE function 139
CONGRID function 140
CONJ function 142
.CON 1268
contour plots

algorithms for drawing 149
algorithms used to draw 1207
cell drawing method 1207
combining with

surfaces 1219
surfaces and images 823

creating 144, 147
cubic spline, interpolation of 1220
default number of levels 1211
filled 147

with color 151
with pattern 1214

gridding irregular data 387
labeling 1201
levels

color of 1200
number of 1209, 1211

line thickness of 1202
line-following drawing method 1207
linestyle of 1202
maximum value to contour 1211
scattered data 147
shading 151
sparse data 147

CONTOUR procedure 144
CONTOUR2 procedure 147
CONTOURFILL procedure 151
contraction 931
contrast, control 434
CONV_FROM_RECT function 158
CONV_TO_RECT function 163
CONVERT_COORD procedure 156
converted 1046
converting

between graphics coordinate systems
9, 158, 163, 680, 697

color lists 677
data to

See also extracting data
byte type 97, 102

Index - D 5

complex type 135
date/time 519, 783, 894, 973
double complex type 188
double-precision type 300
floating-point type 364
integer type 362
longword integer type 547
string type 872

Julian day number to PV-WAVE date/time
519

CONVOL function 160
convolution 160
coordinate systems

converting from one to another 9, 158,
163, 680, 697

data 1206
device 1206
normalized 1212
polar 1215
reading the cursor position 175

copying
graphics, from window to clipboard 1070
pixels B-40, B-49

CORRELATE function 166
correlation and regression analysis, Hilbert

transform 432
correlation coefficient, computing for arrays

166
COS function 168
COSH function 169
cosine 168
COSINES function 170
count-intensity distributions 437
cpr files. See runtime mode
CPROD function 171
CREATE_HOLIDAYS procedure 171
CREATE_WEEKENDS procedure 172
cross product, calculating 174
CROSSP function 174
CSV files, generating 251
cube, establishes frame of reference 1099,

1116
cubic splines

interpolation 862
to smooth contours 1220

cursor
for Windows B-40
for X Windows system B-62
hot spot of B-62

manipulating with images 947
position, reading 175
selecting default B-40, B-62
specifying bitmap for B-62
specifying pattern of B-40
system variable, !C 1233

CURSOR procedure 175
CURVATURES function 178
curve fitting

Gaussian 375
least squares 913
multiple linear regression 747
non-linear least squares 179
polynomial 691, 694
singular value decomposition

method 913
to a surface 905

CURVEFIT function 179
cut-away volumes, defining 985
CYLINDER function 181

D
damage repair of windows B-2
data

3D scaling 782
building tables from 93
column-oriented 210, 225, 245, 253
connecting symbols with lines 1217
defining a plotting symbol 1217
dense points in gridding 347, 392
fitting, cubic spline 862
grouping tables 399
importing tool 1174
linear regression fit to 747
magnetic tape storage 764
maximum value to contour 1211
points, connecting with lines 1217
range 1250
reduction before plotting 1213
scaling to byte values 102
skipping over 834
smoothing of 838
sorting tables 631
sparse points in gridding 392
symbols 1217

data area, PV-WAVE 1271
data types

of variable, determining 832

6 Index - D PV-WAVE Reference

date/time data
array of, generating 309
converting to

double-precision variables 314
numerical data 319
string data 316

current system date and time 930
day of the year for each date 185
decrementing values 312
determining elapsed time 308
duration 308
incrementing values 303
printing values 311
removing holidays and weekends 304

DAY_NAME function 183
DAY_OF_WEEK function 184
DAY_OF_YEAR function 185
DBLARR function 186
DC_allow_chars 206, 221
DC_binary_check 206, 221
DC_ERROR_MSG function 191
DC_OPTIONS function 193
DC_READ_24_BIT function 196
DC_READ_8_BIT function 194
DC_READ_CONTAINER function 199
DC_READ_DIB function 201
DC_READ_FIXED function 203
DC_READ_FREE function 218
DC_READ_TIFF function 231
DC_SCAN_CONTAINER function 235
DC_WRITE_24_BIT function 238
DC_WRITE_8_BIT function 237
DC_WRITE_DIB function 240
DC_WRITE_FIXED function 242
DC_WRITE_FREE function 250
DC_WRITE_TIFF function 256
DCINDGEN function 187
DCL

logical names 798
symbols

defining 798
deleting 271

DCOMPLEX function 188
DCOMPLEXARR function 190
deallocating

file units 367, 371
decomposed color B-70
DECW$DISPLAY logical, for X Windows B-59
DECwindows Motif B-59

DEFINE_KEY procedure 259
DEFROI function 266
DEFSYSV procedure 269
degrees

convert to radians 1237
DEL_FILE procedure 272
delaying program execution 1070
DELETE_SYMBOL procedure 271
deleting

compiled functions from memory 273
compiled procedures from memory

275
DCL symbols 271
files 272
graphics 324
structure definitions 276
variables 277
VMS logical names 274
VMS symbols 271

DELFUNC procedure 273
DELLOG procedure 274
DELPROC procedure 275
DELSTRUCT procedure 276
DELVAR procedure 277
density function, calculating histogram

437
DERIV function 279
DERIVN function 281
DETERM function 282
determinant, calculating 279, 282
device drivers

controlling output of 283
discussion of B-1
list of B-1
selecting 791
system variable 1234

DEVICE procedure 283
DIAG function 284
DIB data

reading 201
reading into a graphics window 1148
writing from window to file 1156
writing to a file 240

DICOM 285
differentiation 281
differentiation, numerical 279
Digital terminals, generating output for B-

34
DIGITAL_FILTER function 286

Index - E 7

DILATE function 289
dimensions of array, expanding 342
DINDGEN function 293
directory path

searching for procedures and functions
1245

directory stack
popping directories off of 713
printing out 716
pushing 724

directory, change working 107
display

copy area from B-61
dimensions of 1236
reading from 951
tool 1172

DIST function 294
divisor 377
DOC_LIBRARY procedure 297
documentation of user routines 297

See also Users’ Library
dollar sign 1266
double complex

arrays, creating 188, 190
data type 188

DOUBLE function 300
double-buffering B-70
double-precision

arrays, creating 186, 293
data, converting to 300
variables, converting date/time variables to

314
drawing application, exchanging data with PV-

WAVE 1149
DROP_EXEC_ON_SELECT procedure 302
DT_ADD function 303
DT_COMPRESS function 304
DT_DURATION function 308
DT_PRINT procedure 311
DT_SUBTRACT function 312
DT_TO_SEC function 314
DT_TO_STR procedure 316
DT_TO_VAR procedure 319
DTGEN function 309

E
eavesdrop mode, HPGL plotter output B-11
edge enhancement

Roberts method 769
Sobel method 841

eigenvalues and eigenvectors, determin-
ing 934

8-bit image data
writing data to a file 237

8-bit color B-70
EMF files

creating 1157
empty output buffer 321, 367
EMPTY procedure 321
Encapsulated PostScript (EPS)

appearance of EPSI plots B-23
EPSI (Interchange Format) B-23
keyword B-22

end of file
testing for 323
writing to tape 1073

ENVIRONMENT function 322
environment variables

adding 788
changing 788
$DISPLAY for X Windows B-59
returning 378

EOF function 323
See also WEOF function

ERASE procedure 324
erasing. See deleting
erf. See ERRORF
ERODE function 326
error bars, plotting 331
error handling

accumulated math error status 118
for import/export (DC) functions 191
function, evaluating 330
input/output 614
message

obtaining text of 1237
prefix 1238

plot truncated message 1216
recovery from errors 613
report level for DC functions 193

ERRORF function 330
ERRPLOT procedure 331
EUCLIDEAN function 333
EXEC_ON_SELECT procedure 334
EXECUTE function 337
executing

operating system commands 855,

8 Index - F PV-WAVE Reference

859
statements one at a time 337

executive 1270
executive commands

.CON 1268

.GO 1268

.LOCALS 1268

.RNEW 1269

.RUN
description 1269
examples 1270
-l argument 1270
-t argument 1270

.SIZE 1271

.SKIP 1271

.STEP 1272
table of 1267
See also runtime mode

EXIT procedure 340
exiting

See also aborting
PV-WAVE 340

EXP function 341
expand an array 342
EXPAND function 342
EXPON function 343
exponential function, natural 341
exponentiation 343
Extended Metafile System (VMS) B-8
extracting image plane B-52
EXTREMA function 344

F
factor 345
FACTOR function 345
fast Fourier transform

function for 353
FAST_GRID2 function 346
FAST_GRID3 function 348
FAST_GRID4 function 351
FFT function 353
FILEPATH function 356
files

allocating units 380
closing 122
deallocating LUNs 368
deleting 272
exporting VDA Tool 1168

on magnetic tape 764
opening 615, 621
pointer, positioning 670
printing 716
skipping over 834
testing for end of file 323
unformatted data 1151

filters
digital 286
mean smoothing 838
median smoothing 577

FINDFILE function 358
FINDGEN function 359
FINITE function 360
finite values, checking for 360
FIPS code 562, 969
fitting with Gaussian curve 375
FIX function 362
FLOAT function 364
floating-point

arrays, creating 364, 366
type, converting to 364, 366

floor 386
FLTARR function 366
FLUSH procedure 367
flushing

output buffer 321, 367
fonts

character size 1203, 1219
PostScript B-26
selection commands 1207
software, shown 1255
specifying hardware/software 1207,

1239
Windows system 1136

force fields
plotting 664, 978, 982

FREE_LUN procedure 368
FSTAT function 369
FUNCT procedure 372
function keys

defining 259
getting information about 506

functions
See also compiling; procedures;

program
checking for keywords 520
deleting from memory 273
I/O errors in 614

Index - G 9

G
GAMMA function 374
GAUSSFIT function 375
Gaussian

curve fitting 375
function, evaluating 376
integral 376

GAUSSINT function 376
GCD function 377
GET_KBRD function 379
GET_LUN procedure 380
GET_SYMBOL function 385
GETENV function 378
GETNCERR function 382
GETNCOPTS function 383
.GO 1268
Gouraud shading 702, 795–796
graphics

functions, interaction with write mask B-50
graphics window

commands B-45
graphs. See plotting
GREAT_INT function 386
greatest integer 386
grid 388
GRID function 387
GRID_2D function 389
GRID_3D function 391
GRID_4D function 393
GRID_SPHERE function 396
gridding

2D 346, 389
3D 348, 391
4D 351, 393
dense data points 346, 348, 351
sparse data points 389, 391, 393
spheres 396
summary of routines 16

GRIDN function 388
GROUP_BY function 399

H
HAK procedure 404
HANNING function 405
hardcopy. See device drivers; printing
hardware fonts. See fonts

hardware pixels B-84
hardware polygon fill B-10
HDF interface

base functions, defined A-2
convenience functions, defined A-2
documentation, NCSA A-2
example programs, location of A-2
help on functions A-5
initializing A-3
list of base functions A-6
overview A-1
starting A-3
testing 429
using A-3

HDF_STARTUP A-3
HDF_TEST procedure 429
HDFGET24 function 407
HDFGETANN function 409
HDFGETFILEANN function 410
HDFGETNT function 412
HDFGETR8 function 414
HDFGETRANGE function 416
HDFGETSDS function 417
HDFLCT procedure 419
HDFPUT24 function 420
HDFPUTFILEANN function 422
HDFPUTR8 function 423
HDFPUTSDS function 425
HDFSCAN procedure 427
HDFSETNT function 428
HELP procedure 430, 506
help, online

documentation of user-written
routines 297

getting 506
HDF functions A-5
obtaining with INFO procedure 506

Hershey fonts 1207
Hewlett-Packard

Graphics Language plotters B-8
ink jet printers B-14
laser jet printers B-14
Printer Control Language printers B-

14
hexadecimal value, specifies color B-79
hiding windows 1155
Hierarchical Data Format. See HDF inter-

face
highpass filters 286

10 Index - I PV-WAVE Reference

HILBERT function 432
HIST_EQUAL function 434
HIST_EQUAL_CT procedure 437
HISTN function 438
histogram 438

calculating density function 437, 440
equalization 434
of volumetric surface data 1100
plotting 662

HISTOGRAM function 440
histogram plotting mode 1217
HLS procedure 448
holidays, removing from date/time variables

304
hot spot, of cursor B-40
HP VEE container file 199
HPGL output B-8–B-12
HSV procedure 450
HSV_TO_RGB procedure 451
HTML Routines 18
HTML_BLOCK Procedure 453
HTML_CLOSE Procedure 454
HTML_HEADING Procedure 455
HTML_HIGHLIGHT Function 456
HTML_IMAGE Function 457
HTML_LINK Function 459
HTML_LIST Procedure 460
HTML_OPEN Procedure 463
HTML_PARAGRAPH Procedure 464
HTML_RULE Procedure 466
HTML_SAFE Function 466
HTML_TABLE Procedure 468
HTML_TEXT Procedure 470
Hypertext Markup Language 18

I
image processing

calculating histograms 437
convolution 160
creating digital filters 286
dilation operator 289
edge enhancement 769, 841
expanding 140, 745
fast Fourier transform 353
Hanning filter 405
histogram equalization 434
magnifying 160, 777, 952, 1192
morphological dilation 289

morphological erosion 326
polynomial warping 672, 673, 710
profiles 718
resizing images 743
Roberts edge enhancement 769
rotating 772, 775, 777
selecting a region of interest 266
shrinking 140
smoothing 577, 838
Sobel edge enhancement 841
special effects 684, 700, B-69
warping 710
zooming 1192

IMAGE_CHECK function 473
IMAGE_COLOR_QUANT procedure 474
IMAGE_CONT procedure 477
IMAGE_CREATE procedure 479
IMAGE_DISPLAY procedure 486
IMAGE_QUERY_FILE function 488
IMAGE_READ procedure 492
IMAGE_WRITE procedure 495
images

See also animation; image
processing

animation of B-49
combining with surface and contour

plots 823
DIB data, reading 201
direction of display (!Order) 1238
8-bit, reading 194
extracting plane B-52, B-84
interleaving 198, 234, 239
optimizing transfer of B-72
overlaying with contour plots 477
PostScript display of B-29
reading

pixel values from 690
skirt added to a surface 1127
subscripts of pixels inside polygon

region 690
transposing of 936
24-bit, reading 196
24-bit, rendering 754
value of individual pixels 1111

IMAGINARY function 499
IMG_TRUE8 procedure 500
INDEX_AND function 502
INDEX_CONV function 503
INDEX_OR function 504

Index - J 11

INDGEN function 505
INFO procedure

reference 506
INTARR function 509
integer

array, creating 509
bit shifting 516
converting an expression to 362
finding nearest 598
long. See longword

integral of Gaussian 376
interapplication communication

C programs
calling from PV-WAVE 527
communicating with 962

calling PV-WAVE
from a C program 527

linking
C code to PV-WAVE 527
LINKNLOAD function 527, 530

sockets
routines 844–853

interleaving
24-bit images 198, 234, 239

INTERPOL function 510
INTERPOLATE function 513
interpolation 513

bilinear 82
cubic spline 862
linear 510
linear, between colortable values 1087
scattered data 513

intersection 1135
INTRP function 513
INVERT function 514
inverting pixels B-51, B-83
irregular data, gridding 387
ISASKEY function 515
ISHFT function 516
iso-surfaces

viewing interactively 1096

J
JACOBIAN function 518
JOURNAL procedure 518
journaling

description of 518
obtaining unit number of output 1237

JUL_TO_DT function 519
Julian day

converting to a date/time variable
519

in !DT_Base 785

K
keyboard

defining keys 259
getting input from 379
interrupt 1268
line editing, enabling 1237

KEYWORD_SET function 520
keywords

checking for presence of 520
graphics and plotting, usage 1197–

1232

L
landscape orientation B-24
LaTeX documents

inserting plots B-30
using PostScript with B-30, B-32

latitude, finding on map 969
LCM function 522
least integer 837
least square

curve fitting 691, 710
non-linear curve fitting 179
problems, solving 911

Lee filter algorithm 523
LEEFILT function 523
LEGEND procedure 524
legend, adding to a plot 524
light source

modifying 795
shading 702, 795

LINDGEN function 526
line

color of 1204
connecting symbols with 1217
drawing 664
style of 1202, 1240
thickness of 1223, 1244

linear
interpolation of a vector 510

12 Index - M PV-WAVE Reference

least squares problems, solving 911
regression, fit to data 747

linear algebra
eigenvalues and eigenvectors 934
LU decomposition 549, 551
reducing matrices 938
solving equations 593, 910
solving matrices 938, 939

LINKNLOAD function 527
list

returning 534
LIST function 533
LISTARR function 534
LN03 procedure 535
LOAD_HOLIDAYS procedure 538
LOAD_OPTION procedure 539
LOAD_WEEKENDS procedure 545
LOADCT procedure 535
LOADCT_CUSTOM procedure 537
LOADSTRINGS 542
.LOCALS 1268
logarithm

base 10 52
natural 51

logarithmic
axes 651
plotting 651
scaling 651

logical names
defining 789
VMS, DCL 941
VMS, deleting 274

LONARR function 546
LONG function 547
longitude, finding on map 969
longword

integer arrays, creating 526, 546
integer, converting to 547

lookup table, color. See color tables
lowpass filters 286
LUBKSB procedure 549
LUDCMP procedure 551
LUNs

allocating 380
current output file 1235
deallocating 368
journal output 1237
waiting for input 785

M
magnetic tape

reading from 923
writing to 924

magnifying images 777, 1192
main

PV-WAVE directory 1236
MAKE_ARRAY function 553
map datasets

subsetting 561
USGS Databank II 557
USGS Digital Line Graph 557
USGS Names 969

MAP procedure 556
map projections

PV-WAVE 560
MAP_CONTOUR procedure 565
MAP_PLOTS procedure 567
MAP_POLYFILL procedure 569
MAP_REVERSE procedure 571
MAP_VELOVECT procedure 572
MAP_XYOUTS procedure 574
mapping, updated map dataset 561
maps

annotating 574
colors 562
contours

filled 566
grid 557

marker symbols
displaying in a volume 993

masking
color B-82

math errors
accumulated math error status 118
messages, issuing 582

mathematical function
absolute value 46
arc-cosine 47
arcsine 55
arctangent 60
area of polygon 676
base 10 logarithm 52
Bessel I function 77
Bessel J function 78
Bessel Y function 80
bilinear interpolation 82
bit shifting 516

Index - M 13

boundary 88
checking for finite values 360
common divisor 377
compare 780
complex conjugate 142
convolution 160
correlation coefficient 166
cosine 168
cross product 174
cubic splines interpolation 862
derivative 279
determinant of matrix 282
error function 330
exponentiation 343
fast Fourier transform 353
GAMMA function 374
Gaussian integral 376
greatest integer 386
Hilbert transform 432
histogram 438
hyperbolic

cosine 169
sine 831
tangent 922

imaginary numbers 499
improve solution vector 593
least common multiple 522
least integer 837
list of 14–16
LU decomposition 549, 551
matrix

inversion 514
reduction 938
solutions 939

maximum value 575
mean 865
minimize 586
minimum value 584
moments 589
multiply 718
natural exponent 341
natural logarithm 51
neighbors 596
polynomial functions 672
polynomial roots 1194
prime factorization 345
primes 715
random numbers 737
resample array 758

sign of passed values 805
sine 829
singular value decomposition 911
solving simultaneous equations 910
square root 864
standard deviation 865
subset an array 835
tangent 921
vector, replicate 757

matrix
inverting 514
printing

to specified file unit 669
to standard output stream 667

reading
from a file 768
interactively 765

reversing 762
MAX function 575
mean

of an array 865
median

filter 577
value of array 577

MEDIAN function 577
memory

allocation 1271
deleting

compiled functions 273
compiled procedures 275
structure definitions 276

getting information about 506
menus, creating 1143
MESH function 580
mesh surfaces, drawing 902
message

See also error handling
error 582
error, setting level to report in DC

functions 193
for incomplete DC function 191
prefix 1238

MESSAGE procedure 582
metafile

reading into a graphics window 1149
writing from window to file 1157

Microsoft Paintbrush, exchanging data
with PV-WAVE 1149

14 Index - N PV-WAVE Reference

Microsoft Word, importing CGM files into 594,
B-5

MIN function 584
minimize 586
MINIMIZE function 586
MODIFYCT procedure 587
MOLEC function 588
molecular model 588
MOMENT function 589
moments 589
monochrome

displays B-82
MONTH_NAME function 590
morphologic

dilation operator 289
erosion operator 326

mouse
last button pushed 1237
storing the button status 1238
storing the position of 1238
text editing functions 1131

MOVIE procedure 591
MPROVE procedure 593
MSWORD_CGM_SETUP procedure 594
multiple 522
multiple plots 1240
multiply 718

N
N_ELEMENTS function 597
N_PARAMS function 601
N_TAGS function 602
National Center for Supercomputer Applica-

tions (NCSA) A-1
See also HDF interface

National Imagery and Mapping Agency (NIMA)
561

natural
exponential function 341
logarithm 51

Navigator
avoid DEVICE command 283
24-bit display 283

Navigator procedure 595
neighbors 596
NEIGHBORS function 596
NINT function 598
normal coordinate systems 1212

normally distributed random numbers 736
NORMALS function 600

O
ON_ERROR procedure 604
ON_ERROR_GOTO procedure 613
ON_IOERROR procedure 614
OPENR procedure 615, 621
OPENU procedure 615, 621
OPENURL procedure 624
OPENW procedure 615, 621
OPLOT procedure 626
OPLOTERR procedure 628
OPTION_IS_LOADED function 630
ORDER_BY function 631
output. See device drivers; input/output;

printing; writing

P
padding

volumes 995
PADIT function 634
PALETTE procedure 635
palette, Windows B-48
PARAM_PRESENT function 638
parameters

checking for
number of 601
presence of 638

PARSEFILENAME procedure 640
paste, graphics from clipboard 1145
patterns. See polygon fill
PCL output B-14–B-17
PIE procedure 641
PIE_CHART procedure 646
pixel map output B-17
pixels

copying B-40, B-49, B-61, B-75
exact value of 1111
hardware B-84
inverting region of B-51, B-83
number per centimeter 1235
reading from the display 738

pixmaps
See also bitmaps
animating 1074, 1103

Index - P 15

creating with WINDOW procedure B-75
examples B-76
wider than the physical width of the screen

B-77
with X Windows B-4, B-75

PLOT procedure 651
PLOT_FIELD procedure 659
PLOT_HISTOGRAM procedure 662
PLOT_IO procedure 651
PLOT_OI procedure 651
PLOT_OO procedure 651
PLOTERR procedure 657
PLOTS procedure 664
plotters, HPGL B-8
plotting

2D array as 3D plot 929
2D graphs 651
2D tool 1179
area, defining 793, 801
bar 1160
bar graphs 66, 73
bar graphs, 3D 75
bar3d 1162
combination plots 823
connecting symbols with lines 1217, 1243
contour tool 1167
error bars 331
histogram 1170
histogram style 1217
keywords, list of 1197–1231
line thickness 1223, 1244
linear log scaling 651
linestyles 1201
margin around plot 1215
margin for annotation 1249
multiple plots 1240
overplotting 626
!P system variable 1238
pie chart 1177
pie charts 641, 646
polar

coordinates 1215
polygons

filling 683
rendering 699

position of plot in window 801, 1215, 1242
range of data 1250
routines, summary of 26–27
speeding up with !P.Nsum 1242

surface tool 1182
symbols

creating new 967
index of 1216, 1242
specifying 1242

vector fields from 3D arrays 975
pm driver B-17
PM procedure 667
PMF procedure 669
!p.multi system variable 1240
POINT_LUN procedure 670
polar

coordinates 1215
plots 1215

POLY function 672
POLY_2D function 673
POLY_AREA function 676
POLY_C_CONV function 677
POLY_COUNT function 679
POLY_DEV function 680
POLY_FIT function 691
POLY_MERGE procedure 696
POLY_NORM function 697
POLY_PLOT procedure 699
POLY_SPHERE procedure 705
POLY_SURF procedure 708
POLY_TRANS function 709
POLYFILL procedure 683
POLYFILLV function 690
POLYFITW function 694
polygon fill

2D or 3D polygon 683
color 1204
hardware B-10
on maps 569
pattern 1207, 1214

polygons
area of 676
filling. See polygon fill
generating 27, 708
lists, merging 696
manipulating 28
merging lists for rendering 696
meshes 580
plotting 699
querying subscripts of internal pixels

690
rendering 28, 699, 752
returning

16 Index - Q PV-WAVE Reference

list of colors for 677
number contained in list 679

shading 702
polynomial

curve fitting 691, 694
functions, evaluating 672
warping of images 673, 710

POLYSHADE function 702
POLYWARP procedure 710
POPD procedure 713
portrait orientation B-25
PostScript output B-19–B-33
PRIME function 715
prime numbers 715
PRINT procedure 716
PRINTD procedure 717
Printer Control Language (PCL) output B-14
PRINTF procedure 716
printing

See also fonts
ASCII output 716
CGM output B-4
contents of graphics window 1146
directories 717
files 716
HPGL output B-8
LN03 printer 535
PostScript printer B-20
values of date/time variables 311
variables 716
Windows 1137

private colormaps B-72
procedures

See also functions; program
processes

concurrent 334
spawning 855, 859

product 718
PRODUCT function 718
product-moment correlation coefficient 166
PROFILE function 718
PROFILES procedure 720
profiles, extracting from images 718
program

See also compiling; functions; procedures;
programming

checking for positional parameters 601
deleting from memory 275
directory path for 1245

files containing PV-WAVE
procedures 1270

number of
non-keyword parameters 601

pausing execution 1070
stopping execution 867

programming
create special effects with

graphics functions B-51
delaying program execution 1070
graphics functions B-82
menus, creating 1143
providing a GUI B-60
special effects

graphics functions B-83
write mask B-82

write mask B-82
PROMPT procedure 722
prompt, changing 1247
PSEUDO procedure 723
pseudo-color

12-bit B-82
PUSHD procedure 724
PV-WAVE session

exiting 340
recording 518
restoring 759
saving 781

Q
QUERY_TABLE function 726
QUIT procedure 734
quitting PV-WAVE 340, 734
quotation marks 1266

R
radians, converting to degrees 1247
random number

normal distribution 736
uniform distribution 737

RANDOMN function 736
RANDOMU function 737
raster

graphics, colors B-81
ray tracing

cone primitives 139

Index - S 17

cylinder primitives 181
mesh primitives 580
RENDER function 752
sphere primitives 860
summary of routines 30
volume data 1000

RDPIX procedure 738
READ procedure 739
READ_XBM Procedure 742
READF procedure 739
reading

24-bit image file 196
8-bit image data 194
See also input/output
ASCII data

from a file 203, 218, 739
from standard input 739

binary files 739
cursor position 175
DIB data 201
DIB data into a graphics window 1148
files 739
fixed-format ASCII data 203
freely-formatted ASCII data 218
from magnetic tapes 923
images from the display 951
keyboard input 379
metafile into a graphics window 1149
TIFF files 231
unformatted data 739
waiting for input 785

READU procedure 739
REBIN function 743
recording a PV-WAVE session 518
REFORM function 745
region of interest, selecting 266
Regis output B-34–B-35
REGRESS function 747
regression, fit to data 747
RENAME procedure 749
RENDER function 752
RENDER24 function 754
rendering

cone objects 139
cylinder objects 181
mesh objects 580
polygons 28, 699
ray-traced objects 752
shaded surfaces 702, 806, 812

sphere objects 860
volumes 40, 815, 996, 1000

REPLICATE function 756
REPLV function 757
RESAMP function 758
resizing arrays or images 743
resource

loading 540
loading strings 542

RESTORE procedure 759
RETALL procedure 760
RETURN procedure 761
REVERSE function 762
REWIND procedure 764
RGB_TO_HSV procedure 764
RM procedure 765
RMF procedure 768
.RNEW 1269, 1270
Roberts edge enhancement 769
ROBERTS function 769
roots, finding complex polynomial 1194
ROT function 772
ROT_INT function 777
ROTATE function 775
rotating

arrays or images 775
corresponding to surface 902
images 772, 775, 777

runtime mode
compiling procedures for 131

S
SAME function 780
SAVE procedure 781
saving

compiled procedures 131
PV-WAVE session 518, 781

SCALE3D procedure 782
scaling

3D 782
corresponding to surface 902
images 952
unit cube into viewing area 782

screen pixels, assigning color B-69
searching

for text string 877
SEC_TO_DT function 783

18 Index - S PV-WAVE Reference

seconds, converting to date/time variables 783
SELECT_READ_LUN procedure 785
servers

closing connections B-61
X Window system B-58

session. See PV-WAVE session
SET_PLOT procedure 791
SET_SCREEN procedure 793
SET_SHADING procedure 795
SET_SYMBOL procedure 798
SET_VIEW3D procedure 800
SET_VIEWPORT procedure 801
SET_XY procedure 803
SETDEMO procedure 786
SETENV procedure 788
SETLOG procedure 789
SETNCOPTS procedure 790
SETUP_KEYS procedure 798
SGN function 805
SHADE_SURF procedure 806
SHADE_SURF_IRR procedure 812
SHADE_VOLUME procedure 815
shading

contour plots 151
Gouraud interpolation 796
setting parameters 795
surfaces 702, 801, 806, 812, 1127
volumes 815

SHIF function 818
SHIFT function 819
SHOW_OPTIONS procedure 825
SHOW3 procedure 823
SIGMA function 827
sign of passed values 805
signal processing

convolution 160
creating filters 286
fast Fourier transform 353
Hanning filter 405
Hilbert filter 432
histogram equalization 434
Lee filter 523

simultaneous equations, solving 910
SIN function 829
SINDGEN function 830
sine

hyperbolic 831
trigonometric 829

singular value decomposition

curve 910
SVD function 911

SINH function 831
.SIZE 1271
SIZE function 832
.SKIP 1271
SKIPF procedure 834
SLICE function 835
SLICE_VOL function 835
slicing

interactively 985
plane, defining 985
volumes 835, 1113

SMALL_INT function 837
SMOOTH function 838
smoothing

boxcar 838
contour plots 1220

Sobel edge enhancement 841
SOBEL function 841
socket, X11 786
SOCKET_ACCEPT function 844
SOCKET_CLOSE procedure 846
SOCKET_CONNECT function 847
SOCKET_GETPORT function 848
SOCKET_INIT function 849
SOCKET_READ function 851
SOCKET_WRITE procedure 852
sockets. See interapplication communica-

tion
software fonts. See fonts
SORT function 854
sorting

See also subsetting
array contents 854, 858
tables 726

SORTN function 858
spatial transformation of images 673, 710
SPAWN procedure 855, 859
spawning a process 855, 859
special effects

color B-83
graphics functions and write mask B-

82
using graphics functions and write

mask B-50
Z-buffer use B-86

SPHERE function 860
spheres

Index - S 19

defining with SPHERE function 860
generating 705
gridding 396

SPLINE function 862
splines

cubic 862
interpolation of contour plots 1220

SQRT function 864
square root, calculating 864
standard deviation, calculating 827, 865
statements

executing one at a time 337
STDEV function 865
.STEP 1272
STOP procedure 867
STR_TO_DT function 894
STRARR function 868
STRCOMPRESS function 869
STRETCH procedure 870
STRING function 872
string processing

See also annotation; strings
compressing white space 869
converting to lower case 880
converting to upper case 900
excess white space 869
extracting substrings 886
inserting substrings 889
leading and trailing blanks 896
locating substrings 887
removing blanks 869

string resources 542
strings

arrays, creating 830, 868
concatenating arrays to scalar 875
database search 877
matching 881
splitting into tokens 890
substituting 892

strip chart, creating 1119
STRJOIN function 875
STRLEN function 876
STRLOOKUP function 877
STRLOWCASE function 879
STRMATCH function 881
STRMESSAGE function 884
STRMID function 886
STRPOS function 887
STRPUT procedure 889

STRSPLIT function 890
STRSUBST function 892
STRTRIM function 896
STRUCTREF function 898
structures

date/time 244, 249, 318
deleting 276
getting information about 506
list of references to, returning 898
number of tags in 602
tag names

array 920
returning 920

STRUPCASE function 899
subscripts

* (asterisk) operator 1265
pixels inside a polygon region 690
ranges

size using asterisk 1265
subsetting

cut-away views 985
map datasets 561
slicing 3D datasets 985, 1113
tables 726

substrings. See string processing
SUM function 901
surface plot

color of bottom 1199
combining with image and contour

823, 1219
creating 902, 1124
curve fitting to 905
horizontal lines only 1209
interactive tool 1124
iso-surface, viewing 1096
lower surface only 1210
overlaying with contours 1218
rendering of shaded 806, 812
rotation

angle of X 1197
angle of Z 1198

saving 3D to 2D transformation
matrix 1218

shaded 702, 1127
skirt, adding 1127, 1219
storing data in a file 809
transformation matrix 902
upper surface only 1224

SURFACE procedure 902

20 Index - T PV-WAVE Reference

SURFACE_FIT function 905
SURFR procedure 907
SVBKSB procedure 910
SVD procedure 911
SVDFIT function 170, 913
symbols

colored, displayed in a volume 993
connecting with lines 1216
keyword 1242
marker 993
size of 1221
system variable 1216
user-defined 1216
VMS

defining 798
deleting 271
returnable 385

system variables
! character in name 1266
creating

date 930
time 915, 930
user-defined 269

list of 1233
setting to specific value 269

SYSTIME function 915

T
T3D procedure 917
table tool 1184
tables

creating 93
determining unique values in 960
group by 399
sorting 726
sorting rows 631
subsetting with Where clause 726
unique elements of 960

tag
names in a structure 920
numbers of 602

Tag Image File Format. See TIFF
TAG_NAMES function 920
TAN function 921
tangent

hyperbolic 922
trigonometric 921

TANH function 922

tape, magnetic
reading from 923
rewinding 764
skipping records or files 834
writing to 924, 1073

TAPRD procedure 923
TAPWRT procedure 924
TEK_COLOR procedure 925
Tektronix

4115 device
color table 925

terminal family output B-36–B-38
TENSOR functions 927
tensor product 927
thickness

axis line 1251
characters 1239
lines 1244

THREED procedure 929
threshold

value of an iso-surface 1100
tick marks

centering Y label 1230
controlling length of 1224, 1245
extending away from the plot 1224
intervals

between marks 1229
setting number of 1253

linestyle 1208, 1226
number of minor marks 1250
suppressing minor marks 1250

TIFF
reading a file in 231

time
current 915
elapsed between dates 308
system 915

TODAY function 930
TOTAL function 931
town names 969
TQLI procedure 934
trace 931
transformation

affine 50
saving 1218
3D volumes 999

transformation matrices
3D points 709
4-by-4 709, 999, 1244

Index - U 21

centering the view 113
keyword discussion 1222
POLY_TRANS function 709
set up 3D view 800
storing 917
SURFACE procedure 902

translation table
bypassing B-61, B-74

translucency, in images 700, 996
transparency, in images 684
TRANSPOSE function 936
transposing

See also rotating
arrays or images 775, 936

TRED2 procedure 938
TRIDAG procedure 939
trigonometric functions

arc-cosine 47
arcsine 55
arctangent 60
cosine 168
hyperbolic cosine 169
hyperbolic sine 831
hyperbolic tangent 922
sine 829
summary list of 32
tangent 921

TRNLOG function 941
tuples, finding unique 959
TV procedure 943
TVCRS procedure 947
TVLCT procedure 949
TVRD function 951
TVSCL procedure 952
TVSIZE procedure 956
24-bit color

differentiating data sets B-81
24-bit image data

rendering 754
writing data to a file 238

types
data conversion to

bytes 97
complex 135
double complex 188
double-precision 300
floating-point 364
integer 362
longword integer 547

scaled byte 102
string 872

U
uniformly distributed random numbers

737–738
union 1135
UNIQN function 959
UNIQUE function 960
UNIX operating system

calling from PV-WAVE 105
commands from within PV-WAVE

855
UNIX_LISTEN function 962
UNIX_REPLY function 963
UNLOAD_OPTION procedure 964
UPVAR procedure 965
USERSYM procedure 967
USGS_NAMES function 969

V
VAR_MATCH function 971
VAR_TO_DT function 973
variables

See also environment variables;
system variables

adding at $MAIN$ 49
associated 58
binding to different program level

965
deleting 277
determining

data type of 832
exporting 1186
number of structure tags 602
printing 716
structure tag names 920
viewing 1186

VDA Tools
avoid DEVICE command 283
24-bit display 283

VDA Tools Utilities
messages

stored in resource files 540
vector

See also arrays; linear algebra

22 Index - V PV-WAVE Reference

building tables from 93
cross product 174
deriving unique elements from 960
fields, plotting 664, 975, 978
grouping tables 399
linear interpolation of 510
replicate 757
reversing 762
solution, improving 593
sorting tables 631
string 877, 881, 900

VECTOR_FIELD3 procedure 975
VEL procedure 978
VELOVECT procedure 982
version number of PV-WAVE 1248
vertex lists

merging 696
video memory, of workstation B-70
video modes, Windows B-46
VIEWER procedure 985
viewport, defining 793, 801
Virtual Reality Modeling Language 39
visual classes

for X windows B-68
not inherited by PV-WAVE B-78
set for root window B-78

visualization toolkit 4
VMS operating system

calling PV-WAVE 527
CGM output, binary B-8
Extended Metafile System B-8
logical names, deleting 274
symbols

defining 798
deleting 271
return value 385

VOL_MARKER procedure 993
VOL_PAD function 995
VOL_REND function 996
VOL_TRANS function 999
VOLUME function 1000
volumes

defining 985, 1000
displaying markers in 993
manipulating 39
padding 995
shaded 815
slicing

with SLICE_VOL function 835

with VIEWER procedure 985
transforming 999

volumetric surface data 1096, 1113
VRML Routines 39
VRML_AXIS Procedure 1002
VRML_CAMERA Procedure 1004
VRML_CLOSE Procedure 1005
VRML_CONE Procedure 1006
VRML_CUBE Procedure 1009
VRML_CYLINDER Procedure 1011
VRML_LIGHT Procedure 1014
VRML_LINE Procedure 1015
VRML_OPEN Procedure 1017
VRML_POLY Procedure 1018
VRML_SPHERE Procedure 1020
VRML_SPOTLIGHT Procedure 1022
VRML_SURFACE Procedure 1024
VRML_TEXT Procedure 1025
VT graphics terminals B-34
vtkADDATTRIBUTE Procedure 1028
vtkAXES Procedure 1029
vtkCAMERA Procedure 1031
vtkCLOSE Procedure 1032
vtkCOLORBAR Procedure 1033
vtkCOMMAND Procedure 1034
vtkERASE Procedure 1035
vtkGRID Procedure 1036
vtkHEDGEHOG Procedure 1037
vtkINIT Procedure 1039
vtkLIGHT Procedure 1040
vtkPLOTS Procedure 1041
vtkPOLYDATA Procedure 1043
vtkPOLYSHADE Procedure 1044
vtkPPMREAD Function 1046
vtkPPMWRITE Procedure 1047
vtkRECTILINEARGRID Procedure 1048
vtkRENDERWINDOW Procedure 1049
vtkSCATTER Procedure 1050
vtkSLICEVOL Procedure 1053
vtkSTRUCTUREDGRID Procedure 1055
vtkSTRUCTUREDPOINTS Procedure

1056
vtkSURFACE Procedure 1057
vtkSURFGEN Procedure 1060
vtkTEXT Procedure 1061
vtkTVRD Function 1062
vtkUNSTRUCTUREDGRID Procedure

1063
vtkWDELETE Procedure 1064

Index - W 23

vtkWINDOW Procedure 1065
vtkWRITEVRML Procedure 1067
vtkWSET Procedure 1068

W
WAIT procedure 1070
waiting, in programs 1070
warping of images 673, 710
wavevars function

with LINKNLOAD 529
WCOPY function 1070
WDELETE procedure 1072, B-86
WEOF procedure 1073
WgAnimateTool procedure 1073
WgCbarTool procedure 1079
WgCeditTool procedure 1083
WgCtTool procedure 1092
WgIsoSurfTool procedure 1096
WgMovieTool procedure 1102
WgOrbit procedure 1108
WgSimageTool procedure 1109
WgSliceTool procedure 1113
WgStripTool procedure 1119
WgSurfaceTool procedure 1124
WgTextTool procedure 1130
WHERE function 1133
WHEREIN function 1135
white space, compressing 869
WIN32 driver

256 color mode B-48
color, use of B-46
graphics function codes B-66
video modes B-46

WIN32_PIC_PRINTER B-54
WIN32_PICK_FONT function 1136
WIN32_PICK_PRINTER function 1137, B-54,

B-57
window

background color of 1198, 1238
commands B-45
creating 1138, B-2
current 1153
damage repair B-2
deleting by ID number B-86
exposing 1155
hiding 1155
IDs (Windows) B-52
IDs (X Windows) B-85

margin around plot 1249
pasting into 1145
positioning plot in 793, 801
printing contents of 1146
reading

DIB data into 1148
EMF file into 1149

selecting 1153
specifying plot coordinates 1215
with bitmap graphics 1138
write DIB data from 1156
write EMF data from 1157
X window state B-67

WINDOW procedure 1138
window systems

backing store B-2
common features B-2
features of supported systems B-2
X Windows B-58

Windows
bitmaps B-49
commands from within PV-WAVE

859
environment variables 788
font 1136
graphics window commands B-45
palette B-48
printer dialog 1137
resizing graphics B-44
video modes B-46
window IDs B-52

WMENU function 1143
WMF driver

24-bit color B-54
color correction B-54
description of B-53
keywords B-55
printing B-53

World Databank II dataset 561
WPASTE function 1145
WPRINT 1146
WREAD_DIB function 1148
WREAD_META function 1149
write mask

creating special effects B-82
graphics function interaction B-83
interacts with selected graphics

function B-51
using to create special effects B-50

24 Index - X PV-WAVE Reference

WRITE_XBM procedure 1152
WRITEU procedure 1151
writing

See also input/output
ASCII data 242, 250, 716
CSV data 247, 251
DIB data 240
DIB data from window to file 1156
8-bit image data 237
fixed format ASCII data 242
flushing buffers 367
metafile from window to file 1157
TIFF image data to a file 256
to tape (VMS) 924
24-bit image data 238
unformatted data 1151

WSET procedure 1153
WSHOW procedure 1155
WWRITE_DIB function 1156
WWRITE_META function 1157
WzAnimate procedure 1159
WzBar procedure 1160
WzBar3D procedure 1162
WzColorEdit procedure 1164
WzContour procedure 1167
WzExport procedure 1168
WzHistogram procedure 1170
WzImage procedure 1172
WzImport procedure 1174
WzMultiView procedure 1176
WzPie procedure 1177
WzPlot procedure 1179
WzPreview procedure 1180
WzSurface procedure 1182
WzTable procedure 1184
WzVariable procedure 1186

X
X server

closing connection B-61
X Window System

$DISPLAY environment variable B-59
client B-58
color translation B-74
colormaps

private B-72
shared B-71

damage repair B-2

DECW$DISPLAY logical B-59
DEVICE procedure B-61
IDs B-85
keywords B-61
overview B-58
pixmaps B-75–B-76
private colormaps B-72
providing a GUI for application B-60
servers B-58
shared colormaps B-71

X11 socket 786
XOR operator B-52, B-84
XYOUTS procedure 1189

Z
Z-buffer output

special effects 684, B-86
using B-86

ZOOM procedure 1192
zooming

3D window, use in 113
images 1192
reference cube, use of 1098, 1115

ZROOTS procedure 1194

	PV-WAVE Reference
	Table of Contents
	Preface
	What’s in this Manual
	Conventions Used in this Manual
	Technical Support
	FAX and E-mail Inquiries
	Electronic Services

	1 - Functional Summary of Routines
	3D Visualization Toolkit (VTK) Routines
	Array Creation Routines
	Array Manipulation Routines
	Color Table Manipulation Routines
	Concurrent Processing Routines
	Coordinate Conversion Routines
	Data Connection Routines
	Data Conversion Routines
	Data Extraction Routines
	Date/Time Functions
	File Manipulation Routines
	General Graphics Routines
	General Mathematical Functions
	Gridding Routines
	HDF Routines
	Help and Information Routines
	Hypertext Markup Language (HTML) Routines
	Image Display Routines
	Image IO Routines
	Image Processing Routines
	Input and Output Routines
	Interpolation Routines
	Mapping Routines
	Operating System Access Routines
	Optimization and Regression Routines
	Plotting Routines
	Polygon Generation Routines
	Polygon Manipulation Routines
	Polygon Rendering Routines
	Programming Routines
	Ray Tracing Routines
	Session Routines
	Special Mathematical Functions
	String Processing Routines
	Table Manipulation Functions
	Transcendental Mathematical Functions
	VDA Tools Routines
	VDA Tools Manager Routines
	VDA �Tools �Manager Graphical Element Routines
	VDA Utilities Routines
	View Setup Routines
	Virtual Reality Modeling Language (VRML) Routines
	Volume Manipulation Routines
	Volume Rendering Routines
	WAVE Widgets Routines
	WAVE Widget Utilities
	Widget Toolbox Routines
	Window Routines

	2 - Procedure and Function Reference
	Standard Library Routines
	Users’ Library Routines
	ABS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	ACOS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	ADD_EXEC_ON_SELECT Procedure (UNIX)
	See Also

	ADDVAR Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Example
	See Also

	AFFINE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	ALOG Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	ALOG10 Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	ASARR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	ASIN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	ASKEYS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	ASSOC Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	ATAN Function
	Usage
	Input Parameters
	Returned Value
	Discussion
	Example
	See Also

	AVG Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	AXIS Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	BAR Procedure
	BAR2D Procedure
	BAR3D Procedure
	BESELI Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	BESELJ Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	BESELY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	BILINEAR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	BINDGEN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	BLOB Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	BLOBCOUNT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example 1
	Example 2
	See Also

	BOUNDARY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	BREAKPOINT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	BUILDRESOURCEFILENAME Function
	Usage
	Input Parameter
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	BUILD_TABLE Function
	Usage
	Input Paramters
	Returned Value
	Input Keywords
	Output Keywords
	Discussion
	Example 1
	Example 2
	See Also

	BYTARR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	BYTE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	See Also

	BYTEORDER Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Examples
	See Also

	BYTSCL Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	CALL_UNIX Function (UNIX)
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	CD Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	C_EDIT Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	CENTER_VIEW Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	CHEBYSHEV Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion

	CHECKFILE Function
	Usage
	Input Paramters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	CHECK_MATH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	CINDGEN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	CLOSE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	COLOR_CONVERT Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	COLOR_EDIT Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	COLOR_PALETTE Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	COMPILE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	COMPLEX Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	COMPLEXARR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	CONE Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	CONGRID Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	CONJ Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	CONTOUR Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	CONTOUR2 Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	CONTOURFILL Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	CONVERT_COORD Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	CONV_FROM_RECT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	See Also

	CONVOL Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	CONV_TO_RECT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	CORRELATE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3

	COS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	COSH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	COSINES Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	CPROD Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example

	CREATE _ HOLIDAYS Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example1
	Example 2
	See Also

	CREATE_WEEKENDS Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	CROSSP Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example

	CURSOR Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	CURVATURES Function
	Usage
	Input Parameters
	Returned Value
	Keyword
	Example
	See Also

	CURVEFIT Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	CYLINDER Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DAY_NAME Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DAY_OF_WEEK Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	DAY_OF_YEAR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DBLARR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DCINDGEN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	DCOMPLEX Function
	Usage
	Input Parameters
	Returned Value

	DCOMPLEXARR Function
	DC_ERROR_MSG Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DC_OPTIONS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	DC_READ_8_BIT Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DC_READ_24_BIT Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DC_READ_CONTAINER Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DC_READ_DIB Function (Windows)
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Output Keywords
	Discussion
	Example
	See Also

	DC_READ_FIXED Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	String Resources Used By This Function
	How the Data is Transferred into Variables
	Physical Records vs. Logical Records
	Filtering and Substitution While Reading Data
	Reading Row-Oriented Files
	Reading Column-Oriented Files
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	See Also

	DC_READ_FREE Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	String Resources Used By This Function
	How the Data is Transferred into Variables
	Physical Records vs. Logical Records
	Filtering and Substitution While Reading Data
	Delimiters in the Input File
	Reading Row-Oriented Files
	Reading Column-Oriented Files
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	See Also

	DC_READ_TIFF Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	DC_SCAN_CONTAINER Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DC_WRITE_8_BIT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DC_WRITE_24_BIT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DC_WRITE_DIB Function (Windows)
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DC_WRITE_FIXED Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	How the Data is Written to the File
	Missing Data String Substitution while Writing Data
	Writing Row-Oriented Data
	Writing Column-Oriented Data
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	See Also

	DC_WRITE_FREE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4
	See Also

	DC_WRITE_TIFF Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	DEFINE_KEY Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Defining Control Keys
	Defining New UNIX Function Keys
	Standard Function Keys Under UNIX
	Standard OpenVMS Function Keys
	Standard Function Keys Under Windows
	Example
	See Also

	DEFROI Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	DEFSYSV Procedure
	Usage
	Input Parameters
	Keywords
	DIscussion
	Example

	DELETE_SYMBOL Procedure (OpenVMS)
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	DEL_FILE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	UNIX Example 1
	UNIX Example 2
	OpenVMS Example 1
	OpenVMS Example 2
	Windows Example 1
	Windows Example 2
	See Also

	DELFUNC Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	DELLOG Procedure (OpenVMS)
	Usage
	Input Parameters
	Keywords
	See Also

	DELPROC Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	DELSTRUCT Procedure
	Usageh
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	DELVAR Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	DERIV Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	DERIVN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	DETERM Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example

	DEVICE Procedure
	Usage
	Parameters
	Keywords
	Discussion
	See Also

	DIAG Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example

	DICM_TAG_INFO Function
	Usage
	Input Parameters
	Returned Value
	Discussion
	Example
	See Also

	DIGITAL_FILTER Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	DILATE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	DINDGEN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	DIST Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	DOC_LIBRARY Procedure (UNIX/OpenVMS)
	Usage
	Input Parameters
	Keywords
	Discussion
	UNIX Examples
	OpenVMS Examples
	See Also

	DOUBLE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	DROP_EXEC_ON_SELECT Procedure (UNIX)
	See Also

	DT_ADD Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DT_COMPRESS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	DT_DURATION Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	DTGEN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	DT_PRINT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	DT_SUBTRACT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	See Also

	DT_TO_SEC Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example1
	Example 2
	See Also

	DT_TO_STR Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Examples
	See Also

	DT_TO_VAR Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	EMPTY Procedure
	Usage
	Parameters
	Keywords
	Discussion
	See Also

	ENVIRONMENT Function (UNIX/Windows)
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	EOF Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	ERASE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	ERODE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	ERRORF Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	ERRPLOT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	EUCLIDEAN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	EXEC_ON_SELECT Procedure (UNIX)
	See Also

	EXECUTE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	EXIT Procedure
	Usage
	Parameters
	Keywords
	Discussion
	See Also

	EXP Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	EXPAND Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	EXPON Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example

	EXTREMA Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	FACTOR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	FAST_GRID2 Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	FAST_GRID3 Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	FAST_GRID4 Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	FFT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	FILEPATH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	UNIX Examples
	VMS Examples
	Windows Examples
	See Also

	FINDFILE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	FINDGEN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	FINITE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	FIX Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	FLOAT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	FLTARR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	FLUSH Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	FREE_LUN Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	FSTAT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	FUNCT Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	See Also

	GAMMA Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	GAUSSFIT Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	GAUSSINT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	GCD Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	GETENV Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	UNIX and OpenVMS Examples
	Windows Example
	See Also

	GET_KBRD Function
	Usage
	Input Parameters
	Returned Value
	Keywords

	GET_LUN Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	GETNCERR Function
	Usage
	Input Parameters
	Keywords
	Return Value
	Discussion
	Example
	See Also

	GETNCOPTS Function
	Usage
	Input Parameters
	Keywords
	Return Value
	Discussion
	Example
	See Also

	GET_SYMBOL Function (OpenVMS)
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	GREAT_INT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	GRID Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	GRIDN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	GRID_2D Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	GRID_3D Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	GRID_4D Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	GRID_SPHERE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	GROUP_BY Function
	Usage
	Input Parameters
	Returned Value
	Input Keywords
	Discussion
	Example
	See Also

	HAK Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	HANNING Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	HDFGET24 Function
	Usage
	Input Parameters
	Output Parameters
	Return Value
	Keywords
	Discussion
	Example
	See Also

	HDFGETANN Function
	Usage
	Input Parameters
	Return Value
	Keywords
	Discussion
	Example
	See Also

	HDFGETFILEANN Function
	Usage
	Input Parameters
	Return Value
	Keywords
	Discussion
	Example
	See Also

	HDFGETNT Function
	Usage
	Output Parameter
	Return Value
	Keywords
	Discussion
	Example
	See Also

	HDFGETR8 Function
	Usage
	Input Parameters
	Output Parameters
	Return Value
	Keywords
	Discussion
	Example
	See Also

	HDFGETRANGE Function
	Usage
	Output Parameters
	Return Value
	Keywords
	Discussion
	Example
	See Also

	HDFGETSDS Function
	Usage
	Input Parameters
	Output Parameters
	Return Value
	Keywords
	Discussion
	Example
	See Also

	HDFLCT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	HDFPUT24 Function
	Usage
	Input Parameters
	Return Value
	Keywords
	Discussion
	Example
	See Also

	HDFPUTFILEANN Function
	Usage
	Input Parameters
	Return Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	HDFPUTR8 Function
	Usage
	Input Parameters
	Return Value
	Keywords
	Discussion
	Example
	See Also

	HDFPUTSDS Function
	Usage
	Input Parameters
	Return Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	HDFSCAN Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	HDFSETNT Function
	Usage
	Input Parameters
	Return Value
	Keywords
	Discussion
	Example
	See Also

	HDF_TEST Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	HELP Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Examples
	See Also

	HILBERT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	HIST_EQUAL Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	HIST_EQUAL_CT Procedure
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	HISTN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	HISTOGRAM Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Sample Usage
	Example 1
	Example 2
	See Also

	HLS Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	HSV Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	HSV_TO_RGB Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	HTML_BLOCK Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	HTML_CLOSE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	HTML_HEADING Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	HTML_HIGHLIGHT Function
	Usage
	Input Parameters
	Keywords
	Returned Value
	Discussion
	Example
	See Also

	HTML_IMAGE Function
	Usage
	Input Parameters
	Keywords
	Returned Value
	Discussion
	Example
	See Also

	HTML_LINK Function
	Usage
	Input Parameters
	Keywords
	Returned Value
	Discussion
	Example
	See Also

	HTML_LIST Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	HTML_OPEN Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	HTML_PARAGRAPH Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	HTML_RULE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	HTML_SAFE Function
	Usage
	Input Parameters
	Keywords
	Returned Value
	Discussion
	Example
	See Also

	HTML_TABLE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	HTML_TEXT Procedure
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	IMAGE_CHECK Function
	Usage
	Input Parameters
	Keywords
	Returned Value
	Discussion
	Example
	See Also

	IMAGE_COLOR_QUANT Function
	Usage
	Input Paramters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	IMAGE_CONT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	IMAGE_CREATE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IMAGE_DISPLAY Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	IMAGE_QUERY_FILE Function
	Usage
	Input Paramters
	Keywords
	Returned Value
	Discussion
	Example 1
	Example 2
	Example 3
	See Also

	IMAGE_READ Function
	Usage
	Input Parameters
	Keywords
	Returned Value
	Discussion
	Example 1
	Example 2
	See Also

	IMAGE_WRITE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IMAGINARY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	IMG_TRUE8 Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Examples
	See Also

	INDEX_AND Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	INDEX_CONV Function
	Usage
	Input Parameters
	Returned Value
	Example

	INDEX_OR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	INDGEN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	INFO Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	INTARR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	INTERPOL Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	INTERPOLATE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	INTRP Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	INVERT Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	ISASKEY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	ISHFT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	JACOBIAN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	JOURNAL Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	JUL_TO_DT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	KEYWORD_SET Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	LCM Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	LEEFILT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	LEGEND Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	LINDGEN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	LINKNLOAD Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Accessing the Data in PV-WAVE Variables
	Programming Notes
	UNIX/OpenVMS Examples
	Windows Examples
	Other Examples
	See Also

	LIST Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	LISTARR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example

	LN03 Procedure (UNIX/OpenVMS)
	Usage
	Input Parameters
	Keywords
	Example

	LOADCT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	LOADCT_CUSTOM Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	LOAD_HOLIDAYS Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	LOAD_OPTION Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	LOADRESOURCES Procedure
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	LOADSTRINGS Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	LOAD_WEEKENDS Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	LONARR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	LONG Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	LUBKSB Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	LUDCMP Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Example
	See Also

	MAKE_ARRAY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	MAP Procedure
	Usage
	Input Parameters
	Keywords
	Standard Plotting Keywords
	Discussion
	Examples
	See Also

	MAP_CONTOUR Procedure
	Usage
	Input Parameters
	Keywords
	Standard Plotting Keywords
	Discussion
	Example
	See Also

	MAP_PLOTS Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Standard Plotting Keywords
	Discussion
	Example
	See Also

	MAP_POLYFILL Procedure
	Usage
	Input Parameters
	Standard Graphics Keywords
	Z-buffer Specific Keywords
	Discussion
	See Also

	MAP_REVERSE Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	MAP_VELOVECT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	MAP_XYOUTS Procedure
	Usage
	Input Parameters
	Standard Plotting Keywords
	Discussion
	Example
	See Also

	MAX Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example 1
	Example 2
	Example 3
	See Also

	MEDIAN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	MESH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	MESSAGE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	MIN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example 1
	Example 2
	Example 3
	See Also

	MINIMIZE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples

	MODIFYCT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	MOLEC Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples

	MOMENT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples

	MONTH_NAME Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	MOVIE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	MPROVE Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	See Also

	MSWORD_CGM_SETUP Procedure
	Usage
	Input Parameters
	Keywords
	Discussion

	NAVIGATOR Procedure
	Usage
	Keywords
	Discussion
	Example
	See Also

	NEIGHBORS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	N_ELEMENTS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	NINT Function
	Usage
	Input Parameters
	Keywords
	Returned Value
	Discussion
	Examples
	See Also

	NORMALS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	N_PARAMS Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	N_TAGS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	ON_ERROR Procedure
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	ON_ERROR_GOTO Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	ON_IOERROR Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	OPEN Procedures (UNIX/OpenVMS)
	(OPENR, OPENU, OPENW)
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	OPEN Procedures (Windows)
	(OPENR, OPENU, OPENW)
	Usage
	Input Parameters
	Keywords
	See Also

	OPENURL Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	OPLOT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	OPLOTERR Procedure
	Usage
	Input Parameters
	Keywords
	Example 1
	Example 2
	See Also

	OPTION_IS_LOADED Function
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	ORDER_BY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	PADIT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	PALETTE Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	PARAM_PRESENT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	PARSEFILENAME Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	PIE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	PIE_CHART Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	PLOT Procedures
	(PLOT, PLOT_IO, PLOT_OI, PLOT_OO)
	Usage
	Input Parameters
	Keywords
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	See Also

	PLOTERR Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	PLOT_FIELD Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	PLOT_HISTOGRAM Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	PLOTS Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	See Also

	PM Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	PMF Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	POINT_LUN Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	POLY Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	POLY_2D Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	POLY_AREA Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	POLY_C_CONV Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	POLY_COUNT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	POLY_DEV Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	POLYFILL Procedure
	Usage
	Input Parameters
	Keywords
	Z-buffer Specific Keywords
	Discussion
	Example 1
	See Also

	POLYFILLV Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	POLY_FIT Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	POLYFITW Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	POLY_MERGE Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	POLY_NORM Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	POLY_PLOT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	POLYSHADE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	POLY_SPHERE Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	POLY_SURF Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	POLY_TRANS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	POLYWARP Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	POPD Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	UNIX Examples
	OpenVMS Examples
	Windows Examples
	See Also

	PRIME Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	PRINT Procedures
	(PRINT, PRINTF)
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	PRINTD Procedure
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	PRODUCT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples

	PROFILE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	PROFILES Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	PROMPT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	PSEUDO Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	See Also

	PUSHD Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	QUERY_TABLE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	See Also

	QUIT Procedure
	Usage
	Parameters
	Keywords
	Discussion
	See Also

	RANDOMN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	See Also

	RANDOMU Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	RDPIX Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	READ Procedures
	(READ, READF, READU)
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 2
	See Also

	READ_XBM Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	REBIN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	REFORM Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	REGRESS Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	RENAME Procedure
	Usage
	Input Paramters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	RENDER Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	RENDER24 Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	REPLICATE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	See Also

	REPLV Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	RESAMP Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	RESTORE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	RETALL Procedure
	Usage
	Parameters
	Keywords
	Discussion
	See Also

	RETURN Procedure
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	REVERSE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	REWIND Procedure (OpenVMS)
	Usage
	Input Parameters
	Keywords
	See Also

	RGB_TO_HSV Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	See Also

	RM Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Description
	Example 1: Reading a Simple Matrix
	Example 2: Reading a Complex Matrix
	Example 3: Reading a Matrix to be Used with LUSOL
	See Also

	RMF Procedure
	Output Parameters
	Keywords
	See Also

	ROBERTS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	ROT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	ROTATE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	ROT_INT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	SAME Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	SAVE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	SCALE3D Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	SEC_TO_DT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	SELECT_READ_LUN Procedure (UNIX)
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Description
	See Also

	SETDEMO Procedure
	Usage
	Parameters
	Keywords
	Discussion
	See Also

	SETENV Procedure (UNIX/Windows)
	Usage
	Input Parameters
	Keywords
	UNIX Example
	Windows Example
	See Also

	SETLOG Procedure (OpenVMS)
	Usage
	Input Parameters
	Keywords
	See Also

	SETNCOPTS Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	SET_PLOT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	SET_SCREEN Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	SET_SHADING Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	SET_SYMBOL Procedure (OpenVMS)
	Usage
	Input Parameters
	Keywords
	See Also

	SETUP_KEYS Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	SET_VIEW3D Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	SET_VIEWPORT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	SET_XY Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	SGN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples

	SHADE_SURF Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 3
	See Also

	SHADE_SURF_IRR Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	SHADE_VOLUME Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	SHIF Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	SHIFT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	SHOW3 Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	SHOW_OPTIONS Procedure
	Usage
	Keywords
	Discussion
	Example
	See Also

	SIGMA Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SIN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SINDGEN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	SINH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SIZE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	SKIPF Procedure (OpenVMS)
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	SLICE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples

	SLICE_VOL Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SMALL_INT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	SMOOTH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SOBEL Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SOCKET_ACCEPT Function
	SOCKET_CLOSE Procedure
	SOCKET_CONNECT Function
	SOCKET_GETPORT Function
	SOCKET_INIT Function
	SOCKET_READ Function
	SOCKET_WRITE Procedure
	SORT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SPAWN Procedure (UNIX/OpenVMS)
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	SORTN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Examples
	See Also

	SPAWN Procedure (Windows)
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Example
	See Also

	SPHERE Function
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SPLINE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	SQRT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	STDEV Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	STOP Procedure
	Usage
	Input Parameters
	Keywords
	See Also

	STRARR Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	STRCOMPRESS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	STRETCH Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	STRING Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	See Also

	STRJOIN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	STRLEN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	STRLOOKUP Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	STRLOWCASE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	STRMATCH Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	STRMESSAGE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	STRMID Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	STRPOS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	STRPUT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	STRSPLIT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	STRSUBST Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	STR_TO_DT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	STRTRIM Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	STRUCTREF Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	STRUPCASE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SUM Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SURFACE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	SURFACE_FIT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	SURFR Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	SVBKSB Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	SVD Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	SVDFIT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	SYSTIME Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	T3D Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	See Also

	TAG_NAMES Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	TAN Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TANH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	TAPRD Procedure (OpenVMS)
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	TAPWRT Procedure (OpenVMS)
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	TEK_COLOR Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	TENSOR Functions
	Usage
	Input Parameters
	Keywords
	Returned Value
	Discussion
	Example

	THREED Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	TODAY Function
	Usage
	Parameters
	Returned Value
	Keywords
	Example
	See Also

	TOTAL Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	TQLI Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	TRANSPOSE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4
	See Also

	TRED2 Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	See Also

	TRIDAG Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	See Also

	TRNLOG Function (OpenVMS)
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	See Also

	TV Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	TVCRS Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	TVLCT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	TVRD Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	TVSCL Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	TVSIZE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	UNIQN Function
	Usage
	Input Parameters
	Returned Value
	Example
	See Also

	UNIQUE Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	See Also

	UNIX_LISTEN Function (UNIX Only)
	Usage
	Parameters
	Returned Value
	Keywords
	Discussion
	See Also

	UNIX_REPLY Function (UNIX Only)
	Usage
	Input Parameters
	Returned Value
	Keywords
	See Also

	UNLOAD_OPTION Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	UPVAR Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	USERSYM Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	USGS_NAMES Function
	Usage
	Input Parameters
	Keywords
	Returned Value
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	See Also

	VAR_MATCH Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	VAR_TO_DT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	VECTOR_FIELD3 Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	VEL Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	VELOVECT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	VIEWER Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	VOL_MARKER Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Examples
	See Also

	VOL_PAD Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	VOL_REND Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	VOL_TRANS Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Examples
	See Also

	VOLUME Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	VRML_AXIS Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	VRML_CAMERA Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	VRML_CLOSE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion.
	See Also

	VRML_CONE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	VRML_CUBE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	VRML_CYLINDER Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	VRML_LIGHT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	VRML_LINE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	VRML_OPEN Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	VRML_POLY Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	VRML_SPHERE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	VRML_SPOTLIGHT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	VRML_SURFACE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	VRML_TEXT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	vtkADDATTRIBUTE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion

	vtkAXES Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	vtkCAMERA Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example

	vtkCLOSE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	vtkCOLORBAR Procedure
	Usage
	Keywords

	vtkCOMMAND Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	vtkERASE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	vtkGRID Procedure
	Usage
	Keywords
	Example

	vtkHEDGEHOG Procedure
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	vtkINIT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	vtkLIGHT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example

	vtkPLOTS Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	vtkPOLYDATA Procedure
	Usage
	Input Parameters
	Keywords
	Discussion

	vtkPOLYSHADE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	vtkPPMREAD Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	vtkPPMWRITE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	vtkRECTILINEARGRID Procedure
	Usage
	Input Parameters
	Keywords
	Discussion

	vtkRENDERWINDOW Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	vtkSCATTER Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	vtkSLICEVOL Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	vtkSTRUCTUREDGRID Procedure
	Usage
	Input Parameters
	Keywords
	Discussion

	vtkSTRUCTUREDPOINTS Procedure
	Usage
	Input Parameters
	Keywords
	Discussion

	vtkSURFACE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	vtkSURFGEN Procedure
	Usage
	Input Parameters
	Keywords
	Example
	See Also

	vtkTEXT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example

	vtkTVRD Function
	Usage
	Input Parameters
	Keywords
	Returned Value
	Discussion
	Example
	See Also

	vtkUNSTRUCTUREDGRID Procedure
	Usage
	Input Parameters
	Keywords
	Discussion

	vtkWDELETE Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	vtkWINDOW Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2
	See Also

	vtkWRITEVRML Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	vtkWSET Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WAIT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	WCOPY Function (Windows)
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WDELETE Procedure
	Usage
	Input Parameters
	Keywords
	See Also

	WEOF Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	WgAnimateTool Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Contents of the Window
	Example
	See Also

	WgCbarTool Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Event Handling
	The Colors Common Block
	Example
	See Also

	WgCeditTool Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Color/Font Keywords
	Discussion
	What is a Color Table?
	Contents of the Window
	CeditTool Menu Bar
	Event Handling
	Example
	See Also

	WgCtTool Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	The Colors Common Block
	Contents of the Window
	Event Handling
	Example
	See Also

	WgIsoSurfTool Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Event Handling
	Contents of the Window
	Example
	See Also

	WgMovieTool Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Event Handling
	Contents of the Window
	Example
	See Also

	WgOrbit Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Examples

	WgSimageTool Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Event Handling
	Contents of the Window
	Example
	See Also

	WgSliceTool Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Event Handling
	Example
	See Also

	WgStripTool Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Event Handling
	Contents of the Window
	Example
	See Also

	WgSurfaceTool Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Event Handling
	Contents of the Window
	Example
	See Also

	WgTextTool Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Interacting with the Window
	Event Handling
	Example
	See Also

	WHERE Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	See Also

	WHEREIN Function
	Usage
	Input Parameters
	Output Parameters
	Returned Value
	Output Keywords
	Example
	See Also

	WIN32_PICK_FONT Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Example
	See Also

	WIN32_PICK_PRINTER Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	See Also

	WINDOW Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1
	Example 2 (Windows only)
	See Also

	WMENU Function (UNIX/OpenVMS)
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example

	WPASTE Function (Windows)
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WPRINT Procedure (Windows)
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WREAD_DIB Function (Windows)
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WREAD_META Function (Windows)
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WRITEU Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WRITE_XBM Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WSET Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example 1 — UNIX/OpenVMS
	Example 2 — UNIX/OpenVMS
	See Also

	WSHOW Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	See Also

	WWRITE_DIB Function (Windows)
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WWRITE_META Function (Windows)
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example
	See Also

	WzAnimate Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzBar Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzBar3D Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzColorEdit Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzContour Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzExport Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzHistogram Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzImage Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzImport Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzMultiView Procedure
	Usage
	Keywords
	Discussion
	Example
	See Also

	WzPie Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzPlot Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzPreview Procedure
	Usage
	Parameters
	Keywords
	Discussion
	Example
	See Also

	WzSurface Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzTable Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	WzVariable Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	XYOUTS Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	Example
	See Also

	ZOOM Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	ZROOTS Procedure
	Usage
	Input Parameters
	Output Parameters
	Keywords
	Discussion
	See Also

	3 - Graphics and Plotting Keywords
	Alignment Keyword
	Ax Keyword
	Az Keyword
	Background Keyword
	Bottom Keyword
	Box Keyword
	C_Annotation Keyword
	C_Charsize Keyword
	C_Charthick Keyword
	C_Colors Keyword
	C_Labels Keyword
	C_Linestyle Keyword
	C_Thick Keyword
	Channel Keyword
	Charsize Keyword
	Charthick Keyword
	Clip Keyword
	Color Keyword
	Compress Keyword
	Data Keyword
	Device Keyword
	DT_Range Keyword
	Fill_Pattern Keyword
	Follow Keyword
	Font Keyword
	Gridstyle Keyword
	Horizontal Keyword
	Levels Keyword
	Line_Fill Keyword
	Linestyle Keyword
	Lower_Only Keyword
	Max_Levels Keyword
	Max_Value Keyword
	Month_Abbr Keyword
	NLevels Keyword
	Noclip Keyword
	Nodata Keyword
	Noerase Keyword
	Normal Keyword
	Nsum Keyword
	Orientation Keyword
	Overplot Keyword
	Path_Filename Keyword
	Pattern Keyword
	PClip Keyword
	Polar Keyword
	Position Keyword
	Psym Keyword
	Save Keyword
	Size Keyword
	Skirt Keyword
	Solid_Psym Keyword
	Spacing Keyword
	Spline Keyword
	Start_Level Keyword
	Subtitle Keyword
	Symsize Keyword
	T3d Keyword
	Text_Axes Keyword
	Thick Keyword
	Tickformat Keyword
	Ticklen Keyword
	Title Keyword
	Upper_Only Keyword
	Week_Boundary Keyword
	Width Keyword
	[XY]Axis Keyword
	[XYZ]Charsize Keyword
	[XYZ]Gridstyle Keyword
	[XYZ]Margin Keyword
	[XYZ]Minor Keyword
	[XYZ]Range Keyword
	[XYZ]Style Keyword
	[XYZ]Tickformat Keyword
	[XYZ]Ticklen Keyword
	[XYZ]Tickname Keyword
	[XYZ]Ticks Keyword
	[XYZ]Tickv Keyword
	[XYZ]Title Keyword
	[XYZ]Type Keyword
	YNozero Keyword
	YLabelCenter Keyword
	Z Keyword
	ZAxis Keyword
	ZValue Keyword

	4 - System Variables
	!C
	!Century_Divider
	!D
	!D.Display_Depth
	!D.Fill_Dist
	!D.Flags
	!D.N_Colors
	!D.Name
	!D.Table_Size
	!D.Unit
	!D.Window
	!D.X_Ch_Size / !D.Y_Ch_Size
	!D.X_Px_Cm / !D.Y_Px_Cm
	!D.X_Size / !D.Y_Size
	!D.X_Vsize / !D.Y_Vsize
	!Date_Separator
	!Day_Names
	!Dir
	!Display_Size
	!Dpi
	!DT_Base
	!Dtor
	!Edit_Input
	!Err
	!Err_String
	!Holiday_List
	!Journal
	!Lang
	!Month_Names
	!Mouse
	!Msg_Prefix
	!Order
	!P
	!P.Background
	!P.Charsize
	!P.Charthick
	!P.Clip
	!P.Color
	!P.Font
	!P.Gridstyle
	!P.Linestyle
	!P.Multi
	!P.NoClip
	!P.Nsum
	!P.Position
	!P.Psym
	!P.Region
	!P.Subtitle
	!P.T
	!P.T3D
	!P.Thick
	!P.Tickformat
	!P.Ticklen
	!P.Title
	!Path
	!PDT
	!PDT.Box
	!PDT.Compress
	!PDT.Exclude_Holiday
	!PDT. Exclude_Weekend
	!PDT.Max_Levels
	!PDT.Month_Abbr
	!PDT.Start_Level
	!PDT.DT_Crange
	!PDT.DT_Range
	!PDT.DT_Offset
	!PDT.Week_Boundary
	!Pi
	!Prompt
	!Quarter_Names
	!Quiet
	!Radeg
	!Start
	!Time_Separator
	!Version
	!Weekend_List
	![XYZ]
	![XYZ].Charsize
	![XYZ].Crange
	![XYZ].Gridstyle
	![XYZ].Margin
	![XYZ].Minor
	![XYZ].Range
	![XYZ].Region
	![XYZ].S
	![XYZ].Style
	![XYZ].Thick
	![XYZ].Tickformat
	![XYZ].Ticklen
	![XYZ].Tickname
	![XYZ].Ticks
	![XYZ].Tickv
	![XYZ].Title
	![XYZ].Type
	![XYZ].Window

	5 - Software Character Sets
	6 - Special Characters
	7 - Executive Commands
	Using �Executive Commands
	.CON
	.GO
	.LOCALS
	..LOCALS
	.RNEW
	.RUN
	.SKIP
	.SIZE
	.STEP

	A - The PV-WAVE HDF Interface
	What is the PV-WAVE HDF Interface?
	Example Programs Are Available
	Printing NCSA Documentation
	Other Sources of Information on HDF and NetCDF

	Using the PV�WAVE HDF Functions
	Initializing the HDF Module
	HDF_STARTUP Initializes Common Block Variables
	Input Data Is Converted to Required Data Type
	Using the Usage and Help Keywords
	Ensure Correct Data Types with SDS GET Routines
	Use FORTRAN Array Alignment
	Annotation Routines May Require Further Processing
	Slab Routines Replace Slice Routines
	Base Functions Assume Valid Input

	PV�WAVE HDF Base Function Interface
	24-bit Raster Image Set: The DF24 Interface
	Annotations: The DFAN Interface
	Palettes: The DFP Interface
	8-bit Raster Image Sets: The DFR8 Interface
	Scientific Data Sets: Single File DFSD Interface
	The H Interface
	Scientific Data Sets: The NetCDF Interface
	Scientific Data Sets: The SD Interface
	Vgroups: The V interface
	Vdata: The VS Interface
	Vdata Fields: The VF Interface
	Vdata Query: The VSQ Interface
	High Level Vdata/Vgroups: The VH interface

	B - Output Devices and Window Systems
	Window System Features
	How Is Backing Store Handled?

	CGM Output
	Controlling CGM Output with DEVICE Keywords
	Using the CGM Driver
	Using Color with CGM Output
	Binary CGM Output for VAX/OpenVMS Machines

	HPGL Output
	Controlling HPGL Output with DEVICE Keywords
	Supported Features of HPGL
	Specifying Linestyles in HPGL Output

	PCL Output
	Controlling PCL Output with DEVICE Keywords
	PCL Image Background Color

	Pixel Map Output
	Controlling PM buffer Output with DEVICE Keywords

	PostScript Output
	Controlling PostScript Output with DEVICE Keywords
	Using PostScript Fonts
	Using Color PostScript Devices
	PostScript Supports Color Images
	Changing the Image Background Color
	Creating Publication-quality Documents
	The LATEX Insertplot Macro

	Regis Output
	Controlling Regis Output with DEVICE Keywords
	Limitations of REGIS Output

	Tektronix Terminals
	Controlling Tektronix Output with DEVICE Keywords
	Notes on the Tektronix Driver
	Limitations of Tektronix and Tektronix-compatible Terminals

	WIN32 Driver
	Selecting the WIN32 Driver
	Listing the Current Settings for the WIN32 Driver
	Additional Text Formatting Commands
	Controlling the WIN32 Driver with DEVICE Keywords
	Resizing Graphics
	Graphics Window Commands
	Use of Color in the WIN32 Driver
	Using Bitmaps
	Using the Write Mask and Graphics Functions to Manipulate Color
	Window IDs

	WMF Driver
	Selecting the WMF Driver
	Listing the Current Settings for the WMF Driver
	Sending PV-WAVE Output Directly to a Printer
	Handling 24-bit Color
	Additional Text Formatting Commands
	Controlling the WMF Driver with DEVICE Keywords

	X Window System
	Controlling Where Graphics are Displayed
	Graphical User Interfaces (GUIs) for �PV�WAVE Applications �Running Under X
	Additional Text Formatting Commands
	Controlling the X Driver with DEVICE Keywords��
	X Window Visuals
	Colormapped Graphics
	How �PV�WAVE Allocates the Colormap
	Using Pixmaps to Improve Application Performance
	24-bit Visual Classes
	Understanding 24-bit Graphics Displays
	Using the Write Mask and Graphics Functions to Manipulate Color
	X Window IDs

	Z�buffer Output
	Controlling Z-buffer Output with DEVICE Keywords
	Z-buffer Examples

	 Index

